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TECHNICAL NOTE

Pore pressure coefficient for soil and rock and its relation to
compressional wave velocity

J. YANG*
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INTRODUCTION
In laboratory triaxial tests it has been common to check the
specimen’s degree of saturation by determining the pore
pressure coefficient, B. The method is known as the B-value
test and basically originated from Skempton’s work on
evaluation of the pore pressures in clays in the design of
earth dams, in which he derived the well-known expression
for B (Skempton, 1954):

B ¼ ˜u

˜�
¼ 1

1 þ n Kb=Kfð Þ (1)

Here ˜� is a small increase in all-round or confining
pressure applied to an element of soil in an earth dam or to
the sample in the tests, and ˜u is the resulting change in
pore pressure measured under undrained conditions. The
porosity of soil is denoted in equation (1) by n, Kb denotes
the bulk modulus of the soil skeleton, and Kf the bulk
modulus of the mixture of pore water and air.

Since the compressibility of water is negligible compared
with that of the soil skeleton, equation (1) indicates that
B � 1 for saturated soils, whereas for partially saturated
soils 0 , B , 1, with a typical range of 0.1 to 0.5 at the
optimum water content.

In deriving equation (1) the solid grains were assumed as
incompressible, which has been a widely accepted assump-
tion in soil mechanics, but may not be applicable in rock
mechanics. For soils and rocks with compressible particles,
Bishop (1973) showed later on that the pore pressure coeffi-
cient was expressed by

B ¼ ˜u

˜�
¼ 1

1 þ n 1=Kw � 1=Ksð Þ=(1=Kb � 1=Ks)
(2)

in which Ks is the bulk modulus of solid particles.
Recently, Kokusho (2000) presented the following expres-

sion for B using Biot’s formulation given by Zienkiewicz &
Bettess (1982):

B ¼ 1=Kb � 1=Ks

1=Kb þ n=Kf � n=Ks

(3)

It is not difficult to note that equation (3) differs from
Bishop’s expression when the latter is written in an alter-
native form as

B ¼ 1=Kb � 1=Ks

1=Kb þ n=Kf � (1 þ n)=Ks

(4)

Since Biot’s theory describes the behaviour of porous
media such as soils and rocks more rigorously, a concern
naturally arises over the correctness of either Bishop’s or
Kokusho’s expression, as well as the cause leading to the
difference between them. It is the purpose of the present
study to clarify this issue, both analytically and numerically.

Besides the pore pressure parameter B, a new indicator of
saturation for soils—the velocity of compressional waves
(i.e. P-waves), Vp—has been advocated, and has received
increasing attention (Yang & Sato, 1998, 2000a; Kokusho,
2000; Ishihara et al., 2001). Compared with the pore pres-
sure parameter B, the P-wave velocity can be measured
conveniently in the field and thus has an advantage in
practical applications. The effectiveness of the use of P-wave
velocity in identifying in-situ partially saturated zones has
been well demonstrated by a borehole array site (Yang &
Sato, 2000a). More recently, an application of P-wave velo-
city in interpreting laboratory test data for the cyclic strength
of partially saturated sands has been proposed by Yang
(2002), who showed a useful relation between B and Vp:

Vp ¼ 4�=3 þ Kb=(1 � B)

r

� �1=2

(5)

in which � (or G) is the shear modulus of the soil skeleton
and r is total mass density.

In deriving equation (5) the compressibility of solid grains
was not of primary concern and therefore not included in
the expressions for either B or Vp. In this study a general
relation between B and Vp will be established within the
framework of Biot’s theory, and the effect of particle com-
pressibility will be identified numerically. This is a second
purpose of the present study.

DERIVATION OF PORE PRESSURE PARAMETER
The analysis is based on classical Biot’s theory (Biot,

1956, 1962), which models the complex interactions between
the solid and fluid parts using the macroscopic laws of
mechanics. In its simplest form the analysis requires the
following assumptions:

(a) The porous medium is statistically isotropic in such a
way that for any cross-section the same ratio of the
fluid area to the solid area applies.

(b) The void space of the porous medium is interconnect-
ing, and the sealed pore space is part of the solid.

(c) Both the solid skeleton and the solid material forming
it are elastic and isotropic.

(d) The solid grains, solid skeleton and pore fluid are
compressible.

