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We will call a G-structure modeled after a compact irreducible Hermitian symmetric
space S of rank = 2, an S-structure. (See section 3 or [KO] for a precise definition. Note
that our S-structure is called G(S)-structure in [KO].) Such structures were studied by
many authors in the 60’s (see [Oc] and the references there). From the 80’s, they were
studied by people working on twistor theory (see [Ba], [Ma] and the references there).
When one studies these works, what is rather amazing, at least to the authors, is the lack
of a nonflat example among compact manifolds. One may even expect that S-structures
are always flat under mild conditions. One result along this line is

Theorem (Kobayashi-Ochiai [KO]). An S-structure on a compact Kdhler-Einstein
manifold X is always flat, and the universal cover of X is a Hermitian symmetric space.

Since the existence of a Kéhler-Einstein metric is a very strong condition when X is
Fano (¢, (X) > 0), it would be much nicer, if the flatness is true for general Fano mani-
folds. Our main result says that this is indeed the case. We get a slightly more general
statement. Note that Fano manifolds are uniruled by [Mo].

Main Theorem. Let G < GL(V) be an irreducible faithful representation of a con-
nected reductive complex Lie group G. Let M be a uniruled projective manifold with a
G-structure. Then the G-structure is flat. Furthermore, if G # GL(V), then M is biholo-
morphic to a compact irreducible Hermitian symmetric space S of rank = 2.

For the four classical types, we can describe S-structures more explicitly:
Corollary. Let M be a uniruled projective manifold.

(1) If there exist two vector bundles U, W of rank =2, such that T(M) = U ® W,
then M is biholomorphic to a Grassmannian.
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(II) If there exists a vector bundle U with T(M) = N*U, then M is biholomorphic to
a quadric Grassmannian of m-dimensional linear subspaces in a 2 m-dimensional hyperquadric.

(III) If there exists a vector bundle U with T(M) = S*U, where S* denotes the sym-
metric square, then M is biholomorphic to a Lagrangian Grassmannian, i.e. the variety of
Lagrangian subspaces of a symplectic vector space.

(IV) If there exists a line bundle L and a section of S*T*(M) ® L defining a non-
degenerate symmetric bilinear form on T (M), then M is biholomorphic to the hyperquadric.

One can describe the exceptional S-structures as a certain spinor structure and an
octanionic structure on the tangent bundle. But we will skip it.

(IV) was proved earlier by [Ye]. His proof uses the Kobayashi-Ochiai criterion for
hyperquadrics and needs a rather detailed study of the full space of minimal rational
curves. Our approach in case (IV) is simply showing the vanishing of the Weyl conformal
curvature tensor directly from the information about a generic minimal rational curve. So
even for case (IV), we have a different and simple proof.

_ Flatness of G-structures gives rise to uniformizing coordinates which define a corre-
sponding pseudogroup structure on the underlying manifold. As such our characterization
of Fano manifolds with G-structures comes close to the perspective on the uniformization
of complex manifolds as expounded by Gunning [Gn].

As is well-known the projective space and the hyperquadric of dimension =3 can
be characterized in terms of ample lines bundles. Our Main Theorem gives the first algebro-
geometric characterizations of other irreducible Hermitian symmetric manifolds of the
compact type, without the assumption of homogeneity. As such, it might be useful in the
study of Fano manifolds X with numerically effective tangent bundles, which are conjec-
tured in Campana-Peternell [CP] to be always rational homogeneous. The present article
suggests the approach of constructing not necessarily reductive G-structures on X from
cones of mjinimal rational curves and the possibility of recovering the structure of rational
homogeneous manifolds from such G-structures by some generalization of our Main
Theorem.

