文章编号:0379-1726(2002)01-0043-06

西昆仑库地蛇绿岩的构造背景: 来自玻安岩系岩石的新证据

袁 超^{1,2},孙 敏²,李继亮³,侯泉林³,周美福²

(1. 中国科学院 广州地球化学研究所,广东 广州 510640;2. 香港大学 地球科学系,香港 薄扶林道;3. 中国科学院 地质与地 球物理研究所,北京 100029)

摘 要:通过对依莎克群火山岩的地球化学研究,首次在西昆仑库地蛇绿岩中发现了玻安岩系岩石。这些岩石具有高 SiO₂、低 TiO₂、高 Al₂O₃/TiO₂ 比值和高 Cr 含量,亏损 Y 和 REE,呈现轻稀土富集的分布模式以及相对低的 Ti/Zr 比值和高的 Zr/Y 比值。其中一些样品还具有相当于 MORB 的 Nb、Ta 含量和相应较小的 La/Nb 比值,表明在其形成过程中可能有富集地幔端员的介入。玻安岩系岩石的发现以及火山地层序列的岩性变化表明,依莎克群火山岩形成于初始的大洋岛弧或弧后盆地拉张的早期阶段,火山岩的地球化学组成变化以及玻安岩在依莎克群火山序列中的位置表明,原特提斯的消减方向应当是向北的。

关键词:玻安岩系;构造背景;依莎克群;西昆仑 中图分类号:P594 文献标识码:A

0 引 言

库地蛇绿岩位于新疆维吾尔自治区叶城以南的 西昆仑山,是整个昆仑山地区保存较好的蛇绿岩套 之一,同时也是青藏高原"第五缝合线"的重要组成 部分^[1](图1)。但长期以来,对库地蛇绿岩所代表的 构造背景一直存在着不同的认识,有关看法包括成 熟的大洋盆地11.21、洋中脊131、消减带之上的环境141、 不成熟的早期岛弧 🗊 或弧后盆地 🖻 等多种构造位 置。库地蛇绿岩主要由变质橄榄岩、堆晶辉长岩、 火山熔岩和最上部的复理石盖层组成。其中火山熔 岩和上覆的复理石盖层构成了西昆仑依莎克群的主 体[4,7]。火山熔岩主要由两个部分构成:下部具有洋 中脊玄武岩 (MORB) 特征的拉斑玄武岩和上部的 玄武安山岩/安山岩,全部熔岩厚度超过1400 m^[4,7] (图 2)。位于依莎克群下部的玄武岩有枕状和块状 两类但以枕状熔岩为主,岩性上以拉斑玄武岩居多 并有一定数量的玄武安山岩,局部有较多的硅质和 方解石杏仁体;上部的安山岩主要为火山集块岩和 火山角砾岩,两部分之间为渐变的过渡关系^[2,7~9]。

岩石大多经历了中等—强烈的后期蚀变作用,原始 的矿物组合已很难辨别。对火山岩的地球化学研 究多侧重于下部的玄武岩^[2,6~8],但对玄武安山岩 和安山岩则研究不多。

玻安岩以异常低的 TiO2 含量和明显亏损高场 强元素 (HFSE) 为特征,并具有高 SiO₂、MgO、H₂O、 Cr、Ni 含量和相对富集大离子亲石元素 (LILE);在 构造上主要产于弧前环境,时间上主要出现于岛弧 或弧后盆地演化的初期阶段[10~14]。玻安岩是一种十 分重要的岩石类型,不仅因为它常常与某些重要的 矿产 (如金矿和铬铁矿) 有直接的关系, 而且由于它 主要产于板块消减和弧后盆地拉张的初期,因此通 过对其成岩过程的研究,人们可以了解蛇绿岩产出 的构造背景和相应的弧 - 盆演化的过程。另一方面, 由于玻安岩的地球化学特征与太古宙和古元古代的 绿片岩十分相似,通过对玻安岩的研究还有助于人 们了解地球壳幔演化的早期历史[15~18]。在我国,继 西藏日喀则和丁青之后,也相继有在北祁连山大岔 达坂以及阿尔泰发现玻安岩系岩石的报道[19~22]。最 近,作者在对依莎克群火山岩的地球化学研究中发 现其中的玄武安山岩和安山岩具有玻安岩的特征,