(e) The pore fluid is viscous, and Darcy’s law governs its
flow.
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It is customary to denote the displacement of the solid
part by ui and the displacement of fluid relative to the solid
by wi. Thus the field equations accounting for both inertial
and viscous interactions between the two parts in the porous
medium can be given as

�ui , jjþ ºþ Æ2M þ �
� �

e,i � ÆM�,i ¼ r€uui þ rf €wwi (6)

ÆMe,i � M�,i ¼ rf €uui þ
rf

n
€wwi þ

�

k9
_wwi (7)

where e ¼ u j, j and � ¼ �wj, j; rs is the mass density of
solid grains, rf is the mass density of fluid, and r ¼ (1 �
n)rs + nrf ; º is the Lamé constant of the solid frame; and Æ
and M are parameters accounting for the compressibilities of
solid and fluid constituents, and given by

Æ ¼ 1 � Kb

Ks

(8)

M ¼ K2
s

Ks 1 þ n
Ks

Kf

� 1

� �� �
� Kb

(9)

Obviously, for incompressible solid grains Æ ¼ 1 and
1/M ¼ n/Kf .

Note that k9 in the field equations differs from the per-
meability coefficient k (m/s) that is used in soil mechanics.
They are related by

k9 ¼ k
�

rf g
(10)

in which � is fluid viscosity and g is the gravitation
acceleration at which the permeability is measured.

The field equations (6) and (7) have been obtained by
entering into the equilibrium conditions the following rela-
tionships between stress, pore pressure, and strain:

� ij ¼ ºe�ij þ 2��ij � Æ�ij pf (11)

pf ¼ M�� ÆMe (12)

where �ij is the stress tensor, �ij ¼ (ui, j + u j, i)/2 is the strain
tensor, pf is pore pressure, and �ij is the Kronecker delta.

Here a concept of homogenisation has been introduced
that assumes that the mixture of pore water and air can
approximately be treated as an equivalent homogeneous pore
fluid completely filling the voids with a single pore pressure.
Note that equation (11) implies the effective stress law in
the following form:

� ij ¼ � 9ij � �ijÆpf (13)

in which � 9ij is the effective stress tensor. Clearly, equation
(13) can be reduced to the well-known effective stress equa-
tion introduced by Terzaghi if the compressibility of solid
grains is ignored.

Equation (12) can readily be rewritten as

wi,i ¼ Æui,i þ
pf

M
(14)

By specifying the undrained conditions that there is no flow
of pore fluid, one arrives at

Æui,i þ
pf

M
¼ 0 (15)

or

1 � Kb

Ks

� �
� 9ii

3Kb

� �
þ Æ

Ks

þ n

Kf

� n

Ks

� �
pf ¼ 0 (16)

Introducing the effective stress law expressed in equation
(13) into the above equation leads to

1

Kb

� 1

Ks

� �
� ii

3

� �
þ n

Kf

� n

Ks

þ Æ

Kb

� �
pf ¼ 0 (17)

from which the pore pressure coefficient can readily be
derived as

B ¼ � 3pf

� ii

¼ 1=Kb � 1=Ks

1=Kb � 1=Ks) þ n(1=Kf � 1=Ks)ð (18)

Note that the negative sign is required by the sign conven-
tion embedded in equation (11).

Now, it is of interest to observe that the expression
derived above is the same as that by Bishop (1973), imply-
ing that the expression due to Kokusho (2000) is in error. It
is found that a major cause of the error was incorrect use of
the effective stress law: the effective stress equation by
Terzaghi rather than the general form in equation (13) was
used, and a consistency was lost.

Furthermore, by introducing the commonly used expres-
sion for the compressibility of pore fluid (Yang & Sato,
1998, 2000a),

1

Kf

¼ 1

Kw

þ 1 � Sr

pa

(19)

where Sr is the degree of saturation, Kw is the bulk modulus
of pore water, and pa is the absolute fluid pressure, equation
(18) can be written as a function of saturation:

B ¼ 1=Kb � 1=Ks

1=Kb � (1 þ n)=Ks þ n=Kw þ n(1 � Sr)=pa

(20)

A GENERAL EXPRESSION FOR COMPRESSIONAL
WAVE VELOCITY

In the same context of Biot’s theory, the field equations
(6) and (7) can be solved with the aid of potential functions,
yielding two compressional waves and one shear wave. In
the low-frequency range to which the frequencies involved
in most soil dynamics problems belong, only the fast
compressional wave exists, with its velocity being indepen-
dent of frequency, while the slow one is a diffusion process
owing to the viscous coupling between the solid and fluid
phases. The interested reader may refer to Yang & Sato
(2000b), where more details about the two compressional
waves are presented, with a special reference to the vibration
of a soil column.