1. Flatness conditions for G-structures

We will briefly recall the basic notions of the theory of G-structures. We will follow
Guillemin’s presentation ([Gu]). -

Throughout this paper, ¥ is a fixed n-dimensional complex vector space. ¥ can be
canonically identified with the vector space of constant vector fields on V. For notational
convenience, let us write f = gl(V). We define f® =V ® S**1V* where S* means the
k-th symmetric power. In particular, f© = f. Note that f® can be naturally identified with
the vector space of homogeneous wvector fields of degree k+1 on V. The infinite sum
V+f+fM 4 - can be identified with the vector space of formal vector fields on ¥, and
has a natural Lie algebra structure arising from this identification. Note that the Lie bracket
satisfies [,]: f® ® £ — f**D We define f* = f 4 £ 4--- 4 £®_ It is a Lie algebra under
[,] modulo f*+1 4 fE+2) ...
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Let Ck'=f*-D & A'V* be the space of (I-form)-valued homogeneous vector
fields of degree k. Taking differentials of the coefficients, we get a derivative of degree
(—1,1),8: C* - C*~1!*1 Then 62 = 0 and the complex (C*/, §) is exact, which is just
a formal version of the Poincaré lemma.

Given a complex manifold X, we define the frame bundle & (X) as the principal
GL(V)-bundle with the fiber at x e X, % (X) = Isom(V, T, (X )). We can also view an
element of % (X) as the 1-jet of a local biholomorphism of pointed spaces (¥; 0) — (X, x).
If we consider the (k + 1)-jets, we get a fiber bundle #*(X) whose structure group cor-
responds to the Lie algebra f*. On #*(X), there is a canonical (V + f + £ +--- + f¢~1)-
valued 1-form A* = g+ 0+ -+ v* 1, where y is a V-valued 1-form and v* is an f-valued
1-form. The V-valued 1-form u at ¢ € Z*(X) is given by simply projecting the tangent
vector to a tangent vector at x € X, and then use the identification of ¥ with T, (X) given *
by the 1-jet of ¢. v' is defined similarly using the (i + 2)-jet of ¢, i <k.

Let G GL(V) be a connected complex closed subgroup. A G-structure on X
means a G-subbundle % c % (X). Given a G-structure ¢ on X, and a biholomorphic map
f: X — Y to another complex manifold ¥, we get an induced G-structure /.4 on Y. V'
has a canonical G-structure 4(V) = G x V < # (V). A G-structure on a complex manifold
X, %9 < #(X) is flat, if for each point x € X, there exists a local biholomorphism from a
neighborhood of 0 € ¥ to a neighborhood of x € X, which induces an isomorphism of (V)
and 9.

Given two manifolds with G-structures (X, %) and (X', %’), a local biholomorphism
f: (X, x) > (X", x') is k-th order structure preserving, if £, < % (X") contains ¥, and the
two submanifolds ¢’ and f,% of % (X’) are tangent to order 2 k along %, namely the
ideal defining f,% restricted to ¢ has multiplicity >k along %,.. This notion depends
only on the (k + 1)-jet of f.

Let g = f be the Lie algebra of G. It can be regarded as the vector space of linear
vector fields on ¥, which generate local biholomorphisms of (¥, 0), which are 0-th order
structure preserving with respect to the trivial G-structure ¥(V) at 0 € V. Similarly, we
consider g® < f® which generate k-th order structure preserving automorphisms.

Define C*!(g) = C*! as the subspace g* P ®@ A'V* < f* D @ A'V* Then we get
a complex (C*!(g), §), whose cohomology groups will be denoted by H™'(g). They are
called the Spencer cohomology groups associated to g = f. We will be mostly interested in
H*2(g), namely, in the sequence

g(k)® VE g(k—1)® /\ZV* — g(k—2)® /\3V* .

A G-structure ¢ on X is uniformly k-flat, if at each point x € X, there exists a
(k + 1)-jet of a local biholomorphism (¥, 0) — (X, x), which is k-th order structure pre-
serving. Any G-structure is uniformly 0-flat. By Cartan-Kéhler theorem, a G-structure is
flat, if and only if it is uniformly k-flat for all positive integers k (see [SS]).

!