收稿日期:2000-11-27;接受日期:2001-08-19

基金项目:国家自然科学基金项目(40003005);香港大学 CRCG 项目(335/029/0012);中国科学院留学人员回国启动基金;中国 科学院广州地球化学研究所所长专项基金

^{© 19}作者简介: 袁樳(1966cadler,制c 副研究员, E挑绣化学专业ablishing House. All rights reserved. http://www.cnki.net

图1 西昆仑及其邻近地区地体及构造分布示意图

Fig. 1 Schematic map for the terrane distribution and tectonics of western Kunlun Mountains

(modified from Deng Wan-ming^[2])

这一发现为正确认识库地蛇绿岩的构造背景和西昆 仑地区的构造演化提供了新的证据。

1 玻安岩系岩石的产出位置和地球化 学特征

具有玻安岩特征的火山岩位于依莎克群的中部,主要是一些安山质火山角砾岩和枕状的玄武安山岩(图2)。代表性样品的主元素和微量元素数据列击表 1,015 与典型的大洋岛弧和大陆边缘安山岩相

比[23],它们具有相似的 SiO2(56.6%~61.3%),较 低的 TiO₂ (0.46%~0.51%)、Al₂O₃ (11.6%~ 12.6%)、FeO*(7.96%~9.35%),相对较高的 K₂O (0.70%~0.93%)和H₂O⁺含量(3.24%~4.21%)。 其中,异常低的TiO2含量和较高的Al2O3/TiO2比值 (> 20) 使得这些岩石与 Mariana 弧前区 458 号钻孔 的玻安岩十分相似(图3)。在微量元素方面,与世界 其他地区的玻安岩[24]相比 , 这些玻安岩系岩石具有 相对较高的不相容元素含量,它们相对低的 Cr (377~939 μg/g)和 Ni (66~82 μg/g)含量,以及低 的 MgO 含量(3.40%~4.25%),表明它们已不是初 始的岩浆,而可能经历了斜方辉石的分馏结晶作用, 或者是由于与岛弧拉斑玄武岩 (IAT) 的混染所致。 其稀土元素含量(约 40 μg/g)与典型的大洋岛弧安 山岩(25~178 µg/g)^[25]相比明显偏低,且所有样品 均显示轻稀土元素相对富集的分布模式(图4),这 一点与同处中央造山带的北祁连大岔达坂蛇绿岩中 的玻安岩^[20]不同。这些样品具有较高的 Yb 含量 (1.74~1.88 μg/g),高于大多数典型的玻安岩(约 1 μg/g),但它们仅具有中等的(La/Yb)_N值(1.5~ 2.0),介于 Chichi Jima, Mariana 弧前(约1.0)和 Cape Vogel (1.5~5.3)等地的玻安岩之间^[11,26]。 虽然典型的玻安岩通常指那些高_Si、高 Mg 和高度

表1 库地蛇绿岩中玻安岩系岩石的主元素(%)、 微量元素和稀土元素(μg/g)组成

Table 1 Composition of major (%), trace and rare earth elements $(\mu g/g)$ in the boninite series rocks of the Küda ophiolite

