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Abstract  

This paper presents a new precise Hsu’s method for investigating the stability regions of the periodic 
motions of an undamped two-degrees-of-freedom system with cubic nonlinearity. Firstly, the 
incremental harmonic balance (IHB) method is used to obtain the solution of nonlinear vibration 
differential equations. Hsu’s method is then adopted for computing the transition matrix at the end of 
one period, and the precise time integration algorithm is adjusted to improve the computational 
precision. The stability regions of the system obtained from the precise Hsu’s, Hsu’s and improved 
numerical integration methods are compared and discussed. 
 
Keywords: Incremental harmonic balance method, Hsu’s method, Precise time integration algorithm, 
stability analysis. 

1. Introduction 

Many practical non-linear systems, such as rotorcraft and stability of a clamped-hinged beam, can be 
modeled by ordinary differential equations with periodic coefficients 

( )tx A x=& ( ) ( )t+T t=A A,  (1)  

d d tx x=&where x is an n-dimensional vector, A is an n×n periodic matrix with period T, and .   
Based on the Floquet-Liapunov theorem, the stability criteria of the system are related to the 
eigenvalues of the transition matrix. Two types of efficient numerical methods were developed for 
evaluating the transition matrix at the end of a periodic system. In the first type, Hsu [1-3] developed 
an efficient method for approximating the transition matrix during one period. To evaluate the 
transition matrix, this method divides the time interval of a period into a number of equal parts and 
considers the equations over each interval to be a set of equations with constant coefficients. 
Friedmann et al. [4] summarized this method and provided a clear and concise formulation. Cheung 
et al. [5] applied Hsu’s method to treat the nonlinear vibration of strongly nonlinear multiple-degrees-
of-freedom systems with cubic nonlinearity based on the IHB method steady-state solutions. In the 
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second type, direct numerical integration is applied directly to solve the ordinary differential 
equations. Friedmann et al. [4] also improved the numerical integration scheme for evaluating the 
transition matrix based on the fourth-order Runge-Kutta scheme with Gill coefficients. Cai et al. [6] 
presented a new approach for computing the Floquet transition matrix based on the precise 
integration method.  

In 1994, Zhong [7] and Zhong and Williams [8] proposed a precise time integration algorithm. 
Using this method, one can get accurate solutions by making use of only one time step over a large 
interval. This was developed, and successfully applied to structural dynamics and its related problems. 
Recently, Fung and Chen [9] improved the computational efficiency of the method by combining the 
Krylov subspace method and the Padé approximations for solving large-scale transient problems. To 
avoid the matrix inversion, Zhang et al. [10] used precise time integration with the Runge-Kutta 
method to solve nonlinear dynamical systems. Huang et al. [11] presented an improved symplectic 
precise integration method to increase the accuracy of the rotating rigid-flexible coupled system. 
Wang and Au [12] improved the accuracy of the precise time integration with the Gauss quadrature 
method. Tang [13] used precise time integration to compute the forced vibration of a beam with high 
precision. Chen et al. [14] applied the precise time method to solve linear two-point boundary value 
problems.  

In this paper, we try to extend the precise time integration algorithm to deal with the stability of a 
clamped-hinged beam, which is a typical example of a system with cubic nonlinearity possessing 
internal resonance. The proposed approach is based on the incremental harmonic balance (IHB) 
method, Hsu’s method, and the precise time integration algorithm (PTIA). The main objective of this 
study is to identify stability regions of the system with various combinations of excitation frequencies 
and amplitudes of the oscillations. In this approach, the IHB method is derived for a general nonlinear 
system to obtain the steady-state periodic solutions. Then, taking increments as perturbations of the 
solutions for the ordinary differential equations, one can obtain a set of linear variational equations 
with periodic coefficients that can be used to determine the stability characteristics. Hsu’s method, 
which is compounded with the precise time integration algorithm, is used to determine the stability of 
the system based on the Floquet theorem. This new approach is named the precise Hsu’s method. The 
stability regions of the system are evaluated using the precise Hsu’s method, Hsu’s method and 
improved numerical integration method which is based upon the fourth order Runge-Kutta scheme 
with Gill coefficients [4]. The accuracy of results obtained from various approaches are compared 
and discussed. 

