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Measured and calculated seismic velocities and densities for 

granulites from xenolith occurrences and adjacent exposed 
lower crustal sections: A comparative study from the 
North China craton 

Shan Gao, •' 2, 3 Hartmut Kern, 4 Yong-Sheng Liu, 2 Shu-Yan Jin, 2 Till Popp, 4 
Zhen-Min Jin, 2 Jia-Lin Feng, 5 Min Sun, 6 and Zu-Bin Zhao 2 

Abstract. Granulites from the Neogene xenolith-bearing Hannuoba alkaline basalt and from the 
Manjinggou-Wayaokou exposed lower crustal section in the Archean Huai'an terrain, which 
occurs within and surrounds the Hannuoba basalt, provide a unique opportunity for a comparative 
stuQ' on petrophysical properties and composition of the lower crust represented by these two 
types of samples. P and S wave velocities and densities of 12 Hannuoba lower crustal xenoliths 
and one associated spinel lherzolite xenolith as well as nine granulites and granulite-facies 
metasedimentary rocks from the Archean Huai'an terrain were measured in laboratory at pressures 
up to 600 MPa and temperatures up to 600øC. Calculations of P and S wave velocities were also 
made for the same suite of samples based on modal mineralogy and single-crystal velocities whose 
variations with composition are considered by using microprobe analyses and velocities of end 
members. The measured and calculated Vp at room temperature and 600 MPa, where the 
microcrack effect is considered to be almost eliminated, agree within 4% for rocks from the 
Manjinggou-Wayaokou section and the adjacent Wutai-Jining upper crustal to upper lower crustal 
section. In contrast, the xenoliths show systematically lower measured Vp by up to 15% relative to 
calculated velocities, even if decompression-induced products of kelyphite and glass are taken into 
account. The lower measured velocities for xenoliths are attributed to grain boundary alteration 
and residual porosity. This implies that although granulite xenoliths provide direct information 
about lower crustal constitution and chemical composition, they are not faithful samples for 
studying in situ seismic properties of the lower crust in terms of measured velocities due to 
alterations during their entrainment to the surface, which changes their physical properties 
significantly. In this respect, granulites from high-grade terrains are better samples because they 
are not subjected to significant changes during their slow transport to the surface and because 
physical properties depend primarily on mineralogy in addition to pressure and temperature. On 
the other hand, calculated velocities for granulite xenoliths are consistent with velocities for 
granulites from terrains, suggesting that they can be also used to infer lower crust composition by 
correlating with results from seismic refraction studies. 

1. Introduction 

Seismic refraction profiles are one of the most important ways 
of probing the generally inaccessible deep crust over large areas. 
Refraction studies give P and S wave velocities which are 
determined by the rock composition in addition to pressure, 
temperature, and fluid [Kern and Schenk, 1985, 1988; 
Christensen, 1989; Fountain and Christensen, 1989; Holbrook et 
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al., 1992; Kern, 1993; Kern et al., 1993, 1996a, b, 1999; Miller 
and Christensen, 1994; Popp and Kern, 1994; Christensen and 
Mooney, 1995; Rudnick and Fountain, 1995]. The 
nonuniqueness in relating seismic velocity and rock lithology is 
one of the major problems in the interpretation of geophysical 
data, which can be reduced by measurement of seismic properties 
of regional deep crustal rocks at in situ conditions and with 
combined use of compressional and shear wave velocities and 
heat flow data [Holbrook et al., 1992; Rudnick and Fountain, 
1995; Kern et al., 1996a, b]. 

Granulite xenoliths brought to the surface mainly by basaltic 
volcanics and exposed granulite terrains provide direct windows 
into the present and/or fossil lower crust. However, they are rare 
in occurrence. Although seismic velocities and densities of lower 
crustal rocks from type exposed lower crustal cross sections like 
the Ivrea zone [Fountain, 1976; Barruol and Kern, 1996], the 
Calabria zone [Kern and Schenk, 1985, 1988], the Kapuskasing 
Structure Uplift [Fountain et al., 1990; Salisbury and Fountain, 
1994], the Kohistan accreted terrane [Miller and Christensen, 
1994], and the Wutai-Jining zone, the North China craton [Kern 
et al., 1996b] have been measured, few lower crustal xenoliths 
[Jackson and Arculus, 1984; Jackson et al., 1990; Rudnick and 

18,965 



18,966 GAO ET AL.: PHYSICAL PROPERTIES OF GRANULITES 

Jackson, 1995] have been studied for seismic velocity due to where seismic refraction/reflection data are available. Granulite 
their sizes which are usually too small for measurement. terrains are mainly Archean, whereas very few granulite xenolith 