If ¥ < #(X) is uniformly k-flat, we can define a subbundle ¥* = #*(X), whose
fiber at x € X is the set of (k 4 1)-jets of local biholomorphisms (¥, 0) — (X, x) which are
k-th order structure preserving. %* is a principal bundle with the Lie algebra
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g =g+ gM+--+g®, a subalgebra of f*. In the same way, as we defined 4* on F* (X),
we can define (V4 g+ + g®~ Y)-valued 1-form I'*= 0 + Q%+ Q' +--- + Q*~1 on @*,

We define a function c*: ¥* - H*2(g) as follows. Given a point p € #*, choose a
horizontal subspace H < T,(%*), which is in the kernel of Q° Q% ..., Q"1 Such a sub-
space always exists. Define yg : A2V* — g* =D by y, (v, 0,) = dQ¥71(V, A V,), where ¥
is the element of H whose projection to X coincides with the push-forward of v, by p.
The element y, e g® ™1 ® A*V* depends on the choice of H. But its cohomology class in
H*2(g) does not ([Gu], Prop. 4.3). We will denote this cohomology class by c*. ¢ is
constant along the fibers of ¥* — 4. Hence we get an H*2(g)-valued function ¢* on ¥,
when ¢ is uniformly k-flat. This function is precisely the obstruction to the flatness:

Proposition 1 (Guillemin [Gu], Corollary to Theorem 4.1). Suppose ¥ is uniformly

k-flat, where k is any nonnegative integer. Then it is uniformly (k + 1)-flat, if and only if
ck=0.

When G is reductive, we can interpret c* in terms of more classical tensors:

Proposition 2.  Suppose G = GL(V) is a connected reductive subgroup. Let 4 = F (X)
be a G-structure on a complex manifold X. If H° (X, 0(T(X) ® S*T*(X) ® A2 T*(X))) =0
Jfor all nonnegative integers k, then 4 is flat.

Proof. Since G is reductive, we can regard H*2?(g) as a G-submodule of
gt D AN V*c V® S¥V* ® A?V* in a canonical way. Along the fibers of % — X, the
function c* varies according to the natural G-action on V® S*V* ® A?V*. Hence c*
induces a holomorphic section of T(X) ® S*T*(X) ® A’T*(X). By the assumption,
ck=0.

VL
- By the above result of Guillemin, ¢ is uniformly k-flat for all nonnegative integers k.
By Cartan-Kéhler theorem ([SS]), ¢ is flat. 0O

2. Flatness of G-structures on uniruled projective manifolds

Let M be a uniruled projective manifold. Mori’s bend-and-break shows that through
a generic point of M, we can find a rational curve C with T(M)|. = 02) ® [O(1)]* & ©4,
where T'(M)|. denotes the pull-back of the tangent bundle of M to the normalization of C
(e.g. (2.4.3) in [M1]). Let £ be the irreducible component of the Chow space containing
[C], the point corresponding to C, and # < ¢ be the Zariski-dense subset corresponding
to rational curves where T'(M) splits as @(2) @ [O(1)]? @ O1. Define

U={[Cl,x)eR*xM,xeC,}

and let v : % — % and ¢ : % — M be the projections. They are the universal family maps
when we regard # as a subset of the Hilbert scheme of M. Let x € M be a generic point
and define % as the reduced Zariski closure of &, =y (¢~ 1(x)) = & in A. Then each
component of ; has dimension p. For each ye %,y () corresponds to an immersed
rational curve in M passing through x. Hence we get a holomorphic immersion
0, : A, - PT, (M) assigning the tangent vectors at x tangential to the curves. The closure
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of the image @, (£, ) will be denoted by €, < PT,.(M) and will be called the cone of minimal
rational tangents at x. This is defined for x e M outside a proper subvariety. Note that
%, 1s an equidimensional subvarieiiy, but needs not be irreducible.

