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Abstract—MR Diffusion kurtosis imaging (DKI) was 

proposed recently to study the deviation of water diffusion from 
Gaussian distribution. Mean kurtosis (MK), directionally 
averaged kurtosis, has been shown to be useful in assessing 
pathophysilogical changes. However, MK is not sensitive to 
kurtosis change occurring along a specific direction. Therefore, 
orthogonal transformation of the 4th order kurtosis tensor was 
introduced in the current study to compute kurtoses along the 3 
eigenvector directions of the 2nd order diffusion tensor. Such 
axial (K//) and radial (K┴) kurtoses measured the kurtoses along 
the directions parallel and perpendicular, respectively, to the 
principal diffusion direction. DKI experiments were performed 
in normal adult and formalin-fixed rat brain, and 
developmental brains. The results showed that directional 
kurtosis analysis revealed different information for tissue 
characterization. 
 

Index Terms—Directional kurtosis, diffusion kurtosis tensor, 
restricted diffusion, and orthogonal transformation. 
 

I. INTRODUCTION 
iffusion kurtosis imaging (DKI) was recently proposed 
to characterize non-Gaussian water diffusion behavior 
in neural tissues [1, 2]. Neuronal tissues are known to be 

heterogeneous in nature and comprises multiple 
compartments [3]. Thus the Gaussian distribution generally 
assumed for free water diffusion is insufficient to describe the 
biological diffusion process [4]. In addition, the dependency 
of diffusion-weighted (DW) signal on b-value has been 
observed to be non-monoexponential [5]. To characterize 
such non-Gaussian diffusion behavior, kurtosis, the 4th 
central moment of a distribution [6], was introduced [1]. 
Positive kurtosis indicates that a distribution is more sharply 
peaked than Gaussian, indicative of a more restricted 
diffusion environment.  Apparent diffusion kurtosis has been 

estimated by acquiring DW signals at multiple b-values up to 
a maximum of 2500 s/mm
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2 in humans [1, 2]. Because the 4th 
order diffusion kurtosis tensor (KT) has 15 independent 
components, DKI experiments are typically performed in 
more than 15 directions to estimate the full KT. 

Recent experimental findings in human DKI studies were 
promising [1, 2, 7-9].  Mean kurtosis (MK), the average 
apparent kurtosis along all diffusion encoding directions, was 
measured and shown to offer an improved sensitivity in 
detecting developmental and pathological changes in neural 
tissues as compared to the conventional diffusion tensor 
imaging (DTI). However, taking the mean of apparent 
kurtoses measured along all encoding directions would 
reduce the sensitivity and specificity in probing kurtosis 
change occurring along a specific direction, for instance, 
parallel or perpendicular to the principal diffusion 
eigenvector denoted as axial or radial direction, respectively.  
Given that directional diffusivity analyses have been 
successfully employed to elucidate specific neural tissue 
pathologies in animal models [10, 11] and humans [12], it is 
valuable to analyze directional kurtoses by obtaining kurtoses 
along these two directions. Such directional kurtosis analysis 
may provide different information regarding MR diffusion 
characterization of neural tissues in normal, developmental or 
pathological states.   

In this study, an orthogonal transformation of the 4th order 
KT was proposed to compute kurtoses along the directions of 
the three diffusion eigenvectors. Histological fixation and 
brain development are known to alter the cellular structure 
and hence the restriction to water diffusion [13-15], likely 
leading to varying extents of water diffusion restriction along 
the axial and radial directions. Therefore, DKI experiments 
were performed in both normal and formalin-fixed adult rat 
brains, and 13-day-postnatal rats (P13) to document both DKI 
and DTI measurements in various brain tissues, and to 
evaluate whether directional kurtosis analysis improves tissue 
characterization.  

II. MATERIALS AND METHODS 

A. Theory 
In conventional DTI, 2nd order diffusion tensor (DT) is 

fully characterized by its eigenvalues (λi with i=1,2,3 and 

D 

λλ >> ) and the orthonormal eigenvectors [16]. In DKI λ
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[1, 2], both apparent diffusion coefficient (Dapp) and apparent 
diffusion kurtosis (Kapp) along each applied diffusion gradient 
direction are estimated by fitting the following equation with 
multiple DW signals acquired using a range of b-values: 

( ) appappapp KDbbDSbS 2261)]0()(ln[ +−=  , (1)  

where S(b) is the DW signal intensity at a particular b-value, 
and S(0) is the signal without applying any diffusion gradient. 
To obtain reliable curve fitting, a sufficient b-value range 
must be chosen to permit as much non-monoexponential 
decay as possible.  However, it must be before the occurrence 
of the minima in (1), after which the kurtosis model will fail.   