2. Incremental Harmonic Balance Method 

Consider a nonlinear system in the general form given by the equation: 
 

( ), , , , ,ω τ =f q q q F 0&& &  (2)  

[ ]1 2, , , T
Nq q q=q K [ ]1 2, ,..., T

NF F F=Fwhere q  is an N-dimensional displacement vector, e.g., ,  is an 
N-dimensional load vector, d dτ=q q& , f  is a set of second order nonlinear ordinary differential 
equations, and the time variable τ  is defined as tτ ω= . 
Among the solution methods of ordinary differential equations, the IHB method is relatively efficient 
and reliable for treating the vibrations of strongly nonlinear systems to any desired accuracy. The 
method has been developed and successfully applied to analyze periodic and almost periodic 
nonlinear structural vibrations and their related problems [5, 15, 16, 17, 18, 19]. 
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The first step of the IHB method is the incremental procedure. Let , 0q 0ω  and  denoted an 
initial guess state of vibration, then a neighboring state of motion can be expressed by adding the 
corresponding increments as: 

0F

 0j j jq q q= + Δ , ,   1, 2,...,j N= 0ω ω ω= + Δ ,   0i i iF F F= + Δ 1, 2,..., N=, i  (3) 
Substituting Equation (3) into Equation (2) and using a Taylor expansion, and neglecting small terms 
of the higher order terms in ,Δq ωΔ and ΔF , one obtains the linearized incremental equation in matrix 
form: 

( ) ( ) ( ) ( ) ( )0 0 00 0 0 0
( , , )

0
ω ω ω∂ ∂ Δ + ∂ ∂ Δ + ∂ ∂ Δ = − ∂ ∂ Δ − ∂ ∂ Δf q q f q q f q q R q F f F F f&& && & &   (4)  

where 0 0 0 0 0 0( , , ) ( , , )ω ω= −R q F f q F  is a residual/corrective vector that goes to zero when the 
numerical solution is exact. In this sense, the residual term can be used to control the accuracy in the 
computation. 

The second step of the IHB method is the Galerkin procedure (i.e., the harmonics balance 
procedure), we assume a steady-state solution of an N-dimensional nonlinear system and its 
increment expanded in a finite Fourier series as follow: 

( )0
1 1

cos 1 sin
c sn n

j jk jk j
k k

q a k b kτ τ
= =

= − + =∑ ∑ CA   (5) 

  (6) ( )0
1 1

cos 1 sin
c sn n

j jk jk
k k

q a k b kτ τ
= =

Δ = Δ − + Δ = Δ∑ ∑ C A j

where , cn sn are positive integers, represent the numbers of cosine and sine harmonic terms, 
respectively. And the vectors C , ,  are given by jA jΔA

( )1, cos , cos 2 , cos 1 , sin ,sin 2 , , sinc sn nτ τ τ τ τ= −⎡ ⎤⎣ ⎦C L L τ , 

 ,  1 2 1 2, , , , , , ,
c s

T

j j j j n j j j na a a b b b⎡ ⎤= ⎣ ⎦A K K

  1 2 1 2, , , , , , ,
c s

T

j j j j n j j j na a a b b b⎡ ⎤Δ = Δ Δ Δ Δ Δ Δ⎣ ⎦A K K

Hence, the vectors of unknown and their increments can be expressed by the Fourier coefficients vector  and 
its increment  as follows: 

A
ΔA

0 =q SA 0Δ = Δq S A ,     (7), (8) 
where 
 ,.diag( , , , )=S C C C [ ] [ ]1 2, , , T

NΔ = Δ Δ ΔA A A AL1 2, , , T
N=A A A AL ,  L

Substituting Equations (7) and (8) into Equation (4) and using the Galerkin procedure in order to 
harmonics balance yields 

( ) ( ) ( )
2

0 0 00
( ) dTπ

δ τ⎡ ⎤Δ ∂ ∂ Δ + ∂ ∂ Δ + ∂ ∂ Δ⎣ ⎦∫ q f q q f q q f q q&& && & &  

( ) ( )( )2

0 0 0 0 00
( ) ( , , ) dTπ

δ ω ω= Δ − ∂ ∂ Δ − ∂ ∂ Δ∫ q R q F f F F f ω τ   (9)  