Major differences exist between lower crustal rocks of localities are situated in Archean crust [Rudnick, 1992], and 
different types. Granulite xenoliths are mostly found in opportunities are rare [Roberts and Ruiz, 1989]. The northern 
Mesozoic-Cenozoic basalt and are dominated by mafic margin of the North China craton provides one of such 
compositions, whereas granulite terrains are dominantly Archean opportunities where the granulite- and peridotite xenoliths- 
and have more silicic compositions [Griffin and O'Reilly, 1987; bearing Neogene Hannuoba alkaline basalt is underlain and 
Bohlen and Mezger, 1989; Fountain et al., 1990; Rudnick and surrounded by Archean granulite terrains. The area is peculiar in 
Presper, 1990; Rudnick, 1992; Rudnick and Fountain, 1995]. On several aspects. First, the basalt erupted through the Archean 
the basis of equilibration pressure, Bohlen and Mezger [1989] Huai'an granulite terrain, which is exposed at the surface and is 
suggested that these two types of granulites are samples of proposed to represent an exposed lower crustal section along the 
different levels ofthecrust: isobarically cooled granuliteterrains Manjinggou-Wayaokou zone [Zhai, 1996]. Exposed lower 
equilibrated at middle to lower crustal levels (600 to 800 MPa), crustal sections like the Ivrea zone and Kapuskasing Structure 
whereas xenoliths represent the underplated lowermost crust Uplift are generally considered to reside in the present regional 
(1000 to 1500 MPa). However, Rudnick and Fountain [1995] deep crust [Fountain, 1976; Fountain et al., 1990; Salisbury and 
show that it is not possible, on the basis of geobarometry, to Fountain, 1994; Barruol and Kern; 1996]. Therefore both the 
distinguish differences in derivation depths between terrains and Hannuoba granulite xenoliths and granulites from the Huai'an 
xenoliths. Therefore genesis of differences between these two terrains should exist in the present deep crust of the North China 
types of lower crustal samples is still a matter of great craton, which makes it possible to directly correlate data from 
controversy, which is critical for evaluation of formation, seismic profiles with in situ measurements of seismic velocities 
evolution, and composition of the lower continental crust. One of of xenoliths and terrain rocks. Second, the granulite xenoliths are 
the important approaches to unraveling the problems is to make unweathered, have a diverse variety of composition and quite 
comparative petrological, geochemical, and petrophysical study unusually large size of 10-60 cm in diameter, and may have 
of these two types of granulites that occur adjacently in the area sampled varying depths of the lower crust, all of which make 
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Figure 1. Simplified geological map of the Hannuoba-Huai'an area. Profiles A and B indicate the sections from 
Manjinggou to Wayaokou and from Mashikou northward to Shangyi (not shown) of the Huai'an terrain, and 
profile C denotes the Xinghe section of the Jining terrain. Profiles A and B and profile C are proposed to represent 
two exposed lower crust sections [Kern et al., 1996b; Zhai, 1996]. Samples used in this study for the Huai'an 
terrain are taken from profile A. Inset shows location of the study area, distribution of the granulite belt along the 
northern margin of the North China craton, and tectonic division of China, where dashed lines denote orogenic 
belts. NC, North China craton; YC, Yangtze craton; SC, South China orogen. 



GAO ET AL.: PHYSICAL PROPERTIES OF GRANULITES 18,967 

them rare for petrophysical and geochemical studies. Third, 
garnet-bearing mafic granulites from the Huai'an terrain were 
equilibrated at pressures 0.9-1.4 Ga [Zhai, 1996], which is 
comparable to or even higher than pressures recorded by the 
granulite xenoliths. Fourth, seismic refraction/reflection 
profilings were conducted extensively in this and the adjacent 
parts of the North China craton [Gao et al., 1998] because of 
earthquake activities in the area. Finally, the North China craton 
generally shows a sharp velocity contrast between the lower crust 
and upper mantle [Gao et al., 1998]. For example, in the 
Hannuoba area the P wave velocities increase from 7.0 to 8.0 km 

s '• from the base of the crust to the upper mantle [Zhu et al., 
1997]. This implies that the present-day crust-mantle boundary is 
not transitional with the coincidence of the petrological and 
geophysical Moho, which is supported by studies of xenoliths 
from Hannuoba [Chen, 1996] and Nushan [Xu et al., 1998]. 

This paper presents P and ,5' wave velocities and densities 
measured in the laboratory at pressures up to 600 MPa and 
temperatures up to 600øC for 12 Hannuoba lower crustal 
xenoliths and one associated spinel lherzolite xenolith as well as 
nine granulites and granulite-facies metasedimentary rocks from 
the Archean Huai'an terrain. The data are used to answer which 

of these two types of granulites is representative of the lower 
crust petrophysically. 

e Geological Setting 

The North China craton (Figure 1) is one of the world's oldest 
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Figure 2. Geological cross sections from Manjinggou to 
Wayaokou (profile A) and from Mashikou northward to Shangyi 
(profile B)[after Zhai, 1996]. See Figure 1 for location of the 
profiles. 1, high-pressure granulite with a dominant mafic 
composition; 2, mafic granulite enclaves; 3, intermediate 
granulite; 4, garnet- and sillimanite-bearing metasedimentary 
rock; 5, charnockite; 6, granite; 7, amphibolite-facies rocks; 8, 
Jurassic sediments. 

Archean cratons and preserves crustal remnants as old as 3.8 Ga (V?7.0 km s '•) being unexposed based on geological and 
[Liu et al., 1992]. It experienced widespread tectonothermal petrophysical evidence and by correlating measured seismic 
reactivation during Late Mesozoic and Cenozoic, as indicated by velocities of rocks with results from seismic refraction profiles 
emplacement of voluminous Late Mesozoic granites and [Kern et al., 1996b]. The Xinghe section (profile C, Figure 1) 
extensive Cenozoic volcanism. The tectonothermal events constitutes the lower crust part of the Wutai-Jining zone. The 
resulted in replacement of the old, cold, thick, and depleted Huai'an and Jining terrains are considered to belong to the same 
lithospheric mantle by young, hot, thin, and fertile lithospheric terrain because of their proximity in space and similar rock 
mantle accompanied by lithospheric thinning [Griffin et al., associations. Geothermobarometric studies using the two- 
1998]. A huge Archean granulite belt extending E-W for over pyroxene and garnet assemblage indicate metamorphic pressures 
1000 km is distributed in the central part of the northern North 
China craton (Figure 1). The Huai'an terrain is located in the 
central part of the belt (Figure 1) and consists of two-pyroxene- 
bearing tonalitic gneiss, gamet-bearing two-pyroxene granulite, 
and two-pyroxene granulite as well as metapelite, metasandstone, 
and marble. All these rocks were subjected to granulite-facies 

of 1.0-1.4 and 0.7-1.0 GPa for the Huai'an and Jining terrains, 
respectively [Kern et al., 1996b; Zhai, 1996]. Mafic granulite and 
associated tonalitic-trondhjemitic gneisses from Manjinggou- 
Wayaokou have a whole rock Sm-Nd isochron age of 2705 + 40 
Ma [Liu, 1999]. 