Let G = GL(V) be a faithful irreducible representation of a connected reductive group
G. Let (M) be the frame bundle with & (M), = Isom (¥, T,(M)) and ¥ = (M) be a
G-structure on M. Then the vector bundle associated to ¢ via G < GL(V) is the tangent
bundle T(M). Let A€ V be a highest weight vector of G and # < PV be the orbit of A.
By the irreducibility of the representation, #” < PV is linearly nondegenerate, namely, it
is not contained in a hyperplane. For each x € M, we define the cone of highest weight
tangents at x, denoted by #, < PT, (M) as the image of #  under any element of
% < Isom(V, T,(M)). This image does not depend on the choice of elements of %,.

We recall Grothendieck’s classification of G-principal bundles over P*. Let G be a
connected complex reductive Lie group and H = G be a maximal algebraic torus. Let
O(1)* be the C*-principal bundle on P!, which is just the complement of the zero section
of ®(1).

Proposition 3 (Grothendieck [Gt]). Let 4 be a principal G-bundle on P'. Then there
exists an algebraic one-parameter subgroup ¢ : C¥ — H such that 9 is equivalent to the
G-bundle associated to O (1)* via the action ¢. Furthermore, let ¥ be a vector bundle associated
to % via a representation p:. G — GL(V). Then " splits as the direct sum of line bundles
Oy, 0)), where p,: H — C* are the weights of u and {1, 0 denotes the integral exponent
of the homomorphism p;o g : C* — C*.

Let g = gl (V) be the Lie algebra of G. Since it is reductive, we can write g =z + 1,
where z is the center and 1 = [g, g] is semisimple. It follows from Lie’s theorem (e.g. [Hu],
19.1) that z = 0 or 1-dimensional, and acts with a single weight ¢ € z*, namely, z- v = o (2)v
for any ve V. Let h g be a Cartan subalgebra, and &* be a fixed choice of positive roots
with respect to h. Let 4 ch* be the weight lattice. Then a one-parameter subgroup
¢ : C* > H gives rise to an element g € h and the weights u; have corresponding elements
fi; € A so that ji,(¢) = {u;, ¢). In fact, fi; = o + v; where v,’s are weights of the correspond-
ing representation of the semisimple I and ¢ is the single weight of the center z. Let v,
be the highest weight. Then v, — v; is a sum of elements of &*. It follows that ji, — f; is
a sum of elements of @*.

Proposition 4. In the above situaiion, €. =W, for any generic point xe M.

Proof. Given a generic element o of any irreducible component of €., we can find
a rational curve C through x which is tangent to « and

T(M)lc=02)@ [0(1)]* D 01,

where ¢(2) = T(C). Let g be the one-parameter subgroup defining the G-principal bundle
9| .. Modulo Weyl group action, we can assume that a(g) = 0 for any positive root a € ¢*.
Hence f,(3) — f;(¢) = 0. 1t follows that f,(§).= 2 and the @(2)-factor of T'(M)|. cor-
responds to the highest weight vector. Hence 7., (C) lies in the G-orbit of highest weight
vector in T, (M), implying e € #,. - O
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Proposition 5.  In the above situation, suppose W + PV. Then for any generic point
xXeM, W.c¥..

Proof. Since g is reductive, the nondegenerate symmetric bilinear form
Tr(a, b) = Tr(a - b) on gl(V) is nondegenerate on g (e.g. [OV], Theorem 2, p. 138). Let
g* be the orthogonal complement so that gl(¥) = g @ g*. A G-action on ¥ induces a
G-action on gl(¥) and this action preserves g and g!. The associated vector bundle
End(T(M)) splits as U @ U+ where U is the bundle associated to g and U™ is the bundle
associated to gt.

Choose a generic element « in an irreducible component of %,. From the previous
proposition, we know that ae#,. Let C be a rational curve tangent to o« with
TM)|c=02) ® [0(1)]” @ 0% Then q is the codimension of €, = PT.(M). Hence it is
enough to show that g < codim (¥} = PT,(M)).