ωΔΔA ΔFOne can easily obtain a set of linear equations in terms of ,  and  as follow: 
ωΔ = − Δ − ΔK A R P F C   (10)  

where 

( ) ( ) ( )
2 2 2

0 0 00 0 0
d d dT T Tπ π π
τ τ τ= ∂ ∂ + ∂ ∂ + ∂ ∂∫ ∫ ∫K S f q S S f q S S f q S&& &&& &  
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2

0 0 00
( , , )dTπ

ω τ= ∫R S R q F ( )
2

00
dTπ
τ= ∂ ∂∫P S f F ( )

2

00
dTπ

ω τ= ∂ ∂∫C S f , ,  

It is worth mentioning that in Equation (10) the number of incremental unknown is greater than the 
number of equations available due to the existence of ωΔΔF  and . However, since one is primarily 
interested in the frequency-response curves of the system for a constant force level, F  is fixed as a 
parameter vector, which implies . Hence Equation Δ =F 0 (10) is reduced to  

ωΔ = − ΔK A R C  (11)  
The solution process begins with a guessed solution. The nonlinear frequency–amplitude response 

curve is then solved point-by-point by incrementing the frequency ω  or incrementing component of 
the coefficient vector A . The Newton–Raphson iterative method can be employed. Hence, the 
solution of the differential equation can be found.  

3. The precise Hsu’s method and the stability of the steady-state solutions  

3.1 Solution stability analysis 
When the steady state solution of a nonlinear system is obtained by the IHB method, the stability of 
the given solution can be investigated by adding a small perturbation  on , i.e. by letting 0qΔq

0= + Δq q q  (12) 
Substituting Equation (12) into Equation (2), linearizing the resulting equation in terms of Δq and 
noting that  satisfies Equation 0q (2), one can obtain the linearized equation for Δ : q

( ) ( ) ( )0 0 0
∂ ∂ Δ + ∂ ∂ Δ + ∂ ∂ Δ =f q q f q q f q q 0&& && & &  (13) 

Equation (13) is the perturbed equation: i.e., perturbed from the known solution . The stability of 
the steady-state solutions corresponds to the stability of the solutions of Equation 

0q
(13), which is a set 

of linear ordinary differential equations. The stability characteristics can be studied by multi-variable 
Floquet theory. Let  

[ ], T= Δ ΔX q q&  (14) 
Equation (13) can be rewritten in the state variable form as:  

( )τ=X Q X&  (15)  

( ) ( ) ( ) ( )1 1

0 0 0 0

− −

⎡ ⎤
= ⎢ ⎥

− ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

0 I
Q

f q f q f q f q&& && &
where   

2T π=Since each component of  is a periodic function τ0q  with a period , each element of Q  is 
also a periodic function with the same period T . 
For Equation (15), there exists a fundamental set of solutions 

[ ]1 2, , , T
k k k Mky y y=y L , 1, 2, ,k M= L  (16) 

2M N=where . This fundamental set can be expressed in a matrix called a fundamental matrix 
solution: 

11 12 1

21 22 2

1 2

M

M

M M MM

y y y
y y y

y y y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Y

L

L

M M L M

L

 (17)  
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Y satisfies the matrix equation 
( )τ=Y Q Y&  (18) 

( ) (T )τ τ+ =Q Q ( )Tτ +Ywhere  is the periodic matrix, and  is a fundamental matrix solution, so it 
can be expressed by  

( ) ( )Tτ τ+ =Y PY  (19) 
where  is a non-singular constant matrix called the transition matrix. P

3.2 Hsu’s method 
The Floquet theory states that the stability criteria for the system are related to the eigenvalues of 

the matrix P  or the real of part of the characteristic exponents. The solution of Equation (15) 
approaches zero as τ → ∞  if all of the moduli of the eigenvalues iλ  of P  are less than 1, and 
otherwise the motion is unbounded and the solution is unstable. If iλ = 1,  is periodic with period 