The Hannuoba alkaline basalt occurs immediately north of 
metamorphism. Detailed geological studies suggest that the rock Huai'an-Wanquan-Zhangjiakou (Figure 1) and extends north to 
sequence in Manjinggou-Wayaokou (profile A) and from the Inner Mongolian Province, covering an area of >1700 km 2. 
Mashikou northward to Shangyi (not shown) (profile B, Figure 1) The volcanism was related to the widespread Cenozoic rifting in 
represents an exposed lower crust section [Zhai, 1996]. The the North China craton. Lower crustal and upper mantle xenoliths 
section shows a systematic northward decrease in metamorphic carried by the basalt show a diverse variety of rock types. The 
grade from high-granulite to epidote-amphibolite facies from lower crustal xenoliths include mafic, intermediate, and felsic 
Manjinggou to Shangyi (Figure 2) with a metamorphic pressure granulites with the mafic types dominant. The mantle wall rock 
decrease from 1.4 GPa to 0.5 GPa [Zhai, 1996]. This is peridotite xenoliths are dominated by spinel lherzolite with minor 
accompanied by increasing proportions of intermediate and felsic webserite and rare garnet-bearing spinel lherzolite [Feng et al., 
rocks upward in the section. The high granulite-facies rocks in 1982; Chen, 1996]. In addition to granulites and peridotites, 
Manjinggou are dominated by garnet-bearing mafic granulite, pyroxenites are also abundant. Each of the mafic and felsic 
while tonalitic granulite and chamockite are the major rock types 
in Wayaokou and Mashikou and gamet- and sillimanite-bearing 
metapelite and metasandstone dominate north of the Mashikou. 
The lower part of the section in Manjinggou is in fault contact 
with granite to the south, suggesting the lowermost crust being 
unexposed in the section. 

Adjacent to the Manjinggou-Wayaokou section, the Wutai- 
Jining zone is proposed to represent an upper crustal to upper 
lower crustal section with the 5-km-thick lowermost crust 

granulites and pyroxenites contains a gamet-bearing variety, and 
garnet is, in general, partly to totally replaced by dark kelyphite 
consisting of extremely fine-grained plagioclase, pyroxene, and 
spinel. The granulite xenoliths occur mostly at Damaping (Figure 
1) and are dominantly mafic with less important intermediate and 
felsic members. They were formed by fractional crystallization of 
pyroxene and plagioclase from underplated and overplated 
basaltic magma chamber near the crust-mantle boundary [Liu, 
1999]. In contrast, granulite xenoliths from Zhouba are 
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exclusively intermediate and felsic, and some contain graphite 
and sillimanite, indicating a sedimentary protolith. Xenoliths 
from Jieshaba are small in size (<2 cm in diameter) and consist of 
marie to felsic granulites with rare garnet two pyroxenite 
exhibiting typical granular texture. 

Chen [1996] and Chen et al. [1996] made a detailed study of 
P-T conditions for the Hannuoba lower crustal and upper mantle 
xenoliths using microprobe analysis of minerals after careful 
selection of suitable geothermobarometers according to Xu et al. 
[1998]. For temperature estimation the two-pyroxene 
geothermometer of Wells [1977] was applied to two-pyroxene 
granulite; the geothermometer of Brey and Kohler [1990] based 
on the Ca content of orthopyroxene was applied to pyroxenite; 
the two-pyroxene geothermometer of Brey and Kohler [1990] 
was applied to Mg-rich (Mg it > 0.80) (Mg it = 100xMg/(Fe + 
Mg)) garnet-bearing pyroxenite; the gamet-clinopyroxene 
geothermometer of Elllis and Green [1979] was applied to Fe- 
rich (Mgit<0.80) garnet-bearing pyroxenite; and the 
orthopyroxene-spinel geothermometer of Sachtleben and Seck 
[1981] was applied to spinel lherzolite and garnet-bearing spinel 
lherzolite. Pressure was estimated only for garnet-bearing 
pyroxenite using the garnet-pyroxene geothermometers of Brey 
and Kohler [1990] and Wood [1974] for the Mg-rich and Fe-rich 
garnet-bearing members, respectively. The results show that 
although there are overlaps in the P-T conditions, different types 
of xenoliths have distinct ranges. Temperatures of all the 22 
analyzed marie granulites are below 950øC and dominated by 
850-950øC. The estimated temperatures are independent of the 
composition of pyroxene, suggesting equilibrium between 
orthopyroxene and clinopyroxene. The spinel lherzolite ranges 
from 850 to 1050øC, and garnet-bearing spinel lherzolite ranges 
from 1050 to 1100øC. The pyroxenite falls in the range of 800- 
1000øC with 950-1000øC dominant, while garnet-bearing 
pyroxenite formed at 1040-1170øC and 1700-1900 MPa and thus 
represents deepest samples of the Hannuoba xenolith populations. 
Using the same geotherometers, Liu [1999] also estimated 
equilibrium temperature of marie granulites to range from 890 to 
910øC, which is similar to the above results. 

Two pyroxenes are absent from the intermediate and felsic 
granulites at Zhouba. However, estimates based on the two- 
feldspar geothermometer of Powell and Powell [1977] yield 
temperature between 718 and 786øC [Liu, 1999]. 

The paucity of pressure estimates prevents construction of a 
geotherm from the Hannuoba xenoliths. However, the P-T 
conditions for the Hannuoba garnet-bearing pyroxenites fall on 
the geotherm [Xu et al., 1998] from lower crustal and upper 
mantle xenoliths at Nushan along the southern margin of the 
North China eraton [Chen, 1996]. By referring to the Nushan 
geotherm the temperature estimates for the Hannuoba xenoliths 
suggest that the intermediate and felsic granulites were derived 
from the depth of 20-25 km, marie granulites from the depth of 
30-40 km, pyroxenite and spinel lherzolite from the depth of 40- 
55 km, and garnet-bearing spinel lherzolite and garnet-bearing 
pyroxenite from the depth of 55-70 km. The Moho is at 40-42 
km [Zhu et al., 1997]. The overlap in the lower-temperature side 
(800-950øC) of the pyroxenite and spinel lherzolite with the 
mafic granulite implies that these two rock types might also exist 
at the base of the crust in addition to the marie granulite. 
However, their considerably higher than the lowermost crust 
velocities (V•,=7.3-8.2 km s -l) infer that these two rock types 
cannot be abundant in the lower crust. 

