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Abstract—We study the problem of answering spatial queries in databases where objects exist with some uncertainty and they are

associated with an existential probability. The goal of a thresholding probabilistic spatial query is to retrieve the objects that qualify the

spatial predicates with probability that exceeds a threshold. Accordingly, a ranking probabilistic spatial query selects the objects with

the highest probabilities to qualify the spatial predicates. We propose adaptations of spatial access methods and search algorithms for

probabilistic versions of range queries, nearest neighbors (NNs), spatial skylines, and reverse NNs, and conduct an extensive

experimental study, which evaluates the effectiveness of proposed solutions.
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1 INTRODUCTION

CONVENTIONAL spatial databases manage objects located
on a thematic map with 100 percent certainty. In real-

life cases, however, there may be uncertainty about the
existence of spatial objects or events. As an example,
consider a satellite image, where interesting objects (e.g.,
vessels) have been extracted (e.g., by a human expert or an
image segmentation tool). Due to low image resolution
and/or color definitions, the data extractor may not be
100 percent certain about whether a pixel formation
corresponds to an actual object o; a probability Eo could
be assigned to o, reflecting the confidence of o’s existence.
We call such objects existentially uncertain, since their exact
locations are known and the uncertainty refers only to their
existence. As another example of existentially uncertain
data, consider emergency calls to a police calling center,
which are dialed from various map locations. Depending on
the caller’s voice, for each call, we can generate a spatial
event associated with a potential emergency and a prob-
ability that the emergency is actual. Events generated from
sensors (e.g., smoke detection) can also be regarded as
existentially uncertain data because each sensor is asso-
ciated with a certain location, and the existence of each
detected event depends on the sensor sensitivity and the
background noise. Existential probabilities are also a
natural way to model fuzzy classification [1]. In this case,
the class label of a particular object is uncertain; each

label has an existential probability and the sum of all
probabilities is 1.

We can naturally define probabilistic versions of spatial
queries that apply on collections of existentially uncertain
objects. We identify two types of such probabilistic spatial
queries. Given a confidence threshold t, a thresholding query
returns the objects (or object pairs, in case of a join), which
qualify some spatial predicates with probability at least t.
For example, given a segmented satellite image with
uncertain objects, consider a port officer who wishes to
find a set of vessels S such that every o 2 S is the nearest
ship to the port with confidence at least 30 percent. Another
example is a police station asking for the emergencies in its
vicinity, which have high confidence. A ranking spatial
query returns the objects, which qualify the spatial
predicates of the query, in order of their confidence.
Ranking queries can also be thresholded (in analogy to
nearest neighbor (NN) queries) by a parameter m. For
instance, the port officer may want to retrieve the m ¼ 10
ships with the highest probability to be the NN of the port.

Previous work on managing spatial data with uncer-
tainty [2], [3], [4], [5], [6], [7] focus on locationally uncertain
objects; i.e., objects which are known to exist, but their
(uncertain) location is described by a probability density
function (PDF). The rationale is that the managed objects
are actual moving objects with unknown exact locations
due to GPS errors or transmission delays. In Section 2, we
elaborate the fundamental differences (e.g., location, ex-
istence, storage, and probability computation) between
existentially uncertain objects and locationally uncertain
objects, and explain why existing solutions for managing
and searching locationally uncertain data are inappropriate
for existentially uncertain data. To our knowledge, there is
no prior work on existentially uncertain spatial data. Our
contributions are summarized as follows:

. We identify the class of existentially uncertain
spatial data and define two intuitive probabilistic
query types on them: thresholding and ranking
queries.
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. Assuming that the spatial attributes of the objects are
indexed by 2D R-trees, we propose search algo-
rithms for probabilistic variants of spatial range
queries, NN search, spatial skyline (SS) queries, and
reverse NN (RNN) queries.

. Regarding different variants of R-trees, we derive
appropriate lower/upper probabilistic bounds for
effectively reducing the search I/O cost. Our search
algorithms for NN, SS, and RNN are carefully
designed to handle disqualified entries in such a
way that their removal is guaranteed not to influence
the probabilistic bounds of any potential result
object.

The rest of this paper is organized as follows: Section 2

provides background on querying spatial objects with

uncertain locations and extents. Section 3 defines existen-

tially uncertain data and query types on them. In Section 4,

we study the evaluation of probabilistic spatial queries,

when they are primarily indexed on their spatial attri-

butes, or when considering existential probability as an

additional dimension. Section 5 addresses probabilistic

variants for interesting advanced spatial queries. Section 6

is a comprehensive experimental study for the perfor-

mance of the proposed methods. Section 7 discusses the

case where the existential probabilities of objects are

correlated. Finally, Section 8 concludes this paper with a

discussion about future work.