样品号	96KL124	96KL128	96KL129	96KL130
SiO_2	56.6	58.0	58.3	61.3
${\rm TiO}_2$	0.46	0.51	0.47	0.46
Al_2O_3	11.6	12.6	12.4	11.6
FeO*	8.20	9.16	9.35	7.96
MnO	0.15	0.083	0.087	0.080
MgO	3.40	3.82	4.25	3.84
CaO	6.33	3.84	3.67	3.51
Na ₂ O	2.91	2.28	2.67	2.88
K_2O	0.70	0.93	0.87	0.76
P_2O_5	0.27	0.16	0.15	0.11
$\rm H_2O^+$	3.24	3.72	4.21	3.30
H ₂ O ⁻	0.61	0.68	0.55	0.41
烧失	4.10	2.76	2.11	2.43
总量	99.70	99.80	100.55	99.74
Cr	535	939	472	377
Ni	66.0	81.9	78.1	69.9
Rb	12.6	16.8	16.2	14.4
\mathbf{Sr}	63.9	51.8	74.5	61.6
Y	14.4	14.8	14.5	14.7
Zr	53.8	59.3	62.2	57.2
Nb	3.14	3.62	3.46	3.28
Cs	1.00	0.51	0.69	1.05
Ba	45.1	113	67.3	55.8
La	5.17	4.03	4.56	4.97
Ce	11.7	10.1	10.5	11.6
Pr	1.65	1.49	1.49	1.64
Nd	7.23	6.65	6.83	7.24
Sm	1.91	1.93	1.92	1.97
Eu	0.70	0.59	0.63	0.66
Gd	2.06	1.98	1.97	1.99
Tb	0.43	0.44	0.44	0.45
Dy	2.73	2.86	2.79	2.83
Ho	0.58	0.61	0.61	0.62
Er	1.73	1.87	1.84	1.86
Tm	0.26	0.28	0.28	0.28
Yb	1.74	1.85	1.85	1.88
Lu	0.27	0.29	0.29	0.29
Hf	1.58	1.79	1.91	1.80
Та	0.21	0.24	0.24	0.23
Th	0.96	1.02	1.06	1.01
U	0.47	0.69	0.48	0.48
Σ ree	38	35	36	38
(La/Yb) _N	2.0	1.5	1.7	1.8
Ba/Nb	14	31	19	17
La/Nb	1.6	1.1	1.3	1.5
Ti/Zr	51	52	45	48
Zr/Yb	31	32	34	30
Zr/Y	3.7	4.0	4.3	3.9

1. 依莎克群玄武安山岩/安山岩;2. 依莎克群拉斑玄武岩。

亏损 HFSE 的岩石^[12,13],但严格地界定玻安岩并不 是一件容易的事。因为无论在野外产状上还是在化 学组成上,玻安岩常常同所谓的"低 Ti 拉斑玄武 岩"、"过渡型玻安岩"或"与消减带有关的低 Ti 熔 岩"有紧密共生和过渡的关系。鉴于斜方辉石的分 馏结晶作用会造成玻安岩宽的 MgO 含量变化范 围(4%~25%),Meijer 建议把"玻安岩系"(boninite series)作为在组成上类似于玻安岩的岩石总称^[27]。 张旗将玻安岩系岩石分成玻安岩和玻玄岩两个亚 类,认为二者具有不同的地球化学特征并分属弧前 和弧后盆地扩张初期的产物^[14]。虽然相对低的 MgO 含量使得这些依莎克群中的样品不同于典型的玻安

图 4 库地蛇绿岩中玻安岩系岩石的稀土元素分布模式 Fig. 4 Chrondite-normalized REE patterns of the boninite series rocks of

注: $FeO^* = FeO + (Fe_2O_3 \times 0.8998)_{\circ}$

© 19明干标准化的球粒陨石数据引自文献目出 Electronic Publishing House. All rights thes Kinde de hiolitetp://www.cnki.net