, while if 
X

1= − ,  is periodic with period 2 . iλ XT T
Among the various methods for approximating the transition matrix P , Friedmann et al. [4] reported 
that the most efficient procedure was that developed by Hsu [1-3]. The method consists of evaluating 
the transition matrix, by dividing a period into a number of equal parts and considering the equations 
over each interval to be a set of equations with constant coefficients. Suppose each period 2T π=  is 
divided into K  intervals denoted by kτ , 0,1, 2,...,k K=  with 0 10 ... K Tτ τ τ< < < < =  and the size of 
the kth interval is denoted by:  

1k k kτ τ −Δ = −  (20) 

( )τQ In the kth interval, the periodic coefficient matrix  is replaced by its average value, i.e. by a 
constant matrix  defined by:  kQ

( )
1

1 dk

k
k

k

τ

τ
ζ ζ

−

=
Δ ∫Q Q  (21) 

For the ith interval, the approximate transition matrix can be expressed as  
( )expi i i= ⋅ΔY Q  (22) 

Finally, the transition matrix  is given in the form P

( )
1 1

exp
K K

i i
i i= =

= ⋅ Δ = i∏ ∏P Q Y  (23) 

The multiplication ordering sequence is such that the kth factor must be placed in front of the (k-1)th 
factor in the Equation (23) product sign.  
In Reference [4], the matrix exponential is evaluated by an N th order truncated Taylor series j

( ) ( ) ( )
1 1

exp
! !

j
j jN

i i i i
i i

j jj j

∞

= =

Δ Δ
⋅ Δ = + +∑ ∑

Q
Q I I�

Q
  (24) 

and the transition matrix  can be rewritten as P

( ) ( )
11 !

j
jNK

i i

ji

T
j==

⎡ ⎤Δ
= = +⎢ ⎥

⎢ ⎥⎣ ⎦
∑∏

Q
P Y I  (25) 

where I  is a unit matrix. 
The above representations for the matrix exponential and the matrix multiplication are conceptually 
simple and basis for an algorithm. As shown by Moler and Van Loan [20], the method employing the 
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Taylor series expansion may be unsatisfactory due to round-off error difficulties. How to improve the 
accuracy in evaluating the periodic fundamental matrix ( )exp i i⋅ΔQ  plays an important role in 
stability analysis. 

3.3 The precise Hsu’s method 
To improve Hsu’s method, two procedure steps which differ from the original method are included. 

The first one is to compute the matrix exponential ( )exp i i⋅ΔQ  by the precise time integration 
algorithm given in References [7,8], instead of directly evaluated by the Taylor series expansion, such 
that the matrix exponential ( )exp i i⋅ΔQ  of Equation (22) can be rewritten as: 

( ) (exp exp
m

i i i i i m= ⋅Δ = ⋅Δ )⎡ ⎤⎣ ⎦Y Q Q  (26) 

2Nm =where . 
It is noted that the matrix exponential  in Equation iY (26) can be evaluated also through the 
knowledge of the eigenproperties of the matrix .However, when the matrix  has large 
elements, the method based on eigenvalue decompositions of the matrix  may be adversely 
affected by round-off error, therefore, the traditional technique will fail in solution stability analysis. 

iQ i iΔQ

iQ

t i mΔ = Δ 2i KπΔ =Letting ,  and then using the Taylor series expansion, we obtain: 

( ) ( ) ( )2

exp
2! !

n
i t i t

i t i t n
⋅ Δ ⋅ Δ

⋅Δ = + ⋅Δ + + + +
Q Q

Q I Q L L  (27) 

For very small time intervals, , the series in Equation 0tΔ → (27) converges rapidly. Hence for the 
interval, the value of the matrix exponential can be approximated with high precision by a finite 
number of terms, as follow: 

( ) ( )
1

exp
!

jn
t i

i t
j j=

Δ ⋅
a⋅ Δ ≈ + = +∑

Q
Q I I T  (28) 

Note the norm of matrix  compared to 1 is very small (about aT 72 10−×  in the next section numerical 
examples) and the orders of the elements magnitude of the matrix  are from  to aT 1510− 610−  in the 
numerical examples. The subscript a in  means approximation. Thus Equation aT (26) becomes  