2 BACKGROUND AND RELATED WORK

In this section, we review popular spatial query types and

show how they can be processed when the spatial objects

are indexed by R-trees. In addition, we provide related

work on modeling and querying spatial objects of uncertain

location and/or extent.

2.1 Spatial Query Processing

The most popular spatial access method is the R-tree [8],

which indexes minimum bounding rectangles (MBRs) of

objects. R-trees can efficiently process main spatial query

types, including spatial range queries, NN queries, and

spatial joins. Fig. 1 shows a collection R ¼ fp1; . . . ; p8g of

spatial objects (e.g., points) and an R-tree structure that

indexes them. Given a spatial region W , a spatial range query

retrieves from R the objects that intersect W . For instance,

consider a range query that asks for all objects within

distance 3 from q, corresponding to the shaded area in

Fig. 1. Starting from the root of the tree, the query is

processed by recursively following entries, having MBRs
that intersect the query region.

An NN query takes as input a query object q and returns
the closest object in R to q. For instance, the NN of q in Fig. 1
is p7. If R is indexed by an R-tree, then the best-first (BF)
algorithm in [9] is the most efficient solution for
processing NN queries. A priority queue PQ, which
organizes R-tree entries based on the (minimum) distance
of their MBRs to q, is initialized with the root entries. The
top entry of the queue e is then retrieved; if e is a leaf node
entry, the corresponding object is returned as the NN
(assuming point objects). Otherwise, the node pointed by e
is accessed and all entries are inserted to PQ. In order to
find the NN of q in Fig. 1, BF first inserts to PQ entries e1, e2,
and e3, and their distances to q. Then, the nearest entry e2 is
retrieved from PQ and objects p1, p7, p8 are inserted to PQ.
The next nearest entry in PQ is p7, which is the NN of q. In
Section 4, we will extend BF for processing probabilistic
versions of NN search on existentially uncertain data.

2.2 Locationally Uncertain Spatial Data

Recently, there is an increasing interest on the modeling,
indexing, and querying of objects with uncertain location
and/or extent. For instance, consider a collection of moving
objects, whose positions are tracked by GPS devices. Exact
locations are unknown due to GPS errors and transmission
delays; e.g., if the object is in motion, its location might be
outdated when reaching the listening server. As a result,
the set of possible locations of an object is captured by a
probability density function (PDF), which combines GPS
measurement error, the last reported object location, and
object velocity [2]. Fig. 2a exemplifies a locationally
uncertain object o1, modeled by a 2D Gaussian PDF, with
the regions of higher probability marked in darker color.
According to [10] and [7], an arbitrary PDF can be
approximated by a spatial histogram (e.g., 3 � 3 bins in

YIU ET AL.: EFFICIENT EVALUATION OF PROBABILISTIC ADVANCED SPATIAL QUERIES ON EXISTENTIALLY UNCERTAIN DATA 109

Fig. 1. Spatial queries on R-trees.

Fig. 2. Locationally and existentially uncertainty objects. (a) Locationally

uncertain PDF. (b) PCR of o1, at g ¼ 0:2. (c) NN search. (d) Existentially

uncertain object.



Fig. 2a), where each bin stores the probability to include the
object, and their sum equals to 1.

Given a locationally uncertain object o and a query
range W (see Fig. 2b), the probability that o intersects a
query range W is formally defined by: Prngðo;W Þ ¼R
o\W o:pdfðvÞdv, where o:pdfðvÞ denotes the probability

that o coincides with point v. Probabilistic threshold range
queries [10], [7] retrieve result pairs ho; Prngðo;WÞi such
that Prngðo;W Þ � t, where t is a user-specified threshold.
The filter-refinement framework is adopted to accelerate
their evaluation. An inexpensive filter step is applied to
determine fast whether an object o can belong to the result.
Only when o may potentially become a result, the
refinement step is executed to compute the Prngðo;W Þ value.
In the state-of-the-art method in [7], probabilistic constrained
rectangle (PCR) is used for the filter step of the queries.
Given a system parameter g, modeling a minimum value
for t, the PCR of a 2D object o is precomputed by sliding
each axis-parallel line inwards until the swept area over the
PDF of o equals to g. Fig. 2b illustrates the PCR of an object
o1, for g ¼ 0:2; o1 appears in the region on the left of line l�x
with probability 0.2. Similarly, o1 appears in regions on the
right/bottom/top of lines lþx =l

�
y =l
þ
y , respectively, with

probability 0.2. To answer the threshold range query W
(with t ¼ 0:5), we first compare W with the lines
l�x =l

þ
x =l
�
y =l
þ
y . Since W does not intersect the PCR of o1

(i.e., it is above line lþy ), we can immediately infer that
Prngðo1;WÞ � 0:2 < t. Thus, o1 is discarded during the filter
step of query W , saving the expensive computation of the
exact probability Prngðo1;WÞ.