‘We have
End(T(M))|c = [02)]*® [0O(1)]P4*D @ 07T+ @ [O(—1)]*“*D @ [0(—2)]°.

Note that [@(2)]*factor is uniquely defined as a subbundle of End(7T(M))|.. From the
above, we have another decomposition End(T'(M))|. = U|. ® U*|.

Claim1. [0(Q2)])< Ut

Suppose not. By the uniqueness of Grothendieck decomposition, U|. must have an
O(2)-factor. Elements of [O(2)]ic T.(M)® I'*(M) are of the form T,.(C)® B,
BeT}(M). We fix an element of ¢, and identify T,.(M) with ¥V by that element. By the
previous proposition, T, (C) can be regarded as the span of a highest weight vector « in
V. The assumption that U|; has an ¢(2)-factor implies that o ® f* e g for some f*e V'*,
after we identify gl(V) =V ® V* Let ye V be any element in the orbit of the highest
weight vector. Then (a ® f*)(y) = f*(y)a. Hence g - y contains a multiple of « for any 7.
But g -y corresponds to the tangent space to the orbit of highest weight at y. Thus the
cone #, < PT, (M) has a point « which lies in the tangent space to any point in #;. Since
¥ is a homogeneous projective submanifold, « can be chosen to be any point of #,,
which implies #, is linear. This is impossible, because #” < PV is a linearly nondegenerate
proper subvariety, by the assumption. O

Claim2. Supposeo ® W < g* for some subspace W < V* Then W annihilates g - o.

Suppose not, then we have o ® we gt such that w(g- o) = ¢ + 0 for some we W,
geg. From the definition of g, Tr(ko (¢ ® w)) =0 for any keg. Put k=g, we get
Tr(go(@®w)) =0. But (go(x® w))(g-a) =c(g-a), while for any element veV,
(go (@ ® w)(v) = w(v)(g - ®). Hence Tr(g o (x ® w)) = ¢ % 0, a contradiction. O

Note that [0(2)]? is of the form « ® W, which lies in g by Claim 1. By Claim 2,
g < dim(annihilator of g« in V*). Since g - « is the tangent to #; at a, we get g < co-
dim(#, < PT,(M)). 0

Proposition 4 and Proposition 5 give
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Theorem 1. Let G = GL(V) be a faithful irreducible representation of a connected
reductive complex Lie group G. Let 4 ¢ (M) be a G-structure on a uniruled projective
manifold M. Assume that G + GL(V'). Then at a generic point x € M, the cone of minimal
rational tangents €, coincides with the cone of highest weight tangents W,

Proof. Suppose # = P V. There are four possibilities for G, namely, GL(V), SL(V),
Sp(V), CSp (V). Here Sp (V') means the symplectic group and CSp (V) means the conformal
symplectic group with respect to a symplectic form on V. They are possible only when
n = dim(M) is even.

First we claim that G + SL(V), Sp(V). Consider a rational curve C with [C]e %
as before and get g, ji;. For the standard representation of sl(V) or sp(V), ). fi; = 0. On
the other hand, )’ fi;(8) = 2+ p, a contradiction.

Suppose M admits a conformal symplectic structure. Then we have a line bundle L
such that T(M) = T*(M) ® L induced by a symplectic structure. Restricting the bundle
isomorphism to C chosen as before we see that L|. = ¢(2) and

T(M)lc=0Q)+[0W]"*D 0,

and ¥, is a hypersurface in P, (M). The symplectic form induces a map w: A>T — L.
From L|. = ©(2), we can see that w(®(2), ®(1)) = 0. This means that the homogeneiza-
tion of the tangent space to a generic point of €, is isotropic with respect to the symplectic
form. Hence dim(%,) <1dim(M). The only possibility is dim(M) =2, but then
CSp(V)=GL(V). O

Note that a line in PT,(M) can be viewed as a point on P A’T (M). Let
7, < P A’T,.(X) be the variety of tangential lines to #, c P T, (M). The following propo-
sition was proved in [HM]. We give the proof for the readers’ convenience.