岩 但上述特征表明 这些所谓的安山质角砾岩和安 山质玄武岩实际上属于玻安岩系列 (boninite series) 或类玻安岩的岩石。作为识别玻安岩的一个重要特 征, Ti/Zr 比值具有重要的参考意义^[28]。从 Beccaluva et al. 所列出的世界上具代表性的低 Ti 熔岩的 化学组成来看^[12], 典型的玻安岩通常具有低的 Ti/ Zr 比值 (小于约 70), 而常与之过渡共生的过渡玻 安岩和与消减有关的低 Ti 熔岩则具有较高的 Ti/Zr 比值(大于约75)。本文中这些玻安岩系的岩石具有 较低的 Ti/Zr 比值(45~52)和较高的 Zr/Y 比值 (3.7~4.3),大致相当于张旗所划分的玻安岩的范 围^[14]。在以原始地幔标准化的微量元素蛛网图上 (图 5) 样品显示出 Cs、Rb、Ba、Th、U 和 K 相对于其 他元素不同程度的富集和明显的 Ti 和 Y 亏损 反映 了消减带来源物质的加入。一个值得注意的现象是 这些样品虽然有明显的 Ti 亏损 ,却具有相当于或略 高于 MORB (Nb < 3 μ g/g)^[29]的 Nb-Ta 含量 (Nb = 3.1~3.6 μg/g) 以及小的 Nb-Ta 负异常 (小的 La/ Nb 比值, 1.1~1.6),表明在其形成过程中可能有洋 岛或其他富集地幔端员组分的加入[11,12]。

of the Yishake volcanic rocks, western Kunlun 原始地幔数据引自文献[30]。 Primordial mantle data from Wood *et al.*^[30]

2 对库地蛇绿岩的构造指示意义

拉斑玄武岩和玻安岩系岩石之间存在局部互层 和过渡的接触关系表明,二者之间存在成因上的继 承和渐变关系,因此对整个依莎克群火山岩产出环 境的讨论必须综合考虑火山岩岩性的变化情况。依 莎克群火山岩中玻安岩系岩石的发现以及火山岩地 层的岩性变化特征(拉斑玄武岩→玻安岩)表明,依 莎克群火山岩形成玉云介初始洋内岛弧环境或弧点

盆地拉张的早期阶段。此外,对库地蛇绿岩所代表 的原特提斯洋的消减方向也有不同的认识,多数学 者持向南消减的观点[1,3,5,31,32],但邓万明认为也存 在向北消减的可能性[2]。对穿过现代岛弧剖面(弧 后-岛弧-前弧)的地球化学变化特征的研究表明, 岩浆向海沟的方向由于熔体产生的深度逐渐变浅使 得地幔橄榄岩变得更加难熔,从而造成靠近海沟的 弧岩浆比远离海沟的弧岩浆更加亏损[33],这也是造 成玻安岩主要产于前弧环境的重要原因。同时也发 现,消减带上岩浆中的稀土元素含量通常随距消减 带的垂直距离的增加而增加,即越靠近弧后的方向 稀土元素含量越高[34]。依莎克群火山岩自北向南其 岩性从拉斑玄武岩逐渐演化为玻安岩系岩石,稀土 元素含量由依莎克群下部拉斑玄武岩 (37~92 µg/ $g^{[35]}$) 向玻安岩系岩石 约 40 $\mu g/g$) 方向急剧降低, 因此玻安岩系岩石所在的位置应代表弧前的构造位 置。考虑到依莎克群火山岩的变形及变质程度均较 低,在其就位的过程中发生大规模地层倒转的可能 性不大,因此玻安岩系岩石所在的位置应代表靠近 海沟的一侧。也就是说,从这些玻安岩系岩石的产 出位置来看 原特提斯的消减方向应当是向北的。

王志洪、周辉、肖文交和方爱民等博士一同参 与了野外工作;在本文写作过程中得到张玉泉研 究员的大力帮助;张旗研究员和另一位审稿者细 心审阅了初稿并提出了宝贵的修改意见;国家自 然科学基金项目(40003005)、香港大学 CRCG 项目 (35/029/0012)、中国科学院留学人员回国启动 基金以及中国科学院广州地球化学研究所所长专 项基金为本项目提供了经费上的支持,在此致以 衷心的感谢。

参考文献(References):