( ) [ ] [ ] [ ] [ ]
1 12 2 2exp 2

N N N

i i i a a a a a a

12N− − −

= ⋅Δ = + = + × + = + × + ×Y Q I T I T I T I T T T  (29) 
This is also known as the scaling and squaring technique.  
In the computation, we only stored the matrix  in the memory as an incremental part rather than the 
matrix . Because matrix  is very small, if it is added to the unit matrix ,  will become an 
appended part and its precision will be seriously dropped in round-off operations in computer 
arithmetic [21]. Therefore, Equation 

aT

a+I T aT aTI

(29) becomes  
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( )
( )
( )
(

1

1

2

2,0

2,0 ,0 ,0

2,1

2,1 ,1 ,1

2

2

N

N

N

N

i
i a

i i i
a a a

i
a

i i i
a a a )

−

−

−

= +

= + × + ×

= +

= + × + ×

Y I T

I T T T

I T

I T T T  (30) 

where the matrix  is the initial matrix in the iterative computation, i.e. is equal to . aT,0i
aT

Then, the following instruction can be executed  
  (31) ( ) , 1 , , ,0; ; 2i l i l i l i l

a a afor l l N l += < + + = × + ×T T T aT
where the symbol l  represents the increment operator by one the value of l . + +
Eventually, the matrix  can be obtained from:  iY

( ) ,exp i N
i i i a⋅Δ = = +Q Y I T  (32) 

Equations (28), (31) and (32) can be used to avoid the loss of significant digits in the matrix  in the 
ith interval. It is noted that the accuracy of the matrix  depends on the size of time 

iY

iY t i mΔ = Δ . 
Zhong [21] suggested the computer double precision, which has 16 decimal digits today, could be 
fully exploited as the number of the Taylor expansion terms n=4 in Equation (28) and the dimension 
of the time intervals t i mΔ = Δ , m=220=1048576 in Equation (26). Hence the precise time integration 
algorithm has higher accuracy and there is no convergence error involved in the final results. 

The second step is to compute the matrix multiplication, such that Equation (23) becomes  

( ) ( )( ) (

( )(

, 1,

1 1

, 1, , 1, 2, 1,

exp
K K

)

) ( )

1,K N K N
i i i a a a

i i

K N K N K N K N K N N
a a a a a a

−

= =

− − −

= ⋅Δ = = + + +

= + + + × + +

∏ ∏P Q Y I T I T I T

I T T T T I T I T

L

L

N

  (33) 

where 1,N
aT  is . i −Y I

In the computation, we also stored  into  as an incremental part and 
the following instruction can be executed  

, 1, ,i N i N i N i N
a a a a

− −+ + ×T T T T 1,

−

T

1,i N
a

−T

  (34) ( ) 1, , 1, , 1,; 1; i N i N i N i N i N
a a a a afor i K i i − −= > − − = + + ×T T T T T

where the symbol i  represents the decrement value operator by one the value of i . − −
Finally, the transition matrix  can be obtained from:  P

  (35) ( ) 1,

1 1

exp
K K

N
i i i a

i i= =

= ⋅ Δ = = +∏ ∏P Q Y I

1,N
aTwhere it is mentioned here that the matrix  in Equation (35), which is the matrix after compute 

iterations by instruction Equation 1,N
aT(34), is different from the matrix  in Equation (33). 

In general speaking, Hsu’s method and the improved integration method in Reference [4] combined 
with multivariable Floquet theorem are efficient numerical methods available for dealing with the 
stability of periodic systems, however, when the moduli of the eigenvalues iλ  of  are equal to 1.0 
those methods are not suitable due to 

P
1.0iλ >  at times with round-off errors. In the present procedure, 

the essential ideas are to subdivide the time interval iΔ  into a more subtle one  with the 2  
algorithm in Equation 

N
tΔ

(26)and keep the small matrix T  in the memory rather than the matrix +I T  as 

  7



the incremental part in Equations (30) and (33) to minimize the round-off error. Therefore, the precise 
Hsu’s method is more accurate than the other two methods in stability analysis of periodic systems. 