The Hannuoba basalt is dated to be 14-27 Ma by the K-Ar 
method [Zhu, 1998]. U-Pb dating of single zircons separated 

from one Damaping mafic granulite xenolith yields a concordant 
age range of 121-140 Ma, which is interpreted to represent the 
timing of basaltic underplating leading to granulite-facies 
metamorphism [Fan et al., 1998]. Although the Nd isotopic 
composition is largely homogenized at the mineral scale, whole 
rock samples of the Damaping granulites also give an imprecise 
Sm-Nd isochron age of 145 Ma (Y.-S. Liu et al., Geochronology 
of lower crustal xenoliths: Implications for a dynamic continental 
crust at the northern margin of the North China eraton, submitted 
to Chemical Geology, hereinafter referred to as Liu et al., 
submitted manuscript, 2000). Whole rock and garnet and 
plagioclase separates from one Zhouba granulite (ZB-22) of a 
clastic sedimentary protolith yield a Sm-Nd isochron age of 424 
+ 10 Ma, which is interpreted to represent the age of another 
phase of granulite-facies metamorphism unrelated to the 
Mesozoic event (Liu et al., submitted manuscript, 2000). Detrital 
zircon dating by the evaporation method for the same sample 
produces an age range from 727 to 1551 Ma, which is considered 
to represent the age of the source provenance (Liu et al., 
submitted manuscript, 2000). 

Microstructurally, the granulite xenoliths are different from 
granulites from the Huai'an and Jining terrains in several aspects: 
(1) marked microfracturing due to rapid decompression during 
uplift, (2) disaggregation of grain boundaries, (3) melt infiltration 
as documented by quenched glass, (4) mineral reactions on grain 
boundaries, and (5) retrogressive alteration (e.g., replacement of 
garnet by kelyphite and alteration of plagioclase via zeolite). 

3. Samples and Experimental Technique 

Seismic velocities and densities were measured for 12 

granulite and pyroxenite xenoliths and one peridotire xenolith 
from Damaping and nine granulites from the Manjinggou- 
Wayaokou section. Because the Zhouba and Jieshaba xenoliths 
are either fragmented or small in size, they are not measured for 
petrophysical properties. 

Cube-shaped specimens with a 43-mm edge length were used 
for velocity measurement. Compressional (V•,) and shear (V•) 
wave velocities were measured on oven-dry rocks using the 
ultrasonic pulse transmission technique. The sample reference 
system corresponds to fabric elements (normal to foliation [Z], 
perpendicular to lineation [Y], and parallel to lineation IX]). The 
special arrangement of the apparatus allows simultaneous 
measurements of P and S wave velocities along the three 
directions X, Y, and Z of the sample cubes. 

A state of near hydrostatic stress is obtained by advancing six 
pyramidal pistons in three mutually orthogonal directions onto 
specimens [Kern et al., 1997]. A furnace surrounds one end of 
each piston next to the specimen, and heat is transmitted from the 
pistons to the specimen. Thus a very homogeneous heating and 
distribution of temperature is achieved within the large-volume 
specimens, which has been confirmed by temperature 
measurements at different places within a test sample. 
Temperature is measured using thermocouples placed in a cavity 
at the end of each piston very close (•1 mm) to the specimen. 
Compressional and shear waves were generated by means of 2 
and 1 MHz, respectively, lead titanate zirconate (PTZ) 
transducers. The transducers are placed on the low-temperature 
side of the pistons. The travel time of the pulses through the 
specimen is obtained by subtracting the calibrated time needed 
for the pulse to travel to and from the specimen through the 
pistons from the total time measured by the transducers. The P 
and S wave velocities were measured simultaneously in the three 
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Table 1. Modal Composition of Minerals Based on Point Counting for Hannuoba Xenoliths and Rocks From Huai'an Terrain 
Rock Type Sample P1 Ksp Qz Cpx Opx Kely Gt Ap Op Glass O1 Sp Bi Amp Rutile 

Hannuoba xenolith 

Spinel lherzolite DMP-04 4.6 34.9 60.2 

Garnet-bearing DMP-07 65.86 
mafic granulite DMP-08 13.15 

5.78 2.26 5.70 

35.60 9.78 41.48 

0.73 19.68 

Mafic granulite DMP-06 63.80 15.43 4.84 0.25 3.92 11.76 
DMP-09 29.91 42.72 27.37 

DMP-66 43.55 49.24 7.20 

DMP-71 21.75 71.63 6.61 

?lagioclase- DMP-49 2.80 85.51 5.04 6.65 
bearing 
pyroxenite DMP-68 3.74 81.20 14.81 0.26 

Pyroxenite DMP-10 73.13 26.87 

DMP-11 69.58 29.34 

DMP-14 17.88 9.83 

1.08 

Intermediate DMP-70 50.46 4.69 6.32 2.77 0.33 0.35 35.08 

granulite 

72.30 

0.3 

Huai'an terrain 

Garnet-bearing MQG-15 26.97 1.02 3.14 15.76 12.59 40.52 
mafic granulite 

Mafic granulite MQG-02 43.50 3.29 18.09 24.79 2.10 8.23 
WYK-09 56.08 0.64 24.31 14.37 4.61 

Intermediate MQG-01 78.23 4.38 2.18 13.65 1.27 0.28 

granulite MQG-20 58.00 18.94 9.36 7.85 0.36 

Felsic granulite WYK-06 67.99 0.10 21.21 4.94 3.03 0.68 2.05 

5.49 

Garnet-bearing MQG-05 17.30 35.00 4.51 15.39 25.37 0.60 0.78 1.05 
metasandstone 

Garnet-bearing MQG-06 40.33 8.17 8.61 19.06 20.58 2.82 0.43 
metapelite 

Metapelite MQG-08 36.34 1.95 22.68 17.57 21.47 

P1, plagioclase; Ksp, K-feldspar; Qz, quartz; Cpx, clinopyroxene; Opx, orthopyroxene; Kely, kelyphite; Gt, garnet; Ap, apatite; Op, opaque 
mineral; O1, olivine; Sp, spinel; Bi, biotite; Amp, amphibole. 

orthogonal directions. Splitting of shear waves is obtained for 
each direction of propagation by two sets of transducers with 
perpendicular planes. Length and resulting volume changes of 
the sample cubes due to changes of principal stress and 
temperature are obtained from the piston displacement. Densities 
for each sample (oven-dried) were calculated from the masses 
and the measured volumes of the cubes. Each set of results is 

composed of three P wave velocities and six S wave velocities 
and pressure- and temperature-dependent volumetric strain. 

pressure and temperature equilibrium, successive readings were 
taken at time intervals of at least 30 min. The cumulative error in 

V•, and V s is estimated to be < 1%. 