- (1) 潘裕生.青藏高原第五缝合带的发现与论证[J].地球物理 学报, 1994, 37(2): 184~192.
 Pan Yu-shen. Recognition and argumentation of the fifth suture zone in the Tibetan plateau [J]. Acta Geophys Sinica, 1994, 37(2): 184~192 (in Chinese with English abstract).
 邓万明,喀喇昆仑-西昆仑地区蛇绿岩的地质特征及其大
- [2] 邓万明. 喀喇昆仑-西昆仑地区蛇绿岩的地质特征及其大地构造意义[J]. 岩石学报, 1995, 11(增刊): 98~111.
 Deng Wan-ming. Geological features of ophiolite and tectonic significance in the Karakorum-West Kunlun Mts [J]. Acta Petrol Sinica, 1995, 11(Suppl): 98~111 (in Chinese with English abstract).
- [3] 杨树峰,陈汉林,董传万,等.西昆仑库地蛇绿岩的特征及

群火山岩形成玉云企初始羌内岛弧环境或弧后lishing House. All rights reserved. 1999, 34(3): 281~288.

Yang Shu-feng, Chen Han-lin, Dong Chuan-wan, *et al.* Characteristics and tectonic significance of the Kudi ophiolite, West Kunlun [J]. Acta Geol Sinica, 1999, 34(3): 281 ~ 288 (in Chinese with English abstract).

- [4] Yang J S, Robinson P T, Jiang C, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications [J]. Tectonophysics, 1996, 258: 215 ~ 231.
- [5] 丁道桂,王道轩,刘伟新,等.西昆仑造山带与盆地[M].北京:地质出版社,1996.36~71.
 Ding Dao-gui, Wang Dao-xuan, Liu Wei-xin, et al. The Western Kunlun Orogenic Belt and Basin [M]. Beijing: Geological Publishing House, 1996.37~71 (in Chinese with English abstract).
- [6] 王志洪,侯泉林,李继亮,等.西昆仑库地蛇绿岩铂族元素初步研究[J].科学通报,1999,44:1676~1680.
 Wang Zhi-hong, Hou Quan-lin, Li Ji-liang, *et al.* A preliminary study of platinum group elements on Kudi ophiolite, West Kunlun [J]. Chinese Sci Bull, 1999, 45(6):551~556.
 [7] 法工论,西昆众体范古联的时代乃其构造意义[1],新疆地
- [7] 汪玉珍.西昆仑依莎克群的时代及其构造意义[J].新疆地 质,1983,1:1~8.

Wang Yu-zhen. Time and tectonic significance of the Yishake Group, West Kunlun [J]. Xinjiang Geol, 1983, 1: $1 \sim 8$ (in Chinese with English abstract).

[8] 邓万明. 喀喇昆仑 - 西昆仑地区基性 - 超基性岩初步考察[J].
 自然资源学报, 1989, 4(3): 204~211.

Deng Wan-ming. A preliminary study on the mafic and ultra-mafic rocks of Karakorum-West Kunlun [J]. J Natur Resour, 1989, 4 (3): 204 ~ 211 (in Chinese).

[9] 方爱民.新疆西昆仑库地混杂带中的弧前复理石沉积及其大地构造制约[D].北京:中国科学院地质研究所,1998.15~
 20.

Fang Ai-min. Flysch sediments of the Kudi melange and their constraints on tectonics of West Kunlun, Xinjiang [D]. Beijing: Institute of Geology, Chinese Academy of Sciences, 1998. 15 ~ 20 (in Chinese with English abstract).