The velocity of the fast compressional wave at low
frequencies is given by (Yang & Sato, 2000a)

Vp ¼ ºþ 2�þ Æ2M

r

 !1=2

(21)

It can be verified that for a limiting case of incompressible
grains the above expression takes the form as given in Yang
(2002):

Vp ¼ ºþ 2�þ Kf=n

r

� �1=2

(22)

Similarly, the general expression in equation (21) can be
written as a function of the degree of saturation as

Vp ¼
�
Kb þ 4�=3

r

þ Æ2

Æ� nð ÞKs þ n=Kw þ n(1 � Sr)=pa

1

r

�
1=2

(23)

For a fully saturated porous medium with incompressible
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particles, equation (23) reduces to the following simple
form:

Vp ¼ Kb þ 4�=3 þ Kw=n

r

� �1=2

(24)

With equations (18) and (21) in hand a general relation-
ship between B and Vp can be obtained:

Vp ¼ 4�=3 þ Kb= 1 � ÆBð Þ
r

" #1=2

(25)

To the author’s knowledge, equation (25) is the first proposal
of the explicit relationship between B and Vp in which the
particle compressibility is consistently accounted for in the
framework of Biot’s theory. It can be shown that in a
limiting case of incompressible grains this general relation
becomes the simple one given by Yang (2002).

An alternative form for the above expression can be given
by introducing the shear wave velocity, Vs, an engineering
property directly linked with the shear modulus of soil and
rock:

B ¼ 1

Æ
1 � 3Kb

r 3V 2
p � 4V 2

s

� �2
4

3
5 (26)

EFFECT OF PARTICLE COMPRESSIBILITY
The influence of particle compressibility, skeleton com-

pressibility and porosity on the value of B at full saturation
is illustrated in Fig. 1(a), where comparison of the values
given by Skempton’s expression (equation (1)) and by equa-
tion (18) is included. Here the bulk modulus of solid
particles is assumed as a typical value (i.e. Ks ¼ 36 GPa),
and the bulk modulus of the skeleton, Kb, is normalised by
Ks. For purposes of comparison, the values calculated by
equation (3) (Kokusho’s expression) are presented together
with those given by equation (18) in Fig. 1(b).

It is interesting to note from Fig. 1(a) that for porous
media of high skeleton compressibility, say Kb/Ks , 0.1, the
difference between the values of B given by equations (1)
and (18) is not significant. In other words, whether or not
the particle compressibility is taken account of will not
impact on the prediction of B. However, as the skeleton
compressibility approaches the compressibility of solid
grains, major errors will arise from the neglect of the
particle compressibility. Indeed, a wide range of the skeleton
compressibility has been reported for porous or fissured
rocks, for which it is not uncommon that Kb/Ks may be of
the order of 0.5.

Figure 1(a) also indicates that, at a specific large value of
Kb/Ks, the difference caused by neglect of the particle
compressibility is sensitive to the value of porosity. The
difference will become much greater as the porosity de-
creases, with Skempton’s expression giving a higher value of
B.

Based on the general expression given in equation (20),
the relation between the pore pressure ratio B and the degree
of saturation Sr is plotted in Fig. 2 for various values of
Kb/Ks, where Fig. 2(a) is for a porosity of 0.35 and Fig. 2(b)
for a porosity of 0.05. In the calculation the absolute fluid
pressure is taken as the atmospheric pressure. It is clear
from Fig. 2 that at a specific degree of saturation the value
of B is strongly dependent on the ratio of Kb/Ks. For
example, for the porous medium with a porosity of 0.05, B
at full saturation is about 0.999 for Kb/Ks ¼ 0.001, but only
0.565 for Kb/Ks ¼ 0.5. On the other hand, Fig. 2 implies
that, for a specific value of B, the porous medium with a
stiffer solid skeleton can achieve a higher degree of satura-
tion.

Figure 3(a) illustrates the effects of the particle compres-
sibility and of the porosity on the P-wave velocity in fully
saturated porous media, where the solid lines are generated
using equation (21) (i.e. the particle compressibility is taken
into account) and the broken lines are generated using equa-
tion (22) (i.e. the particle compressibility is neglected). In
computation the shear modulus, �, is related to Kb using a
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Fig. 1. Influence of particle compressibility on pore pressure coefficient
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common value of Poisson’s ratio, 0.3, and the specific
gravity of solid grains is assumed as 2.65.

It is evident from Fig. 3(a) that for porous media with
small porosity the difference between the values of Vp given
by equations (21) and (22) is very significant and exists over
an entire range of the ratio Kb/Ks. For porous media of high
porosity, however, the difference between the predictions
given by equations (21) and (22) becomes less significant,
especially at low values of Kb/Ks.