4. Numerical examples 

To examine the accuracy of the precise Hsu’s method, we calculated a numerical example that 
involves forced vibrations of an undamped clamped-hinged beam. Using a two-mode shape 
approximation under a harmonic excitation, the governing dynamic equations of the problem can be 
expressed as follows: 

2
2 3 2 2 31
1 1 11 1 12 1 2 13 1 2 14 2 12

d cos
d

q q q q q q q q f
t

ω α α α α+ + + + + = Ωt  (36) 

2
2 3 2 2 32
2 2 21 2 22 2 1 23 2 1 24 1 22

d cos
d

q q q q q q q q f
t

ω α α α α+ + + + + = Ωt  (37) 

where  and  are normal mode coordinates, 1q 2q  and 1ω 2ω  are the first and second linear frequencies, 
respectively, 1f 2f and  are forcing coefficients and Ω  is the exciting frequency. The dimensionless 
quantities can be chosen as follows [16]: 

1 1.0ω = 2 3.2406ω =, , 11 0.278769α = , 12 0.311074α = − , 13 1.11585α = , 14 0.386361α = − , 

24 12
1
3

α α=21 3.87030α = , 22 143α α= , 23 13α α= , . 

As Equations (36) and (37) should not contain quadratic nonlinear and damping terms, the solutions 
 and  can be expressed as follow: 1q 2q

  (38) ( )(2 1)
1

cos 2 1 1, 2
c

j

n

j k
k

q a k jτ−
=

= −∑ =

where 1tτ ω= . In order to obtain an accurate stability at a reasonable central processing unit (CPU) 
time, we choose the appropriate numbers of harmonic terms 8cn =  in Equation (38). 

4.1 Stability of fundamental resonance at Ω  near  1ω

Figure 1 shows the response curves for the fundamental resonance with the IHB method when the 
forcing frequency  is near the first natural frequency 1 0.03f =Ω 1ω , and we use  and  in 
Equations 

2 0f =
(36) and (37). In addition, the second natural frequency of the systems is nearly three times 

the first natural frequency, i.e. 2 3 1ω ω≈ , so internal resonance will occur.  

11aΩ − 23aΩ −Figure 1 shows the frequency response  and  curves, where  and are defined 
in Equation 

11a 23a
(38) and are the amplitudes of the first and the third harmonic terms in the two modes  

and , respectively. Both  and  possess three solutions, 
1q

( )1
11a ( )1

23a ( )2
11a ( )2

23a ( )3
11a2q 11a 23a  and ,  and ,  and 

( )3
23a . Some of those solutions in difference phase, representing the “in-phase” and “out-of-phase” 

responses. The internal resonances, which provide the mechanism for transferring energy between the 
two modes, exist in both “in-phase” and “out-of-phase” planes. However, many portions of these 
curves correspond to unstable solutions, and hence cannot be realized in practice.  

In this section, we use the precise Hsu’s method to analyze the stability of the steady-state solution, 
compared with the improved numerical integration method based on the fourth order Runge-Kutta 
scheme with Gill coefficients and Hsu’s method [4]. The stability of the steady-state solution is also 
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shown in Figure 1, where the dashed and solid lines represent the unstable and stable solutions, 
respectively, determined by all three methods, and the thick lines represent the stability-disputed 
solutions regions (the three frequency ranges are 1.121 1.241< Ω < , 1.156 1.209< Ω <  and 

 in periodic solutions ( )1a ( )2a ( )3a1.083 1.123< Ω < ,  and ,respectively) which are stable determined 
by the precise Hsu’s method, while are unstable determined by Hsu’s method and improved 
numerical integration method up to Floquet theory with each period T  divided into the same K  
intervals from 400 to 2000. We should mention, for the interval K < 400 , that the convergence of the 
transition matrix P is not good for this particular problem using the three methods. 

Now the problem is to check the stability (stable or unstable) in the stability-disputed regions. To 
analyze the stability in these regions, we choose three points of which the corresponding frequencies 
are , , and  in periodic solutions ( )1a ( )2a ( )3a1.2070Ω = 1.1819Ω = 1.1165Ω = ,  and . The character 
of the waveforms of the clamped-hinged beam is illustrated in Figure 2, where the solid line 
represents the response of mode  and the dashed line represents the response of mode . It is clear 
from the waveforms of  and  in Figure 2 that the solutions of the three points are stable. 