The mean kurtosis (MK) is measured as: 
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where (Kapp)i is the Kapp along ith direction and n is the total 
number of directions in which diffusion measurements are 
carried out.  Kapp at a particular direction is related to a 4th 
order kurtosis tensor (KT) by: 
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of the encoding gradient unit vector and Wijkl the individual 
element of KT.  Note that KT has 15 independent elements 
only due to the symmetry of different processes probed by 
MR. Because of the mathematical complexity of the 4th order 
tensor [17], individual KT elements, eigenvalues and 
eigenvectors are yet to be explored in terms of their direct 
physical relevance to the diffusion processes.  Nevertheless, 
KT can be transformed from the standard Cartesian 
coordinate system to another coordinate system in which the 
3 orthonormal eigenvectors of DT are the base coordinate 
vectors by [18]: 
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From (3) and (4), the kurtosis along the individual DT 
eigenvector is: 

( ) iiiiii WMDK ˆ22 λ= .   (5) 
Thus the axial (K//) and radial kurtosis (K┴) can be obtained 
from the three newly derived kurtoses, i.e. 1// KK =  and 

( ) 232 KKK +=⊥ . 
To examine the anisotropy of kurtoses, fractional 

anisotropy of kurtosis (FAK) can also be conveniently defined 
in a way similar to that of conventional DTI [19] as: 
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B. In Vivo and Ex Vivo Rat Brain DKI 
All MRI experiments were performed on a 7T scanner 

(Bruker). In vivo DKI was carried out on normal 
10-month-old SD rats (N=7). DW images were acquired with 

a respiration-gated spin echo 4-shot EPI sequence in 30 
gradient directions [20].  5 additional images with b=0 were 
acquired. The sequence parameters were: 
TR/TE=3000/30.3ms, δ/Δ=5/17ms, slice 
thickness(TH)=1mm, NEX=4, data matrix=128x128 and 
image resolution 234x234μm2.  5 b-values were used for each 
gradient direction (0.5, 1.0, 1.5, 2.0 and 2.5ms/μm2).  Such 
b-values were chosen to allow sufficient 
non-monoexponential decay of DW signals, but they were 
smaller than  estimated from the mean kurtosis values 
reported in the previous human study [2]. 

minimab

For ex vivo DKI experiments, the brains of normal 
10-month-old SD rats (N=5) were fixed and suspended by 1% 
agarose gel in plastic tubes for MRI at ~20°C.  All acquisition 
parameters were the same as those for in vivo experiments 
except for the followings: TE/δ=34.3/9ms, and b-values of 
1.0, 2.0, 3.0, 4.0 and 5.0ms/μm2.  Note that a larger b-value 
range was employed because the diffusivities in rodent brains 
decrease substantially under formalin fixation [21].  

C. P13 Rat Brain DKI 
P13 SD rats (N=6) were scanned with the same acquisition 

parameters as those for in vivo experiments except the 
followings: TE/δ/Δ=33.3/5/20ms, TH=0.7mm, image 
resolution 195x195μm2 and NEX=2.  

D. Data Analysis 
DW signals were fitted to (1) for Dapp and Kapp along each 

diffusion direction following the procedures described earlier 
in [2].  MK, K//, K┴ and FAK maps were calculated. MD, FA, 
λ// and λ┴ maps [10] were also obtained for comparison. 
Multi-slice regions of interest (ROIs) were manually drawn 
on FA and MK maps by referencing to the standard rat brain 
atlas. 4 white matter (WM) tissues, namely CC, external 
capsule (EC), cerebral peduncle (CP) and anterior 
commissure (AC), and 3 gray matter (GM) tissues, namely 
cerebral cortex (CT), hippocampus (HP) and cauduate 
putamen (CPu) were defined.   