Proposition 6. For any x € M, 7, is linearly nondegenerate in P N* T, (M).

Proof. 'We may prove it for a generic point x € M. If #" = PV, this is obvious. So
from Theorem 1, we can assume that €, = #,.

Let a € %, be generic so that we have C tangential to a with
T(M)|c = 0(2) ® [O(] @ 0°.

As before, we have a one-parameter subgroup ¢ : C* — G defining ¢|.. From the splitting
type of T(M)|¢, ¢(C*) acts on ¥ with three exponents 2,1, 0 and gives rise to a decom-
position V' = Ca ® #, @ A4,. This action preserves the cone ¥, = PV. Taking the inverse
and tensoring with a scalar representation, we get a C*-action on P ¥ preserving €, which
fixes Ca, acts as ¢ on 2, and acts as t? on A, e C* Choose a generic point o + ¢ +{
on %,. The orbit of the C*-action is & + ¢& + 2{. At ¢ = t,,, we further consider the curve
o+ ety & + e?*12{. Taking derivative with respect to s, we get the tangent vector £, & + 23¢
to %, at the point o + £, & + t2{. The corresponding element of 7, is

(a4t l+ 20D A (gl +2020) =tqa AE+ 2630 AL+ 13ENL.

5 Journal fiir Mathematik. Band 490
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Thus the linear span of Z, contains a A &, a A {, and & A { for any-generic o €¥, and
a+¢+{e¥,. As we vary ¢ on #,, the corresponding { € 4, spans A;. Otherwise, %,
will be contained in the linear subspace Ca ® #, @ 4, for some proper subspace A’ ¢ A,
contradiction to the nondegeneracy of €,. It follows that 7, is linearly nondegenerate. 0

We are ready to prove the first half of Main Theorem.

Theorem 2. Let G<= GL(V) be a faithful irreducible representation of a connected
reductive complex Lie group and 9 < & (M) be a G-structure on a uniruled projective mani-
fold M. Then % is flat.

Proof. 1If G = GL(V), then the flatness of ¥4 = # (M) is obvious. Thus assume
G & GL(V), so that Theorem 1 applies. By Proposition 2, it is enough to show that
HO(M,0(T(M) ® S*T*(M) ® A*T*(M))) = 0 for all nonnegative integers k.

Let 0: A2T(M) - T(M) ® S*T*(M) be a holomorphic section of
T(M) ® S*T*(M) ® N*T*(M) .

It is enough to show that @ vanishes at any generic point x € M. From Proposition 6, it
suffices to show 8 (u, v) = 0, where u € €, is a generic point of the cone of minimal rational
tangent and ve PT, (M) lies on the tangent space of €, < PT, (M) at u.

Let C be a minimal rational curve tangent to u, with T(M)|. = 0(2) ® [0(1)]* ® 0-.
The subspace of T, (M) corresponding to 0(2) ® [@(1)]” is precisely the tangent space to
€.cPT (M) at u (e.g. (3.1) in [M1]). Thus u is a vector in @(2) and v is a vector in
02) ® [O(1)]* at x.

Now we can find a section # of T'(M)|; with two zeroes such that #(x) = « and a
section & of T'(M)|. with at least one zero such that #(x) = v. Then 6| (&, ) is a section
of T(M)|c ® S*T*(M) which has three zeroes. But from the splitting type, a nonzero
section of T(M)|, ® S*T*(M) cannot have three zeroes. It follows that 0|c(@,7) =0 and
O0(u,v)=0. O

3. Reduction to irreducible Hermitian symmetric spaces

Let S be a compact irreducible Hermitian symmetric space of rank = 2. Choose a
base point o € § and consider the representation of the connected isotropy group at o on
the tangent space ¥ = T,(S). The image in GL(V) is K€, the complexification of the
isometric isotropy group K with respect to a Kéhler-Einstein metric on S. K€ is reductive
and the irreducibility of the symmetric space implies that the isotropy representation is
irreducible. Thus K® < GL(V) is a faithful irreducible representation of a connected re-
ductive complex Lie group. Let €, « PV be the cone of the orbit of a highest weight vector.
The following properties of 4, are well-known:

(*) €, is a compact Hermitian symmetric space and K is the identity component
of the subgroup of GL(V) consisting of linear transformations preserving &,.