- [10] Cameron W E, Nisbet E G, Dietrich V J. Boninites, komatites and ophiolitic basalts [J]. Nature, 1979, 280: 550 ~ 553.
- [11] Hickey R L, Frey F A. Geochemical characteristics of boninite series volcanics: Implications for their source [J]. Geochim Cosmochim Acta, 1982, 46: 2 099 ~ 2 115.
- Beccaluva L, Serri G. Boninitic and low-Ti subduction-related lavas from intraoceanic arc-backarc systems and low-Ti ophiolites: A reappraisal of their petrogenesis and original tectonic setting
 [J]. Tectonophysics, 1988, 146: 291 ~ 315.
- [13] Crawford A J, Falloon T J, Green D H. Classification, petrogenesis and tectonic setting of boninites [A]. Crawford A J. Boninites
 [C]. London: Academic Division of Unwin Hyman Ltd, 1989.
 1 ~ 49.
- [14] 张旗. 玻安岩和玻玄岩地球化学特征和成因的探讨[J]. 地球 化学, 1990, 19(3): 207~215.

Zhang Qi. Geochemical characteristics and petrogenesis of boninites and boninitic basalts [J]. Geochimica, 1990, 19(3): 207 ~ 215 (in Chinese with English abstract). genesis of Archean and early Proterozoic siliceous high-magnesian basalts [A]. Crowford A J. Boninites [C]. London: Academy Division of Unwin Hyman Ltd, 1989. 149 ~ 173.

- [16] Fan J, Kerrich R. Geochemical characteristics of aluminum depleted and undepleted komatiites and HREE-enriched low-Ti tholeiites, Western Abitibi greenstone belt: A heterogeneous mantle plume-convergent margin environment [J]. Geochim Cosmochim Acta, 1997, 61: 4 723 ~ 4 744.
- [17] Kerrich R, Wyman D, Fan J, et al. Boninite series: Low Ti-tholeiite associations from the 2.7 Ga Abitibi greenstone belt [J]. Earth Planet Sci Lett, 1998, 164: 303 ~ 316.
- [18] Puchtel Z S, Hofmann A W, Amelin Y V, et al. Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: Isotope and trace element constraints [J]. Geochim Cosmochim Acta, 1999, 63: 3 579 ~ 3 595.
- [19] 张旗,杨瑞英.西藏丁青蛇绿岩中玻镁安山岩类的深成岩及 其地质意义[J].科学通报, 1985, 30(16): 1 243~1 245.
 Zhang Qi, Yang Rui-ying. Boninitic rocks in the Dingqing ophiolite, Xizang and their geological significance [J]. Chinese Sci Bull, 1985, 30(16): 1 243~1 245 (in Chinese).
- [20] 张旗, Chen Yu, 周德进,等.北祁连大岔达坂蛇绿岩的地球 化学特征和成因[J].中国科学 ①辑), 1998, 28(1): 30~ 34.
 Zhang Qi, Chen Yu, Zhou De-jin, et al. Geochemical charac-

teristics and petrogenesis of Dacha Daban ophiolite, northern Qilian [J]. Sci China (D), 1998, 28(1): 30 ~ 34 (in Chinese).

- [21] 冯益民,何世平.北祁连蛇绿岩的地质地球化学研究[J].岩石学报, 1995, 11 蛇绿岩专辑). 125~146.
 Feng Yi-min, He Shi-ping. Geological and geochemical study of ophiolite, northern Qilian [J]. Acta Petrol Sinica, 1995, 11: 125~146 (in Chinese with English abstract).
- [22] 牛贺才,许继峰,于学元,等.新疆阿尔泰富镁火山岩系的发现及其地质意义[J].科学通报,1999,44(9):1002~1004.
 Niu He-cai, Xu Ji-feng, Yu Xue-yuan, *et al.* Recognition and geological significance of the Altai magnesium-rich volcanic rocks, Xinjiang [J]. Chinese Sci Bull, 1999, 44(9): 1002~1004 (in Chinese).
- [23] Wilson M. Igneous Petrogenesis [M]. London: Unwin Hyman, 1989. 153 ~ 226.
- [24] Cameron W E, McCulloch M T, Walker D A. Boninite petrogenesis: Chemical and Nd-Sr isotopic constraints [J]. Earth Planet Sci Lett, 1983, 65: 75 ~ 89.
- [25] Cullers R L, Graf J L. Rare earth elements in igneous rocks of the continental crust: Intermediate and silicic rocks-ore petrogenesis
 [A]. Henderson P. Rare Earth Element Geochemistry (Development in Geochemistry 2) [C]. Amsterdam: Elsevier, 1984. 275 ~ 316.
- [26] Cameron W E. Contrasting boninite-tholeiite associations from New Caledonian [A]. Crawford A J. Boninites [C]. London: Academic Division of Unwin Hyman Ltd, 1989. 314 ~ 338.
- [27] Meijer A. Primitive arc volcanism and a boninite series: Examples