1q 2q

1q 2q
It is worth noting that the waveforms  and  of the clamped-hinged beam oscillations in Figure 

2 are periodic motions, with the periods T  and 
1q 2q

3T 2T π= Ω 1ωΩ ≈ ( , ), and hence all four moduli 
of the eigenvalues of Equation (19), which are induced by Equations (36) and (37), should be 

1.2070Ω =1.0 ( 1, 2, 3, 4)i iλ = = . The moduli of the eigenvalues of the three points ( , , 

and  in periodic solutions 

1.1819Ω =
( )1 ( )2a ( )3aa1.1165Ω = ,  and , respectively) by the three methods are 

presented in the last three columns of Table I. It can be seen that the discrepancies of the results 
between the improved numerical integration and Hsu’s method are quite small. The values of 1,2λ  are 
greater than 1.0, and the values of 3,4λ  are less than 1.0 with K from 400 to 800, so the solutions of 
the three points are unstable by using the two methods. In reality, the solutions are stable at the three 
points with 1.0 ( 1, 2, 3, 4)i iλ = =  in Figure 2, which demonstrates that stability analyzed by the two 
latter methods is incorrect, but that the precise Hsu’s method gives fairly good results. 

We show in Table I, the values of iλ  of the improved numerical integration and Hsu’s method tend 
to be accurate for increasing K . However, for large values of K , such as at  in Table I, 
computational error appeared to be due to the very small value of the interval  used in the 
denominator of Equation 

5000K =
kΔ

(21). Hence, stability assessment for nonlinear vibration solutions would be 
wrong. This occurs not only in the improved numerical integration and Hsu’s method, but also in the 
precise Hsu’s method. We note that it is important to select the appropriate number of integral 
intervals ( )τQ. If  is a small value, the periodic coefficient matrix  in Equation (21)K K  becomes 
too large to conduct stability analyses. However, if K  is very large, computational error appears. In 
this example and the follow sections, the reasonable region of  is found to be from 400 to 2000. K

4.2 Stability of fundamental resonance at Ω  near  2ω

Figure 3 shows the  response curves for the fundamental resonance with the IHB method 
when 

23aΩ −

2ωΩ ≈ , and ,  are taken in Equations 1 0f = 2 0.05f = (36) and (37). This response is similar to 
the ordinary forced vibration in a single-degree-of-freedom Duffing system. In Figure 3, we note that 
stability analyzed in this response curve by the precise Hsu’s method is similar to the other two 
methods. At the stable points of the response curve, the moduli of the eigenvalues are 
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1.0 ( 1, 2, 3, 4)i iλ = =  using the precise Hsu’s method, whereas these moduli iλ  are less than 1.0 , but 
tend to 1.0  using the other two methods with an increasing number of integral intervals K  from 400 
to 2000. 

4.3 Stability of subharmonic resonance at Ω  near  2ω

When the force frequency  is near the second natural frequency Ω 2ω , i.e. 2ωΩ ≈ , and 1f = 0 , 
 are taken in Equations 2f = 0.05 (36) and (37) , the other response of the system is a subharmonic 

resonance, in which the major response curves 11aΩ − 23aΩ − and  of the modes and  have two 
solutions, when using the IHB method, as shown in Figure 4. Note that the stabilities of many 
portions of these curves, determined by the three stability methods, are consistent besides the two 
stability-disputed regions, which are stable solutions using the precise Hsu’s method, while unstable 
using the other two methods with the same integral intervals 

1q 2q

K  (from 400 to 2000). The first 
stability-disputed region ( 13ωΩ from 1.1186 to 1.1265) exists in the top amplitude of the response 
curve , in which the internal resonance begins to happen. For the second periodic solution, as 
can be seen in Figure 4 (a) and (b), the stability-disputed region exists “out-of-phase” of the response 
curve  and “in phase” of the response curve  with 

(1)
11aΩ −

(2)
11aΩ − (2)

23aΩ − 11.158 3 1.223ω≤ Ω ≤ . In order to 
determine the real stability of the stability-disputed regions, we choose point  and point 

 from the two regions, respectively. Figure 5 shows that the waveforms  and  of the 
clamped-hinged beam oscillations are periodic motions at the two points, with periods  and 

3.356Ω =
3.657Ω = 1q 2q

3TT  
( 2T π= Ω , 2ωΩ ≈ ), respectively. It is clear from the waveforms  and  at the two points that the 
solutions of the stability-disputed regions are indeed stable. Therefore, the results reveal that the 
precise Hsu’s method can correctly determine the stability of the periodic solutions of the 
subhamonic resonance. 

