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Abstract: This paper addresses the static output-feedback (SOF) exponential stabilization problem of retarded de-
lay systems with a specification on the decay rate and decay coefficient. A novel Lyapunov-Krasovskii functional
equipped with appropriate exponential terms is provided to establish a new condition for exponential stability.
Based on this and an augmentation technique, a necessary and sufficient condition for quadratic SOF exact expo-
nential stabilizability is proposed. An efficient iteration algorithm is then given to solve the proposed condition.
Using the proposed approach, no structural constraints are imposed on the slack matrices when the controller ma-
trix is parameterized, and the obtained controller not only stabilizes the original system but also guarantees that the
closed-loop system possess desirable transient properties. Numerical examples are used to show the effectiveness
of the theoretical results.

Key–Words: Augmentation, exponential stability, linear matrix inequality (LMI), Lyapunov-Krasovskii functional,
retarded delay systems, static output-feedback.

1 Introduction

Over the past decades, stability and stabilization of
time-delay systems have received much attention,
since time delay is encountered in various practical
systems such as chemical processes, long transmis-
sion lines in pneumatic systems [1], and is considered
as a major cause for instability and poor performance
of dynamic systems. Typical stability analysis is con-
cerned with asymptotic stability, whereas from the
standpoint of practical application, exponential sta-
bility is more useful since the transient process of a
system can be characterized more clearly once the de-
cay rate is determined. Unlike linear systems without
time delay, the eigenvalues of delay systems cannot be
computed analytically owing to the existence of tran-
scendental characteristic equations. This motivates
researchers to study the exponential estimating prob-
lem (the α-stability) of time-delay systems. By using
the Lyapunov-Razumikhin approach, some results on
retarded delay systems have been obtained in [2, 3].
Based on the generalized Gronwall-Bellman Lemma
and the matrix measure concept, exponential esti-
mates of retarded delay systems have been obtained
in [4] and [5], respectively. Some improvements have
been presented in [6, 7]. Recently, a new estimating
approach for retarded delay systems, which bases on

a new Lyapunov-Krasovskii functional and the LMI
technique, has been presented in [8]. Very recently,
an improved estimating approach for retarded delay
systems has been obtained in [9]. As for static output-
feedback control of delay systems, we refer readers to
[10, 11] and references therein.

Despite the available literature on exponential sta-
bility and its decay rate estimation, there are only
a few results concerning with the synthesis prob-
lem with α-stability constraint. In [12], a delay-
independent approach has been provided to design
a controller for linear systems with constant delay
such that the closed-loop system satisfies a prescribed
bound of the decay rate. However, the derived con-
dition based on exponential scaling is not monotonic
with respect to the decay rate. This may bring dif-
ficulties into optimizing the decay rate by feedback
controllers. In addition, the delay-independence of
the condition may cause some conservatism when the
time delay is not large. As for the optimization of the
decay coefficient, which has significant application in
minimization of transient energy, few results are avail-
able to the authors’ knowledge.

In this paper, we investigate the exact exponential
stability assignment problem for retarded delay sys-
tems via static output-feedback controllers. A new
characterization on stability of the closed-loop system
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with the decay rate and decay coefficient constraint is
established in terms of a novel Lyapunov-Krasovskii
functional. Slack matrices are introduced to reduce
the conservatism as well. Based on this and an aug-
mentation technique, a necessary and sufficient con-
dition for quadratic SOF exact exponential stabiliz-
ability is proposed. Although the derived condition
is nonconvex, it can be solved efficiently by an iter-
ative algorithm. Numerical examples are provided to
illustrate the effectiveness of the theoretical results.

Throughout this paper, for real symmetric ma-
trices X and Y, the notation X ≥ Y (respectively,
X > Y ) means that the matrix X − Y is positive
semidefinite (respectively, positive definite). The su-
perscript “T ” represents the transpose. |·| denotes
the Euclidean norm for vectors and ‖·‖ denotes the
spectral norm for matrices. C⊥ denotes an orthog-
onal complement matrix of matrix C . The symbol
# is used to denote a matrix which can be inferred
by symmetry. C ([−d, 0],Rn) denotes the family of
continuous functions φ from [−d, 0] to R

n with norm
|φ|d = sup−d≤s≤0 |φ(s)|.