[15]]9Sup-S.O. Neeblii RaW. Medulloib Witr Geochistroand Petuolishing Harosewesteln Rabite island acd[1]. Itepphys/Monogram Geophys

Union, 1980, 23: 269 ~ 282.

- [28] Wolde B, Asres Z, Desta Z, et al. Neoproterozoic zirconiumdepleted boninite and tholeiitic series rocks from Adola, southern Ethiopia [J]. Precamb Res, 1996, 80: 261 ~ 279.
- [29] Condie K C. Mafic crustal xenoliths and the origin of the lower continental crust [J]. Lithos, 1998, 46: 95 ~ 101.
- [30] Wood D A, Tarney J, Weaver B L. Trace element variations in Atlantic ocean basalts and Proterozoic dykes from Northwest Scotland: Their bearing upon the nature and geochemical evolution of the upper mantle [J]. Tectonophysics, 1981, 75: 91 ~112.
- [31] Mattern F, Schneider W, Li Y, et al. A traverse through the western Kunlun (Xinjiang, China): Tentative geodynamic implications for the Paleozoic and Mesozoic [J]. Geol Rundsch, 1996,

85: 705 ~ 722.

- [32] Matte Ph, Tapponnier P, Arnaud N, et al. Tectonics of western Tibet, between the Tarim and the Indus [J]. Earth Planet Sci Lett, 1996, 142: 311 ~ 330.
- [33] Taylor T R, Murton B J, Nesbitt R W. Chemical transects across intra-oceanic arcs: Implications for the tectonic settings [J]. Geol Soc Spec Pub, 1992, 60: 117 ~ 132.
- [34] Gill J B. Role of trace element partition coefficients in models of andesite genesis [J]. Geochim Cosmochim Acta, 1978, 42: 709 ~724.
- [35] Yuan Chao. Magmatism and tectonic evolution of West Kunlun Mountains [D]. Hong Kong: The University of Hong Kong, 1999.

Tectonic background of the Küda ophiolite, western Kunlun: New constraints from boninite series rocks

YUAN Chao^{1, 2}, SUN Min², LI Ji-liang³, HOU Quan-lin³, ZHOU Mei-fu²

 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 2. Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; 3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China)

Abstract: Preliminary geochemical study is conducted for the Yishake volcanic sequence of Küda ophiolote, West Kunlun, and boninite series rocks are just recognized for the first time in this area. The boninite series rocks are characterized by relatively high SiO₂ and Cr, high Al_2O_3/TiO_2 ratios and being very depleted in TiO₂, Y and REE. They all exhibit LREE-enriched patterns and show low Ti/Zr and high Zr/Y ratios. Some of these samples possess relatively high Nb and Ta contents equivalent to those of MORB and accordingly low La/Nb ratios, suggesting that enriched mantle component might be involved in the genesis of these rocks. The recognition of the boninite series rocks and lithological variation along the stratigraphic sequence indicate that the volcanic rocks of the Küda ophiolite might be produced in an infant oceanic arc or early rifting stage of a back-arc basin. Geochemical data indicate that the Yishake volcanic sequence become more depleted in HFSE and REE towards the boninite series rocks in the south, which may suggest that the subduction polarity of the Pro-Tethys is north-dipping.

Key words: boninite series rocks; tectonic background; Küda ophiolite; West Kunlun