4. Results and Discussion 

4.1. General Characteristics 

Tables 1 and 2 give modal mineral compositions based on 
point counting and major element composition for the measured 

Measurements were done at pressures up to 600 MPa at room Damaping xenoliths and granulites and granulite-facies 
temperature and from room temperature up to 600øC at 600 MPa metasedimentary rocks from the Manjinggou-Wayaokou section. 
confining pressure. Wave velocities were measured at ---50-MPa Neglecting clastic metasedimentary rocks from the Manjinggou- 
intervals during pressure increase to 600 MPa. Maintaining the Wayaokou section and the spinel lherzolite xenolith, the weight 
hydrostatic pressure of 600 MPa constant overnight, the percent SiO 2 of the measured rocks falls in the range 45.3-64.2%, 
temperature was increased the following day in steps of-80øC pointing to felsic (>63% SiO2) , intermediate (63-52% SiO2) , and 
over -15-min periods. To ensure that the samples had reached mafic (45-52% SiO2) compositions according to the scheme for 
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Table 2. Major Element Composition of Hannuoba Xenoliths and Rocks from Huai'an Terrain 
Rock Type Sample SiO2 TiO2 A1203 Fe203 FeO MnO MgO CaO Na20 K20 P205 H20 + CO 2 Total Mg# 

Hannuoba xenolith 

Spinel lherzolite DMP-04 43.76 0.06 2.14 0.79 6.97 0.12 42.97 2.01 0.12 0.10 0.02 0.81 0.04 99.91 90.89 

Garnet-bearing DMP-07 45.71 0.62 24.44 2.54 3.55 0.06 5.07 12.09 2.31 0.33 0.05 2.80 0.13 99.70 60.77 
mafic granulite DMP-08 45.27 0.55 17.16 1.99 7.08 0.12 12.42 12.06 1.36 0.10 0.04 1.55 0.04 99.74 71.40 

Mafic granulite DMP-06 51.72 0.96 18.06 2.05 5.10 0.12 6.97 5.41 4.03 1.78 0.27 3.10 0.04 99.61 64.15 
DMP-09 49.54 0.49 9.65 1.17 8.33 0.15 18.37 8.17 1.23 0.35 0.02 2.11 0.03 99.61 77.73 
DMP-66 50.51 0.42 12.10 0.94 6.17 0.12 13.58 12.14 1.62 0.33 0.02 1.71 0.03 99.69 77.53 

DMP-71 49.60 0.60 9.61 1.58 8.57 0.17 13.98 12.12 1.21 0.47 0.05 1.63 0.09 99.68 71.38 

Plagioclase- DMP-49 50.16 0.57 7.64 1.86 7.68 0.17 16.44 12.77 0.79 0.30 0.02 1.25 0.04 99.69 75.81 
bearing 
pyroxenite DMP-68 49.74 0.41 9.41 0.74 7.75 0.15 16.23 11.30 1.91 0.17 0.03 1.81 0.07 99.72 77.47 

Pyroxenite DMP-10 48.99 0.69 5.81 2.39 8.37 0.18 18.62 12.82 0.42 0.10 0.02 1.31 0.04 99.76 75.93 
DMP-11 49.83 0.52 4.68 1.18 9.77 0.18 20.18 11.45 0.40 0.10 0.02 1.01 0.48 99.80 76.86 

DMP-14 50.89 0.24 5.75 1.11 4.10 0.13 20.51 15.32 0.53 0.10 0.02 0.74 0.22 99.66 87.76 

Intermediate DMP-70 56.82 0.55 15.20 1.71 3.55 0.09 5.34 5.10 2.93 4.52 0.25 3.45 0.04 99.55 65.17 

granulite 

Huai'an terrain 

Garnet-bearing MQG-15 45.80 1.43 14.28 2.68 11.97 0.22 8.61 12.20 1.53 0.16 0.13 0.59 0.18 99.78 51.63 
mafic granulite 

Mafic granulite MQG-02 45.55 0.99 13.78 3.49 11.58 0.26 9.36 12.21 1.27 0.28 0.04 0.81 0.18 99.80 53.13 
WYK-09 50.54 1.43 12.94 4.44 10.37 0.22 6.07 10.11 2.45 0.21 0.12 0.70 0.09 99.69 42.96 

Intermediate MQG-01 57.86 0.71 16.74 1.30 7.05 0.12 3.52 6.55 4.17 0.74 0.17 0.68 0.04 99.65 43.29 

granulite MQG-20 54.30 1.46 13.68 5.04 9.38 0.27 4.38 6.93 2.80 0.88 0.27 0.29 0.11 99.79 35.94 

Felsic granulite WYK-06 64.21 0.58 16.81 1.30 3.05 0.05 1.84 5.01 4.82 1.10 0.24 0.57 0.09 99.67 43.74 

Gamet-bearing MQG-05 59.65 0.82 20.85 0.34 8.07 0.05 2.90 1.07 0.96 3.79 0.08 0.96 0.09 99.63 38.16 
metasandstone 

Garnet-bearing MQG-06 44.72 2.40 12.75 0.50 19.48 0.35 7.10 9.53 0.61 0.62 0.24 1.07 0.44 99.81 38.84 
metapelite 

Metapelite MQG-08 55.79 0.96 13.91 1.48 7.18 0.11 5.96 5.90 1.86 2.27 0.09 1.34 2.73 99.58 55.52 

Mg #, magnesium number, 100xMg/(Fe+Mg) (in atomic number). 

igneous rocks proposed by the International Union of Geological the P wave velocities for the temperature range 20-600øC 
Sciences [Le Bas and $treckeisen, 1991]. measured at 600 MPa confining pressure. At increasing confining 

The mafic-ultramafic rocks include garnet-bearing mafic pressure, P and $ wave velocities typically show a nonlinear 
granulite, mafic granulite, plagioclase-bearing pyroxenite, and velocity increase up to -200 MPa (Figure 3), which is interpreted 
pyroxenite. Major element compositions vary clearly with the in terms of closure of the microcracks. At higher pressures a 
subdivisions of mafic rocks. For example, compared to the slight, linear increase of velocities is observed. Increase of 
counterparts without garnet, the garnet-bearing mafic granulite temperature at high confining pressure (600 MPa) results in a 
xenoliths contain significantly lower SiO2, which is coupled by slight, linear decrease in the wave velocities. Like rocks from 
remarkably higher AI203 (Table 2). The plagioclase-bearing other metamorphic terrains [Kern and $chenk, 1988; Kern et al., 
pyroxenites are characterized by being high in A1203 and Na20 1993, 1996b, 1999; Barruol and Kern, 1996], granulites from the 
and low in MgO compared to the pyroxenites. Manjinggou-Wayaokou section show a monotonous, linear 