2 Preliminaries and Problem For-
mulation

Consider the following class of time-delay systems:⎧⎪⎨
⎪⎩

ẋ(t) = Ax(t) +Adx(t− d) +Bu (t) ,
x(s) = φ(s), s ∈ [−d, 0],
y (t) = Cx (t)

(1)

where x(t) ∈ R
n, u (t) ∈ R

r, and y (t) ∈ R
l are

the system state, the external input, and the measured
output, respectively, and A, Ad, B, C are the sys-
tem matrices. The initial function φ(t) is assumed to
belong to C ([−d, 0],Rn) . The function d represents
the unknown time delay, and is assumed to satisfy
0 < d ≤ d̄.

Definition 1

1. The system in (1) is said to be exponentially sta-
ble if, when u(t) ≡ 0, for all initial function
φ ∈ C ([−d, 0],Rn), there exist λ > 0 and σ ≥ 1
such that

|x(t)| ≤ σe−λt |φ|d ,
where λ and σ are called the decay rate and de-
cay coefficient, respectively.

2. The system in (1) is said to be (λ, σ)-
exponentially stable if it is exponentially stable
with a decay rate no less than λ and a decay co-
efficient no larger than σ.

The goal of this paper is to design a static output-
feedback controller,

u (t) = Ky(t), (2)

such that the resulting closed-loop system is (λ, σ)-
exponentially stable for prescribed λ > 0 and σ ≥ 1.
This specification is very useful in practical applica-
tions since the transient process of a dynamic system
can be controlled more accurately once the decay rate
and decay coefficient are determined.

Lemma 2 ([13]) Let G, U , and V be real matri-
ces with G being symmetric. There exists matrix
X such that G + UXV T + V XTUT > 0, if and
only if UT

⊥GU⊥ > 0 and V T
⊥GV⊥ > 0, which, by

Finsler’s Lemma, are equivalent to, for some scalar ε,
G− εV V T > 0 and G− εUUT > 0.

3 Main Results

3.1 (λ, σ)-Exponential Stability Analysis

Theorem 3 For prescribed λ > 0 and σ ≥ 1, if there
exist matrices P , Q, R, Z , Yi, (i = 1, 2, 3, 4), and
scalars δp, δP , δQ, δR, δZ such that

0 < δpI < P < δP I, (3)

0 < Q < δQI, (4)

0 < R < δRI, (5)

0 < Z < δZI, (6)

0 < R− 2λZ, (7)

δP + ρq
(
λ, d̄

)
δQ + ρr

(
λ, d̄

)
δR

+ρz
(
d̄
)
δZ − σ2δp < 0, (8)

Φ
(
λ, d̄

)
= G (

λ, d̄
)
+IY+(IY)T < 0, (9)

where

ρq
(
λ, d̄

)
=

e2λd̄ − 1
2λ

,

ρr
(
λ, d̄

)
=

e2λd̄ − 2λd̄− 1
4λ2

,

ρz
(
d̄
)

= 4d̄,

I =
[
I −I 0 −I

]T
,

Y =
[
Y1 Y2 Y3 Y4

]
,

G (
λ, d̄

)
=

⎡
⎢⎢⎢⎣

G11

(
λ, d̄

)
#

AT
d P −Q

−2λZ − Z (A+BKC) −ZAd

0 0

Proceedings of the 10th WSEAS International Conference on AUTOMATION & INFORMATION

ISSN: 1790-5117 59 ISBN: 978-960-474-064-2



# #
# #

−d̄−1R+ 2d̄−1λZ #
0 −Z

⎤
⎥⎥⎥⎦ ,

G11
(
λ, d̄

)
= (A+BKC)T P + P (A+BKC)

+ 2λP + e2λd̄Q+
e2λd̄ − 1

2λ
R,

then the closed-loop system is (λ, σ)-exponentially
stable for any 0 < d ≤ d̄.