In the case of partially saturated porous media with either
low or high porosity, the deviation of the value of Vp due to
neglect of the particle compressibility is too slight to
distinguish, as shown in Fig. 3(b).

The derived explicit expression in equation (25) enables a
quantitative identification of the effect of particle compressi-
bility on the relationship between B and Vp, as shown in Fig.
4, where the thick lines are obtained with equation (25) and
the thin lines are generated by equation (5), a limiting case
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Fig. 2. Pore pressure coefficient as a function of degree of saturation: (a) porosity, n 0.35; (b) porosity, n 0.05
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Fig. 3. Influence of particle compressibility on Vp (solid line, particle compressibility included; broken line, particle compressibility
excluded): (a) Sr 100%; (b) Sr 95%
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of equation (25). In the same graph the influence of porosity
and the skeleton compressibility is also illustrated.

Figure 4(a) indicates that, for porous media of low
porosity, the larger the value of Kb/Ks, the more significant
the deviation due to neglect of the particle compressibility.
For instance, for a rock with Kb/Ks ¼ 0.5, the predicted
value of B at full saturation is 0.566 by using the general
expression in equation (18), and the corresponding Vp is
around 3753 m/s. If the compressibility of solid particles is
ignored, the predicted value of B becomes 0.710 and the
corresponding Vp is as large as 5335 m/s (Table 1).

For porous media of high porosity, the difference caused
by ignoring the particle compressibility will become less
significant, as shown in Fig. 4(b). But caution should still be
exercised, since the difference may still be appreciable at
high values of Kb/Ks (Table 1).

CONCLUDING REMARKS
With the purpose of clarifying the difference between the

expressions given by Bishop (1973) and by Kokusho (2000),

the pore pressure parameter B was revisited in this study. It
has been shown that Bishop’s expression can also be derived
in a rigorous way based on classical Biot’s theory, and the
error in the expression by Kokusho (2000) was caused
mainly by the incorrect use of the effective stress equation.
In the same context of Biot’s theory, a first proposal of the
explicit relationship between the pore pressure coefficient, B,
and the compressional wave velocity, Vp, has been estab-
lished. The relationship accounts for the compressibility of
solid particles in a consistent way and is applicable to both
soils and rocks.

The effects of skeleton compressibility, particle compres-
sibility and porosity have been identified numerically with
respect to B and its relation to Vp. The results indicate that
major errors in the value of B will arise from neglect of
the particle compressibility as the skeleton compressibility
approaches the compressibility of solid grains, and mean-
while the amount of errors is sensitive to the value of
porosity. For porous media of low porosity and low skele-
ton compressibility, such as rocks, the effect of particle
compressibility may be very significant on the values of
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Fig. 4. Relation between B and Vp (thick line, particle compressibility included; thin line, particle compressibility excluded): (a)
porosity, n 0.05; (b) porosity, n 0.35

Table 1. Values of B and Vp at full saturation for various ratios of Kb/Ks

Bulk modulus
ratio, Kb/Ks

Porosity ¼ 0.05 Porosity ¼ 0.35

Particle compressibility
excluded

Particle compressibility
included

Particle compressibility
excluded

Particle compressibility
included

B Vp: m/s B Vp: m/s B Vp: m/s B Vp: m/s

0.002 0.998 4145 0.998 2820 0.989 1758 0.989 1664

0.005 0.996 4153 0.996 2826 0.974 1781 0.974 1685

0.1 0.924 4405 0.921 3012 0.636 2416 0.622 2247

0.5 0.710 5335 0.566 3753 0.259 4131 0.145 3843

0.9 0.576 6126 0.126 4533 0.162 5318 0.017 5028

Note: The two shaded areas indicate respectively the representative cases for rock and soil.
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both B and Vp at full saturation, whereas for porous media
of high porosity and high skeleton compressibility, such as
soils, neglect of the particle compressibility leads only to a
slightly greater value of Vp but almost the same prediction
for B.
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NOTATION
B pore pressure coefficient
g acceleration of gravity

Kb bulk modulus of solid skeleton
Kf bulk modulus of pore fluid
Ks bulk modulus of solid grains
Kw bulk modulus of pore water
k9 permeability (m2)
k permeability coefficient (m/s)
n porosity
pf pore pressure
Sr degree of saturation
ui displacement of solid phase
Vp compressional wave velocity
Vs shear wave velocity
wi relative displacement of fluid phase

Æ, M parameters accounting for the compressibility of
constituents

�ij strain tensor
� fluid viscosity
º Lamé constant of solid skeleton
� shear modulus of solid skeleton
r total density
rf density of fluid
rs density of solid grains

�ij total stress
� 9ij effective stress
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