Table 3 summarizes data on measured bulk densities, average increase in velocity with increasing pressure and a linear decrease 
P and $ wave velocities as well as pressure and temperature with increasing temperature (not shown). In contrast, some of the 
derivatives of wave velocities. As an example, a complete set of Hannuoba granulite xenoliths (DMP-06, -07, -09, -10, -66 and - 
the nine velocities for mafic granulite xenolith DMP-09 is plotted 71) display a complicated behavior characterized by two or three 
in Figure 3 for the pressure range 20-600 MPa. Also shown are segments of linear decrease in V•, with increasing temperature, as 
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Table 3. Measured Bulk Densities, Average P and S Wave Velocities, and Pressure and Temperature Derivatives of Wave 
Velocities 

Pressure Temperature 600 MPa and Room Temperature Parameters 
Derivative, Derivative, 

10 '4 km s '• MPa '• 10 '4 km s '• øC-• Density, Poisson's 

Rock Type Sample Vpo V,o dVt/dP dV, JdP dVt,/dT dV•JdT $ cm -3 Vt• V• Vt,/V ,, ratio Vp cdt V• cdt 
Hannuoba xenolith 

Spinel DMP-04 7.93 4.60 1.66 0.00 -1.94 -1.15 3.298 8.03 4.60 1.75 0.26 8.21 4.81 
lherzolite 

Garnet-bearing DMP-07 6.13 3.37 3.75 0.41 0.93 0.44 2.786 6.36 3.40 1.87 0.30 6.54 3.69 
mafic granulite DMP-08 6.96 3.90 2.19 -0.01 -2.01 -1.05 3.119 7.10 3.90 1.82 0.28 7.59 4.30 

Mafic granulite DMP-06 6.03 3.36 0.60 -0.42 -4.73 -4.23 2.742 6.07 3.33 1.82 0.28 6.69 3.75 
DMP-09 7.14 4.17 2.94 0.56 -5.84 -3.12 3.180 7.31 4.20 1.74 0.25 7.30 4.14 
DMP-66 7.03 4.00 2.70 0.43 -3.27 -2.30 3.113 7.19 4.03 1.78 0.27 7.15 4.00 
DMP-71 6.80 3.96 4.64 1.46 -4.96 -3.52 3.172 7.08 4.05 1.75 0.26 7.37 4.16 

Plagioclase- DMP-49 6.90 4.07 6.04 2.31 -1.54 -0.75 3.222 7.27 4.21 1.73 0.25 7.47 4.27 
bearing DMP-68 7.02 4.07 3.97 1.02 -2.64 -1.08 3.058 7.26 4.13 1.76 0.26 7.62 4.35 
pyroxenite 

Pyroxenite DMP-10 6.99 4.11 6.03 2.13 -1.28 -0.45 3.321 7.35 4.23 1.74 0.25 7.68 4.42 

DMP-11 7.24 4.26 4.48 1.08 -2.19 -0.92 3.349 7.51 4.33 1.74 0.25 7.68 4.43 

DMP-14 7.57 4.46 4.69 1.46 -1.89 -0.76 3.314 7.85 4.55 1.73 0.25 8.33 4.86 

Intermediate DMP-70 5.29 2.91 -0.78 -0.54 1.77 -0.58 2.537 5.24 2.87 1.82 0.29 6.14 3.54 
granulite 

Huai'an terrain 

Garnet-bearing MQG-15 7.25 4.14 3.51 0.76 -1.21 -0.19 3.318 7.45 4.18 1.78 0.27 7.19 4.00 
mafic granulite 

Mafic granulite MQG-02 7.09 4.02 2.51 0.48 -1.46 -0.236 3.214 7.24 4.05 1.79 0.27 7.08 3.97 
WYK-09 6.81 3.87 3.44 -0.39 3.096 6.92 3.86 1.79 0.27 7.06 3.94 

Intermediate MQG-01 6.35 3.67 3.73 0.90 -1.46 -0.11 2.850 6.57 3.72 1.76 0.26 6.53 3.73 

granulite MQG-20 6.59 3.74 3.15 0.55 -1.44 -0.12 3.017 6.77 3.77 1.79 0.27 6.79 3.83 

Felsic granulite WYK-06 6.34 3.68 2.33 0.07 -2.71 -0.70 2.768 6.47 3.68 1.76 0.26 6.38 3.68 

Garnet-bearing MQG-05 6.68 3.96 3.65 1.57 -1.72 -0.39 3.035 6.89 4.03 1.71 0.24 6.97 4.16 
metasandstone 

Garnet-bearing MQG-06 7.33 4.13 1.77 -0.01 -2.79 -1.06 3.446 7.43 4.13 1.80 0.28 7.18 4.05 
metapelite 

Metapelite MQG-08 6.39 3.58 3.52 0.85 -2.35 -1.16 2.993 6.60 3.63 1.82 0.28 6.61 3.68 

Vp ca• and Vs cal are calculated velocities based on modal mineral compositions and velocities of corresponding single minerals given in Table 4. 
Detailed data on Vp and Vs variations with pressure and temperature are available from G.S. upon request. 

exemplified in Figure 3. The inflection commonly occurs at 
300øC (DMP-06,-09, -66 and -71; Figure 3). The unusual 
velocity-temperature relationship with a marked velocity 
decrease around 300øC must be attributed to dehydration of the 
zeolite-like minerals. Zeolite is known to contain a great deal of 
structurally bound water. Part or all of this water is given off 
continuously or abruptly on heating from room temperature to 
-•350øC. Dehydration reactions will produce solid-fluid systems, 

thus leading to a significant decrease of effective pressure, which 
gives rise to widening of old cracks and to the formation of new 
cracks. The abrupt increase of pore space and the reconstitution 
of pore geometry result in a marked decrease of wave velocities 
[Kern and Richter, 1979]. 