Proof: To show exponential stability, a novel
Lyapunov-Krasovskii functional with appropriately
constructed exponential terms is constructed as fol-
lows:

V (xt, t) =
4∑

i=1

Vi (xt, t) ,

where xt = x (t+ θ), −d ≤ θ ≤ 0, and

V1 (xt, t) = e2λtxT (t) (P − dZ)x (t) ,

V2 (xt, t) =
∫ t

t−d
e2λ(α+d)xT (α)Qx (α) dα,

V3 (xt, t) =
∫ 0

−d

∫ t

t+β
e2λ(α−β)xT (α)TRx(α)dαdβ,

V4 (xt, t) =
∫ t

t−d
e2λtmT (t, s)Zm (t, s) ds,

and
m (α, β) = x (α) − x (β) .

Then, the derivative of Vi(xt, t), i = 1, 2, 3, 4, along
the trajectories of the closed-loop system for t > 0
can be evaluated as

V̇1 (xt, t) = 2λe2λtxT (t) (P − dZ)x (t)

+ 2e2λtxT (t) (P − dZ)

× [(A+BKC)x (t) +Adx (t− d)] ,

V̇2 (xt, t) = e2λ(t+d)xT (t)Qx (t)

− e2λtxT (t− d)Qx (t− d) ,

V̇3 (xt, t) = e2λt e
2λd − 1

2λ
xT (t)Rx(t)

− e2λt
∫ t

t−d
xT (s)TRx(s)ds,

V̇4 (xt, t) = −e2λtmT (t, t− d)Zm (t, t− d)

+ 2
e2λt

d

∫ t

t−d
mT (t, s) (λdZ)m (t, s) ds

+ 2
e2λt

d

∫ t

t−d
mT (t, s) (dZ) ds

× [(A+BKC)x (t) +Adx (t− d)]T .

It is noted that the following relationships hold
for any matrices Yi, (i = 1, 2, 3, 4), with compatible
dimensions,

slack (t, s) � 2ζT (t, s)YT×
[x (t) − x (t− d) −m (t, t− d)]

= 0, (10)

where

ζ (t, s)

=
[
xT (t) , xT (t− d) , dxT (s) ,mT (t, t− d)

]T
.

Hence,

V̇ (xt, t) =
4∑

i=1

V̇i (xt, t) +
e2λt

d

∫ t

t−d
slack (t, s) ds

≤ e2λt

d

∫ t

t−d
ζT (t, s)T Φ (λ, d) ζ(t, s)ds,

which together with (9) implies that

V̇ (xt, t) < 0.

With this, one obtains that, when t > 0,

V (xt, t)

≤ V (x0, 0)

≤ ‖P − dZ‖ |φ|2d +
e2λd − 1

2λ
‖Q‖ |φ|2d

+
e2λd − 2λd− 1

4λ2
‖R‖ |φ|2d + 4d ‖Z‖ |φ|2d

≤ [
δP + ρq

(
λ, d̄

)
δQ + ρr

(
λ, d̄

)
δR

+ρz
(
d̄
)
δZ

] |φ|2d . (11)

On the other hand,

V (xt, t) ≥ e2λtδp |x (t)|2 . (12)

Therefore, it follows from (8), (11), and (12) that

|x (t)| ≤ σe−λt |φ|d .
This completes the proof. ��
Remark 4 In [9], to reduce the conservatism, some
functionals like

∫ 0
−d

∫ t
t+β ẋ

T (α)TRẋ(α)dαdβ are
used. These functionals, however, will cause problems
in the decay coefficient estimation and related synthe-
sis since, as shown in [9], the envelop of x (t) over
(0, d] needs to be estimated. To overcome the draw-
back of such functionals, a new functional V4 (xt, t),
which is not explicitly dependent on any information
on the derivative of x (s), is introduced to construct
slack matrix equations. By virtue of this functional, it
is not necessary to estimate the envelop of x (t) over
(0, d], and the synthesis procedure becomes easier.
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3.2 Quadratic SOF (λ, σ)-Exponential Sta-
bilizability and Controller Design

Definition 5 The system in (1) is said to be quadratic
SOF (λ, σ)-exponential stabilizable if there exists a
SOF controller in (2) such that the closed-loop system
has corresponding solution to (3)–(9).