III. RESULTS 

A. In Vivo and Ex Vivo Rat Brain DKI 
Fig. 1 illustrated the typical MD, λ//, λ┴, FA, MK, K//, K┴ 

and FAK maps from an intact in vivo rat brain and a 
formalin-fixed ex vivo rat brain. Interestingly, relatively less 
contrast was seen between WM and GM in vivo for K// map 
than ex vivo formalin-fixed condition. DTI and DKI 
measurements of various neural tissues were shown in Fig. 2. 
Dramatic significant reductions in MD, λ// and λ┴ were 
observed under formalin fixation for all GM and WM tissues 
with FA being largely preserved, consistent with the previous 
findings by others [22].  Significant kurtosis increase was 
observed for all WM and GM tissues under formalin fixation. 
Note that GM tissues exhibited relatively low kurtoses with 
K// and K┴ being similar. In addition, the trend of FAK for 
different tissues in vivo and ex vivo was found to be similar to 
that of FA though it yielded a slightly narrower range. Fig. 3 
showed the scatter plots in diffusivity- and kurtosis-space for 
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Fig. 3. Scatter plots of the directional diffusivities (λ┴ vs. λ//) and directional 
kurtoses (K┴ vs. K//) measured for various neural tissues from 7 in vivo brains 

various tissues among all in vivo rat brain studied. GM tissues 
could be separated from WM tissues in both spaces. In 
particular, K┴ showed the best differentiating capability 
among all directional diffusivities and kurtoses, underscoring 
the usefulness of directional kurtosis analysis. 

B. P13 and Adult Rat Brain DKI 
Typical DTI- and DKI-derived maps of P13 rat brain were 

shown in Fig. 4. Measurements of different structures were 

also shown in Fig. 5. It was found that there was significant 
increase in K// and K┴ from P13 to adult rat with K┴ having a 
much larger increase. Also note that WM generally showed 
larger change in kurtosis than GM.  

IV. DISCUSSIONS AND 
CONCLUSIONS 

In vivo water diffusion is a 
complex process with restriction 
incurred by numerous 
determinants such as 
intra-/extracellular compartments, 
permeability or water exchange, 
and potentially other biophysical 
properties associated with 
different water populations.  
Such biophysical complexity 
underscores the importance of 
investigating the restrictive 
diffusion environments in order 
to provide a more sensitive and specific MR characterization 
of neural tissues. With DKI, information regarding the extent 
of water diffusion restriction can then be obtained. With the 
directional kurtosis analysis performed in the current study, 
different and complimentary measurements were obtained 
indicating that such analysis can be used to enhance the 
characterization of normal and pathophysiological change in 

Fig. 1.  MD, λ//, λ┴, FA, MK, K//, K┴ and FAK maps of a typical in 
vivo and formalin-fixed ex vivo rat brain. 

Fig. 4. FA, λ//, λ┴, FAK, K// and 
K┴ maps of a P13 rat brain. 

Fig. 2. DTI and DKI measurements of various neural tissues from in 
vivo adult rat brains (N=7) and formalin-fixed ex vivo adult rat brain 
samples (N=5). 

Fig. 5. DTI and DKI measurements of various neural tissues from normal 
P13 (N=6) and adult rat brain (N=7). * p<0.05, ** p<0.01.  
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neural tissues. 
In vivo WM microstructure is often simplified as the 

ordered axons that contain neurofibrils such as microtubules 
and neurofilaments, which are wrapped by myelin [23]. As a 
result, one would expect the in vivo diffusion environment 
along the axonal direction could be rather homogeneous, thus 
leading to less diffusion restriction and lower K// than in GM. 
However, this was not the case. As shown in Fig. 2(d), WM 
and GM exhibited similar K// values in vivo. Such diffusion 
restriction in WM along the axonal or axial direction may be 
ascribed to the presence of membranes of the glial cells, 
astrocytes and oligodendrocytes [24]. It is worth noting that 
despite the general increase for all kurtosis indices, MK lacks 
the directional information that is useful in differentiating 
specific diffusion environment changes along axial and radial 
directions, .e.g., as revealed by the K// and K┴ above.   

Our experimental data showed that kurtoses were found to 
be much more significantly sensitive to developmental 
changes than diffusivities (Fig. 5). Moreover, the increase in 
K┴ was found to be much higher than that of K//, suggesting 
that there was more formation of barriers to water diffusion in 
the radial direction. Apart from myelination, microstructural 
environment changes in axon should also be taken into 
account. 

In summary, directional kurtosis analysis in the current 
study shows promise in extracting more information 
regarding neuronal systems under pathophysiological or 
developmental changes in addition to conventional DTI. 
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