P-wave anisotropy and shear wave splitting are highest (V v- 
anisotropy = 6.0-8.1%; V•//foliation = 0.18-0.38) for spinel 
lherzolite DMP-04, plagioclase-bearing pyroxenite DMP-68 and 
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Figure 3. Effect of pressure and temperature on P and S wave velocities and their directional dependence for the 
Hannuoba mafic granulite xenolith DMP-09. (a) Vt, as a function of pressure at room temperature; (b) Vp as a 
function of temperature at 600 MPa confining pressure; (c) to (e) shear wave splitting in three structural directions 
(X, Y, and Z) as a function of pressure. 

metapelite MQG-08, which is due to mineral alignment. Other 
samples have V,- anisotropy <3.5% and V,//foliation <0.10. 

From the regression of the linear segments of the pressure 
(300-600 MPa) and temperature curves (20-600øC) the pressure 
and temperature derivatives of velocities and the reference 
velocities V,.c• o were obtained (Table 3). They allow one to 
extrapolate seismic velocities for any P-T condition within the 
stability field of the constituent assemblage of rock-forming 
minerals. 

The pressure derivatives of rocks obtained from this study 
(0.6-6x 10 -4 km s 4 MPa) are generally higher than values (1-2x 10- 
4 km s '• MPa) obtained at pressures above 1000 MPa [e.g., 
Christensen, 1974; Rudnick and Fountain, 1995]. This infers that 

our derived pressure derivatives might not reflect the single- 
crystal derivatives. As has been shown by Christensen [1974], 
small amounts of the residual low aspect ratio cracks (i.e., 
spherical pores) are not completely closed at pressures below 
1000 MPa. However, the effect of small amounts of spherical 
pores on wave velocities is generally believed to be low. Most of 
the high aspect ratio cracks are closed at pressures above -200- 
300 MPa, giving rise to a linear behavior of the velocity versus 
pressure relation (Figure 3). Therefore our data can be considered 
as to describe the near-intrinsic properties of the aggregates, that 
is, they describe an upper bound. 

Temperature coefficient data for crustal and mantle rocks are 
scarce in the literature [Kern, 1978; Kern and Richter, 1981; 
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4.2. Comparison of Velocities for Xenoliths and Rocks 
from Metamorphic Terrains 

The fidelity with which the measured velocities reflect the 
primary mineralogy of rocks can be assessed by comparison of 
the measured velocities with those calculated for the modal 

mineralogy from appropriate single-crystal velocity data [Birch, 
1961; Jackson et al., 1990; Rudnick and Jackson, 1995]. To do 
this, it is important to take into account velocity variations of 
single minerals with their end-member compositions [Gebrande, 
1982]. Systemic variations in mineral composition are clear 
between rock types of the investigation. For example, both 
clinopyroxene and orthopyroxene from the mafic granulite 
xenoliths contain significantly less enstatite end-member 
compared to the pyroxenites and spinel lherzolites [Chen, 1996; 
Liu, 1999]. Orthopyroxene in the mafic granulite and pyroxenite 
xenoliths is enstatite-bronzite and contains 64-76 and 80-90% of 

the enstatite end-member, respectively. In contrast, 
orthopyroxene in mafic granulites from the Huai'an terrain is 
generally hypersthene. Clinopyroxene from the Huai'an terrain 
also contains higher FeO. We calculate velocities (Table 4) of 
plagioclase, orthoclase, orthopyroxene, clinopyroxene, garnet, 
olivine, and spinel for various rock types from microprobe 
analyses of minerals and velocities of corresponding end 
members given by Gebrande [1982]. Possible velocity variations 
of glass, biotite, and amphibole are not considered, and the 
velocity of opaque mineral is taken as that of magnetite. The 
velocity of kelyphite in Table 4 is assumed to be 10% lower than 

Kern and Schenk, 1985, 1988; Kern et al., 1993, 1996a, b, 1999; 
Rudnick and Fountain, 1995]. Studies of Kern [1978] and Kern 
and Richter [1981 ] show that thermally induced microfracturing 
is increasingly suppressed as pressure is raised and stops at 
pressures of a few hundred megapascals. The minimum pressure 
increment needed to prevent thermal cracking has been estimated 
to be generally around I MPa per degree increase in temperature. 
For the case in which the velocity-temperature relationship is 
linear at high confining pressure and with a negative slope, the 
corresponding temperature coefficients of velocities describe the 
intrinsic behavior fairly well. This is true for terrain rocks and for 
most of the xenolith samples except DMP-06,-07,-09,-10, -66 
and -71. It can be seen from Table 3 that DMP-06, -09,-66 and - 
71 exhibit considerably higher temperature derivatives than other 
xenolith samples and terrain rocks. 

Figure 4 shows the relationship between velocities and 
densities measured at 600 MPa. Velocities exhibit a nice positive 
correlation with density with correlation coefficients being 0.94- 
0.95. 

The plot of silica content •gainst velocities shown in Figure 5 
reveals that velocities generally increase with decreasing SiO 2 
content. However, the correlation is less significant than the 
density-velocity correlation. This is because both density and 
velocity depend primarily on mineralogy, which is a function of 
metamorphic grade in addition to chemical composition. For 
example, pyroxenite xenoliths show significantly higher 
measured and calculated velocities (V v =7.3-8.3 km s 'l) compared 
to mafic granulites (<7.4 km s -l) with SiO2 <52%. (Figure 5 and 
Table 3). Three granulite xenoliths (DMP-06, -07, and -70) have 
unusually low measured velocities due to the presence of 
significant amount of glass and/or kelyphite. 
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Figure 5. Correlation between SiO 2 content and average (a) 
compressional and (b) shear wave velocities at 600 MPa and 
room temperature for the Hannuoba xenoliths and rocks from the 
Huia'an terrain. Solid and open symbols are for calculated and 
measured velocities, respectively. Also shown for comparison are 
data on three granulites from the Jining terrain [Kern et al., 
1996b]. 
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Table 4. Single Mineral Elastic Properties Used in Calculation of Rock Velocities 
Rock Type Velocity, km s '• PI Ksp Qz Cpx Opx Kely Gt Ap Op Glass Ol Sp Bi Amp 