It can be seen readily that if the system in (1)
is quadratic SOF (λ, σ)-exponential stabilizable, then
there exists an SOF controller in (2) such that the
closed-loop system is (λ, σ)-exponential stable. The
following theorem gives a necessary and sufficient
condition to quadratic SOF (λ, σ)-exponential stabi-
lizable.

Theorem 6 For prescribed λ > 0 and σ ≥ 1, the
system in (1) is quadratic SOF (λ, σ)-exponential sta-
bilizable if and only if there exist matrices P , Q, R,
Z , S > 0, L, and scalars δp, δP , δQ, δR, δZ , μ such
that (3)–(8) hold, and

Ĝ (
λ, d̄

)−μÎÎT
< 0, (13)

where

Ĝ (
λ, d̄

)
=

⎡
⎢⎢⎢⎢⎢⎣

Ĝ11
(
λ, d̄

)
# #

LC +BTP −S #
AT

d P 0 −Q
−2λZ − ZA −ZB −ZAd

0 0 0

# #
# #
# #

−d̄−1R+ 2d̄−1λZ #
0 −Z

⎤
⎥⎥⎥⎥⎥⎦ ,

Ĝ11
(
λ, d̄

)
= 2λP + PA+ATP + e2λd̄Q

+
e2λd̄ − 1

2λ
R− CTLTM −MTLC

+MTSM,

Î =
[
I 0 −I 0 −I

]T
.

Under the condition, a controller gain can be ob-
tained as

K = S−1L. (14)

Proof: It suffices to prove (9)⇔(13).
(Sufficiency) Define

T =

⎡
⎢⎢⎢⎢⎢⎣

I 0 0 0 0
KC 0 0 0 I
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0

⎤
⎥⎥⎥⎥⎥⎦ .

By pre- and post-multiplying (13) with TT and its
transpose, and noting (14) and

−CTLTS−1LC

≤ −CTLTM −MTLC +MTSM (15)

one obtains that[
G (
λ, d̄

)−μIIT #
Σ −S

]
< 0, (16)

where Σ =
[
BTP 0 −BTZ 0

]
. By Lemma 2,

one further obtains that (9) holds.
(Necessity) Assume that (9) holds. By Lemma

2, we obtain that G (
λ, d̄

)−μIIT < 0. Set S > 0
to be a sufficient large positive definite matrix such

that −S + Σ
[
G (
λ, d̄

)−μIIT
]−1

ΣT < 0. By this,
Schur complement equivalence, and noting that T is
nonsingular, we obtain that

Ĝ (
λ, d̄

)−μÎÎT

= T−T

[
G (
λ, d̄

)−μIIT #
Σ −S

]
T−1

< 0.

This completes the proof. ��

Remark 7 Whether in previous works such as the de-
scriptor transformation based approach ([14]), the
free weight matrices based approach ([15]), or in re-
cent work on the projection approach ([16]), struc-
tural constraints on the slack matrix variables are in-
evitable when the controller matrix is parameterized,
and tuning parameters are needed to be specified,
whereas, in Theorem 6, neither structural constraints
on the slack matrix variables nor tuning parameters
are required. Thus those slack matrix variables can be
eliminated to reduce the computational burden with-
out increasing conservatism.

When M is fixed, (13) becomes a strict LMI,
which could be verified easily by conventional LMI
solver. It can be seen from (15) that the scalar ε sat-

isfying Ĝ (
λ, d̄

)−μÎÎT
< εI achieves its minimum

when M = S−1L, which can be used to construct an
iteration rule.