1q 2q

5. Conclusions 

The precise Hsu’s method presented in this paper is an efficient method to determine the stability 
of the periodic solutions in which the matrix exponentials can be evaluated by the precise time 
integration algorithm. The advantage of this procedure is that it can minimize the round-off error for 
computing the transition matrix. 

The considered numerical examples show that most of the periodic solution regions determined by 
the precise Hsu’s method are in agreement with those determined by Hsu’s method and the improved 
numerical integration scheme. However, the precise Hsu’s method can correctly determine the 
stability of the critical stability-disputed regions so that it is superior to the other two approaches 
which give a wrong stability state in those regions. 
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Table I. The moduli of the eigenvalues by the three methods with K. 
 

Three points  in 
stability-

disputed regions 

Improved numerical 
integration 

The  precise Hsu’s 
method (N=20) 

Number of integral 
intervals 

Hsu’s method 

1 2λ λ= 3 4λ λ=,  
1 2λ λ= 3 4λ λ= 1 2λ λ= 3 4λ λ=,  ,  K 

λ 1.00000000381406 1.00000000451869 1.00000000000000 1,21.2070Ω =  0.99999993263521 0.99999993820133 1.00000000000000 λ3,4

λ 1.00000000091886 1.00000000103809 1.00000000000000 400 1.1819Ω = 1,2 
0.99999997456974 0.99999997453354 1.00000000000000 λ3,4

1.00000000251322 1.00000000219826 1.00000000000000 λ1.1165Ω =  1,2
0.99999995974264 0.99999996075951 1.00000000000000 λ3,4

λ 1.00000000050245 1.00000000062210 1.00000000000000 1,21.2070Ω =  0.99999999112556 0.99999999183291 1.00000000000000 λ3,4

λ 1.00000000012102 1.00000000013667 1.00000000000000 600 1.1819Ω = 1,2 
0.99999999665067 0.99999999664595 1.00000000000000 λ3,4

1.00000000033106 1.00000000028096 1.00000000000000 λ1.1165Ω =  1,2
0.99999999469754 0.99999999484020 1.00000000000000 λ3,4

λ 1.00000000011925 1.00000000014974 1.00000000000000 1,21.2070Ω =  0.99999999789377 0.99999999805963 1.00000000000000 λ3,4

λ 1.00000000002872 1.00000000003243 1.00000000000000 800 1.1819Ω = 1,2 
0.99999999920515 0.99999999920403 1.00000000000000 λ3,4

1.00000000007856 1.00000000006598 1.00000000000000 λ1.1165Ω =  1,2
0.99999999874161 0.99999999877618 1.00000000000000 λ3,4

λ 1.00000000000001 1.00000000000002 1.00000000000000 1,21.2070Ω =  0.99999999999978 0.99999999999979 1.00000000000000 λ3,4

5000 λ 1.00000000000000 1.00000000000001 1.00000000000001 1.1819Ω = 1,2 
0.99999999999992 0.99999999999992 1.00000000000000 λ3,4

1.1165Ω =  1.00000000000001 1.00000000000000 1.00000000000000 λ1,2
0.99999999999987 0.99999999999987 1.00000000000000 λ3,4
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Figure 1. Forced frequency response with the IHB method with 1 0.03f = , 1 23ω ω≈ , 1ωΩ ≈ . 

(a) ; (b) .             , stable;             , unstable;             , stability disputed by the three methods. 11aΩ − 23aΩ −
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 Figure 2. Existence of periodic motion of the clamped-hinged beam oscillations  
for three points in stability-disputed regions.            ;               . 1q 2q
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 Figure 3. Fundamental resonance at 
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2ωΩ ≈  with the IHB method with , 2 0.05f = 2 13ω ω≈ . 
              , stable;              , unstable. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Subharmonic resonance at 2ωΩ ≈  with the IHB method with 2 0.05f = , 2 13ω ω≈ . 

(a) ; (b) .             , stable;             , unstable;             , stability disputed by the three methods. 11aΩ − 23aΩ −
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Figure 5. Existence of periodic motion of the clamped-hinged beam oscillations  
for two points in stability-disputed regions.             ;               . 1q 2q
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