Hannuoba xenolith 

Spinel lherzolite V•, (vm•) 7.66 7.93 8.42 8.36 
Vs(v•) 4.35 4.74 4.89 4.56 

Mafic granulite V•,{vm) 6.57 7.59 7.63 7.91 6.68 7.39 5.57 
Vs(vv.m 3.58 4.30 4.49 4.49 3.30 4.20 3.52 

Pyroxenite V•,{vm) 6.68 7.62 7.84 7.39 5.57 8.39 
V•(vm) 3.63 4.33 4.66 4.20 3.52 4.85 

Intermediate Vt,{v•) 6.30 5.60 7.57 7.42 6.68 7.39 5.57 
granulite 

V•(v•) 3.45 3.05 4.29 4.31 3.30 4.20 3.52 

Huai'an terrain 

Mafic granulite Vt,{v•) 6.69 5.63 7.55 7.63 8.94 7.39 6.81 
Vs(v•) 3.64 3.06 4.28 4.49 5.06 4.20 3.72 

Intermediate Vt,(v•> 6.38 6.05 7.53 7.33 7.39 5.35 
granulite 

6.81 

Vs(v•) 3.49 4.09 4.26 4.24 4.20 3.00 3.72 

Felsicgranulite Vt,(vm) 6.33 5.58 6.05 7.51 7.30 6.68 7.39 5.35 6.81 
V•(v•) 3.47 3.03 4.09 4.25 4.21 3.30 4.20 3.00 3.72 

Metasandstone Vt,(vm) 6.38 6.05 7.53 7.26 8.71 5.35 6.81 
V•(v•) 3.49 4.09 4.26 4.17 4.89 3.00 3.72 

Metapelite Vt,(v•) 6.50 5.60 6.05 7.54 7.30 5.35 
V•(vm) 3.55 3.05 4.09 4.27 4.21 3.00 

PI, plagioclase; Ksp, K-feldspar; Qz, quartz; Cpx, clinopyroxene; Opx, orthopyroxene; Kely, kelyphite; Gt, garnet; Ap, apatite; Op, opaque 
mineral; O1, olivine; Sp, spinel; Bi, biotite; Amp, amphibole. Velocities of plagioclase, orthoclase, orthopyroxene, clinopyroxene, garnet, 
olivine and spinel for each rock type are calculated from microprobe analyses of minerals and velocities of corresponding end-members given 
by Gebrande [1982]. Possible velocity variations of glass, biotite, and amphibole are not considered. The velocities of opaque mineral are 
taken as those of magnetite. 

the velocity of garnet. The V•, (7.91 km s 'l) thus obtained is 
substantially the same as that (7.95 km s 'l) calculated by Rudnick 
and Jackson [1995] from proportions and single crystal velocities 
of anorthite, spinel, orthopyroxene, and clinopyroxene, which 
make up kelyphite. The velocities of the above minerals are then 
used to calculate the rock velocity (Table 3) according to modal 
mineral composition based on point counting (Table 1). Figure 6 
compares the measured and calculated velocities. Also, Figure 6 
shows data for rocks exposed along the Wutai-Jinning zone 
[Kern et al., 1996b, Figure 1]. It can be seen from Figure 6a that 
the measured V•, for rocks from the Manjinggou-Wayaokou 
section and the Wutai-Jining zone is in good agreement with the 
calculated V•,; the relative difference is within __.4%. In contrast, 
the xenoliths show systematically lower measured V•, by up to 
15% relative to the calculated ones. This is also true for V, 
(Figure 6b). 

Lower measured relative to calculated P wave velocities were 

also observed from studies of granulite xenoliths from the 
Chudleigh volcanic province of Australia [Jackson et al., 1990; 
Rudnick and Jackson, 1995] and from upper mantle xenoliths 
from the Vitim picritic tuff, Russia [Kern et al., 1996a], although 
generally good agreements between measured and calculated 
velocities were found for four upper mantle rocks from eastern 

Australia [O'Reilly et al., 1990]. Rudnick and Jackson [1995] 
summarize five possible causes for lowering measured velocities: 
(1) scattering of elastic waves at grain boundaries, (2) the 
presence of significant AI and/or Na in the natural pyroxenes, 
which are not accounted for in the pyroxene end-members used 
for the calculations, (3) differences between the modal 
mineralogy determined on a single thin section and those in the 
actual rock specimen where the measurements were made, (4) 
grain boundary alteration in the xenoliths, and/or (5) failure to 
close all pore spaces due to irreversible changes occurring on 
grain boundaries or in the process of kelyphitization. They finally 
ascribe the lower measured velocity to grain boundary alteration 
and residual porosity. On the basis of the following evidence, it is 
proposed that their inferences can be also applied to the 
Hannuoba xenoliths. 

1. The velocity discrepancy for xenoliths is unlikely to be 
due to inaccurate mineral modes because this is difficult to 
explain the velocity consistency for rocks from the Manjinggou- 
Wayaokou section and the Wutai-Jinning zone. 

2. Velocity variations of minerals with composition have 
been taken into account. 

3. Samples DMP-70 and DMP-06, which show the largest 
amount of grain boundary alteration characterized by reaction 
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during their slow transport to the surface. This is particularly true 
because seismic and density properties depend directly on 
mineralogy and texture of rocks which may or may not correlate 
with chemical composition. This means that granulite xenoliths 
should have in situ petrophysical properties similar to the 
granulites from exposed terrains if they have similar bulk 
composition, mineralogy, and texture. 

On the other hand, it can be seen from Figure 5a that except 
alteration-affected granulite xenoliths DMP-06, -07 and -70, the 
other granulite xenoliths and granulites from the Huai'an and 
Jining terrains form an overall consistent trend on the calculated 
velocity versus SiO 2 plot. Although significant chemical changes 
with alteration during xenolith's transport to the surface may 
occur on the submineral scale, the bulk rock chemical 
composition is less susceptible to change. This is exemplified by 
kelyphite, which consists of extremely fine-grained plagioclase, 
pyroxene, and spinel and which, as whole, generally has the same 
composition as its precursor of garnet. These results imply that if 
various alterations are taken into account, calculated velocities of 
xenoliths could be used to infer the lower crustal composition. 
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