Algorithm 8

1. Set ν = 1, and let a scalar c > 0. Select an
initial value Mν such that A + Ad + BMν is
Hurwitz.

Proceedings of the 10th WSEAS International Conference on AUTOMATION & INFORMATION

ISSN: 1790-5117 61 ISBN: 978-960-474-064-2



2. For fixed Mν , solve the following sequential con-
vex optimization problem:

Reduce εν subject to

G (
λ, d̄

)−μIIT < ενI, (17)

εν > −c, (18)

until εν ≤ 0 or εν > 0 is minimized.

If εν ≤ 0, then a desired controller matrix can be
obtained as (14). STOP. Otherwise, denote ε∗ν
as the minimized value of εν satisfying (17) and
(18).

3. If
∣∣ε∗ν − ε∗ν−1

∣∣ ≤ δ, a prescribed tolerance, then
go to next step, else update Mν+1 as

Mν+1 = (Sν)
−1 Lν ,

and set ν = ν + 1, then go to Step 2.

4. There may not exist a solution. STOP (or choose
other initial value M1, then run the algorithm
again).

Remark 9 It can be shown easily from (15) that the
sequence ε∗ν is monotonic decreasing with respect to
ν, that is, ε∗ν ≤ ε∗ν−1. On the other hand, (18) implies
that ε∗ν is bounded from below by −c. Therefore, the
convergence of the algorithm is guaranteed.

Remark 10 The initial value M1 is a state-feedback
stabilizing controller matrix for A + Ad, which can
be found by existing approaches. If no such matrices
can be found, it can be concluded immediately that the
system cannot be stabilized. Like many other iterative
algorithms, the sequence of iteration depends on the
selection of M1, and an appropriate selection of M1

will improve solvability. The optimization of initial
values may consist of an interesting problem for future
study.

4 Numerical Example

Consider a delay system in (1) with the following sys-
tem matrices:

A =

⎡
⎢⎣ 0.3 −0.1 0.2

0 0.2 0.3
−0.1 0 −3

⎤
⎥⎦ ,

Ad =

⎡
⎢⎣ 0 0.2 −0.1

−0.13 0.1 0
−0.1 0.2 −0.2

⎤
⎥⎦ ,

B =

⎡
⎢⎣ 1 0

0 1
0 0

⎤
⎥⎦ , C =

[
0.5 1 0.5
0.15 0.7 0.5

]
.

It is assumed that 0 < d ≤ 0.7. The open-loop system
is unstable (see Figure 1).

0 2 4 6 8 10

−5

0

5

10

15

20

Time t

A
m

pl
itu

de

Response to Initial Value

 

 

X
1
(t)

X
2
(t)

X
3
(t)

Figure 1: Open-Loop Response to Initial Value.

For different σ’s and λ’s, different stabilizing con-
trollers, by Theorem 6 and corresponding algorithms,
are obtained as follows:

Kσ=10, λ=0.05 =

[
−5.6179 8.1718
3.0995 −7.4062

]
,

Kσ=1.5, λ=0.85 =

[
−18.3940 24.3318
2.1322 −8.3843

]
.

Figures 2 and 3 give the response x (t) =[
x1 (t) x2 (t) x3 (t)

]T
to the initial condition

φ(s) =
[

1.5 1.2 1
]T

.
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Figure 2: Closed-Loop Response with σ = 10,
λ = 0.05.

5 Conclusion
A stability characterization with decay rate and de-
cay coefficient constraints is established in terms of a
novel Lyapunov-Krasovskii functional with appropri-
ately constructed exponential terms. Based on this and
an augmentation technique, a necessary and sufficient
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Figure 3: Closed-Loop Response with σ = 1.5,
λ = 0.85.

condition for quadratic SOF exact exponential stabi-
lizability is proposed. An efficient iteration algorithm
is then given to solve the proposed condition. Us-
ing the proposed approach, no structural constraints
are imposed on the slack matrices when the controller
matrix is parameterized, and the obtained controller
not only stabilizes the original system but also guaran-
tees the closed-loop system to possess desirable tran-
sient properties. Numerical examples are employed to
show the effectiveness of the theoretical results.
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