Table 1 summarizes the fundamental differences between
locationally uncertain objects and existentially uncertain
objects. As depicted in Fig. 2d, an existentially uncertain
object o3 has a certain location (i.e., a point) but its existence
is associated with a probability Eo3

¼ 0:3. The probability of
o3 satisfying a range query W is Prngðo3;WÞ ¼ Eo3

if o1

intersects W ; or 0 otherwise. Thus, Prngðo3;WÞ can be
computed in constant time.

One may argue that an existentially uncertain point o
with existence probability Eo could be modeled as a
locationally uncertain object with the PDF consisting of
exactly two locations: one point o with probability Eo, and a
point at infinity with probability ð1�EoÞ. This model
encumbers the application of existing locationally uncertain
techniques [10], [7], because they assume multiple locations
with probabilities and the continuity of PDF in the space.
Consider, for instance, the probabilistic NN search algo-
rithm for locationally uncertain data, proposed in [6]. Given
a query point q and a set R of locationally uncertain objects,

we can derive � ¼ mino2R maxdðq; oÞ, i.e., the minimum
furthest distance of any o from q. For instance, in Fig. 2c, the
object o1 leads to the minimum �. Since the PDF of o1 sums
to 1 within the circle (centered at q with radius �), it is clear
that, any object o00 (e.g., o4) with mindðq; o00Þ > � has no
chance of being the NN of q. For any remaining object o
(e.g., o1, o2, and o3), its probability of being the NN of q is
denoted by Pnnðo; qÞ. Assuming independent PDFs
between different objects, [6] defines Pnnðo; qÞ as follows:

Pnnðo; qÞ ¼
Z�

mindðq;oÞ

o:pdf �qðrÞ
� �

�
Y

o02R;o0 6¼o;mindðq;o0Þ��
1� o0:pdf �qðrÞ

� �� �
dr;

where �qðrÞ and �qðrÞ represent the hollow ring and the
concrete circle, respectively, centered at q with radius r.
The evaluation of the above probability is expensive for
arbitrary PDFs so [6] focuses on basic PDFs and develops
efficient computation techniques for Pnnðo; qÞ. Note that
the above probabilistic NN search technique is inapplic-
able to existentially uncertain data. Fig. 2d depicts a set of
existentially uncertain objects, with a similar spatial
configuration as in Fig. 2c. In this case, o1 is still the
object causing the minimum � value. However, since its
existence probability is not 1, it cannot be used to bound
the search space. For instance, the object o4 now has
nonzero probability of being the NN of q; this happens
with the probability ð1� 0:1Þð1� 0:2Þð1� 0:3Þ0:9 ¼ 0:454,
when o4 exists but o1, o2, and o3 do not exist.

Other work on locationally uncertain data includes
indexing the trajectory of an object as a cylindrical volume
around the tracked polyline (e.g., by a GPS), capturing
uncertainty up to a certain distance from the polyline [11]. A
similar approach is followed in [3], where recorded
trajectories are converted to sequences of locations con-
nected by elliptical volumes. Yu and Mehrotra [5] also
model the uncertain locations of spatial objects by (circular)
uncertainty regions and discuss how to process simple and
aggregate spatial range queries using the fuzzy representa-
tions. Ni et al. [4] study the evaluation of spatial joins
between two sets of objects, for the case where the object
extents are “floating” according to uncertainty distance
bounds. An extension of the R-tree that captures uncertainty
in directory node entries is proposed, and R-tree join
techniques are adapted to process the join efficiently.
Cheng et al. [12], [10] study a problem related to probabil-
istic spatial range queries. The uncertain data are not spatial,
but ordinal 1D values (e.g., temperature values recorded
from sensors). Cheng et al. [10] indexes such uncertain data
for efficient evaluation of probabilistic range queries.
Cheng et al. [12] classifies queries on such data to entity-
based queries asking for the set of objects satisfying a query
predicate and value-based queries asking for a PDF describ-
ing the distribution of a query result when it is a single
aggregate value (e.g., the sum of values, the maximum
value, etc.). Finally, Lazaridis and Mehrotra [13] study the
evaluation of queries over uncertain or summarized data,
where the user specifies thresholds (precision, recall, laxity)
regarding the quality (i.e., accuracy) of the desired result.
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TABLE 1
Fundamental Differences between Two Notions of Uncertainty



3 EXISTENTIALLY UNCERTAIN SPATIAL DATA

An object x is existentially uncertain if its existence is
described by a probability Ex, 0 < Ex � 1. We refer to Ex as
existential probability or confidence of x. Note that since we
can have Ex ¼ 1, we (trivially) regard a 100 percent known
object x as existentially uncertain. This allows us to model
object collections which are mixtures of uncertain and
certain data. On the other hand, Ex ¼ 0 corresponds to an
object x that definitely does not exist, so there is no need to
store it in a database. We take the existential independence
assumption that the confidence values of two different
objects are independent of each other. This assumption is
reasonable for the applications mentioned in Section 1 (e.g.,
satellite image extraction and emergency call). We will relax
this assumption in Section 7 and handle existentially
uncertain objects whose confidence values are correlated.