Hwang and Mok, Uniruled manifolds with G-structures 63

A G-structure modeled after this irreducible representation is called an S-structure.
We have the following result of Ochiai on flat S-structures.

Proposition 7 (Ochiai [Oc]). Let M be a simply connected compact complex mani-
fold with a flat S-structure. Then M is biholomorphic to the irreducible Hermitian symmetric
space S.

An S-structure is also an irreducible reductive G-structure. From Theorem 2 and
Proposition 7, we get

Proposition 8. Let M be a uniruled projective manifold with an S-structure. Then M
is biholomorphic to the irreducible Hermitian symmetric space S.

Proof. It suffices to show that M is simply connected. We claim that M is rationally
connected (([KMMY]), which implies that it is simply connected ([KMM], (2.5.3), [Ca])
Suppose not. Then all rational curves through a generic point x € M are contained in
the fibers of the MRC-fibration ((KMM], Theorem 2.7). In particular, the cone %, is
contained in the tangent space to the MRC-fiber, a contradiction to the linear nondegen-
eracy. O '

Given an S-structure on a manifold M, we have the cone of highest weight tangents
& < PT(M). Conversely, given a subbundle ¢ = PT(M), whose fiber is projectively equi-
valent to 4, = PV, we get an S-structure, because of the property (*) of %,. Hence to finish
the proof of Main Theorem, it suffices to prove

Proposition 9. Let G < GL(¥) be a faithful irreducible representation of a connected
reductive complex Lie group with G + GL(V). Given a G-structure on a uniruled projective
manifold M, the cone W, = PT,(M) is projectively equivalent to the cone €, associated to
one of the irreducible Hermitian symmetric spaces.

Proof. Recall that a submanifold Z = PV is the cone &, associated to an irreducible
Hermitian symmetric space, if and only if it is one of the following (Table 1 in [HM], or
Appendix 3 in [M2]). '

(i) The complex projective space I, embedded by the second Veronese embedding.

(ii) A rank-2 irreducible Hermitian symmetric space embedded by the ample gene-
rator of the Picard group.

(iii) The Segre embedding of the product of two projective spaces.

From the proof of Proposition 6, for any [«] € #;, we have a C*-action on T, (M),
which fixes a, acts by, on the tangent space T}, (#;), and t*> modulo Ty, (#;). The action
of —1eC* on the tangent space Tj,;(#;) is an involution with the isolated fixed point .
Hence %, c P T, (M) is an equivariant embedding of a Hermitian symmetric space Z. Note
that a generic orbit a + t& + t2{ of the C*-action can be compactified to a curve of degree
2 in PT,(M), because it is contained in the plane spanned by «, £ and {. Thus Z< PV
has the property that given any tangent vector to Z at a point, there exists a curve through
that point with the given tangent direction, which has degree 2.




64 Hwang and Mok, Uniruled manifolds with G-structures

The polydisc theorem (Ch. 5, (1.1) in [M2]) tells us that a curve through a given
point of a compact Hermitian symmetric space of rank r in a generic tangential direction
has degree = r with respect to any ample line bundle. Moreover, if the degree of such a
curve is r, then the ample line bundle must be the minimal one. It follows that our Z has
rank < 2. If it is of rank 1, then the existence of C*-actions of the above type implies that
Z is one of (i). If Z is of rank 2, the existence of a curve of degree 2 in a generic tangential
direction implies that Z is one of (ii) or (iii). O
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