Fig. 3 shows a collection R ¼ fp1; p2; . . . ; p8g of existen-
tially uncertain points. Next to each point label pi, is its
existential probability Epi enclosed in parentheses (e.g.,
Ep1
¼ 0:2). We are interested in answering spatial queries

that take uncertainty into account. Let R be a collection of
existentially uncertain objects. We then define probabilistic
versions of basic spatial query types:

Definition 1. A probabilistic spatial range query takes as
input a spatial region W and returns all ðx; PxÞ pairs, such
that x 2 R and x intersects W with probability Px ¼ Ex,
where Px > 0.

Definition 2. A probabilistic NN query takes as input an object

q and returns all ðx; PxÞ pairs, such that x 2 R and x is the NN

of q, with probability Px¼Ex �
Q

x02R;x0 6¼x;dðq;x0Þ<dðq;xÞð1� Ex0 Þ,
where Px > 0 and dðq; xÞ denotes the distance between q and x.

The output of a probabilistic query is a conventional
query result coupled with a positive probability that the
item satisfies the query. The case of probabilistic range
queries is simple: Px ¼ Ex for each object that qualifies the
spatial predicate. Consider, for instance, the shaded
window W , shown in Fig. 3. Two objects p1 and p2 intersect
W , with confidences Ep1

¼ 0:2 and Ep2
¼ 0:5, respectively.

Similar to locationally uncertain data, the probability of an
object x to qualify a spatial range query is irrelevant of the
locations and confidences of other objects.

On the other hand, the probability of an object to be
the NN depends on the locations and probabilities of
other objects. Consider again Fig. 3 and assume that we
want to find the potential NN of q. The nearest point to q
(i.e., p7) is the actual NN iff p7 exists. Thus, ðp7; Ep7

Þ is a

query result. In order for the second nearest point p6 to
be the NN of q 1) p7 must not exist and 2) p6 must exist.
Thus, ðp6; ð1� Ep7

Þ � Ep6
Þ is another result. By continuing

this way, we can explore the whole set of points in R and
assign a probability to each of them to be the NN of q.
This NN query example not only shows the search
complexity in uncertain data but also unveils that the
result of probabilistic queries may be arbitrarily large. For
instance, the result of any NN query is as large as jRj, if
Ex < 1 for all x 2 R. We can define practical versions of
probabilistic queries with controlled output by either
thresholding the results of low probability to occur or
ranking them and selecting the most probable ones:

Definition 3. Let ðx; PxÞ be an output item of a probabilistic
spatial query Q. The thresholding version of Q takes as
additional input a threshold t, 0 < t � 1 and returns the
results for which Px � t. The ranking version of Q takes as
additional input a positive integer m and returns the m results
with the highest Px.

For example, a thresholding range (window) query W
with t ¼ 0:6 on the objects of Fig. 3 returns ;, whereas a
ranking range query W with m ¼ 1 returns ðp2; 0:5Þ.

4 EVALUATION OF BASIC PROBABILISTIC QUERIES

Like spatial queries on exact data, probabilistic spatial
queries can be efficiently processed with the use of
appropriate access methods. In this section, we explore
alternative indexing schemes and propose algorithms for
probabilistic queries on them. We focus on the most
important spatial query types; namely, range queries and
NN queries.

4.1 Algorithms for 2D R-Trees

The most straightforward way to index a set R of
existentially uncertain spatial data is to create a 2D R-tree
on their spatial attribute. The confidences of the spatial
objects are stored together with their geometric representa-
tion or approximation (for complex objects) at the leaves of
the tree. We now study the evaluation of probabilistic
queries on top of this indexing scheme.

4.1.1 Range Queries

Probabilistic range queries can be easily processed in two
steps; a standard depth-first search algorithm is applied on
the R-tree to retrieve the objects that qualify the spatial
predicate of the query. For each retrieved object x, Px ¼ Ex.
If the query Q is a thresholding query, the threshold t is
used to filter out objects with Px < t.1 If Q is a ranking
query, a priority queue maintains the m results with the
highest Px, during search, and outputs them at the end of
query processing.

4.1.2 NN Search

NN search is more complex compared to range queries,
because the probability of an object to qualify the query
depends on the locations and confidences of other objects.
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1. Especially for thresholding range queries of very large thresholds t, a
viable alternative could be to use a Bþ-tree that indexes objects based on
their probability to efficiently access the objects x with Ex � t and then filter
them using the spatial query predicate.

Fig. 3. NN search example.



Algorithm 1 elegantly and efficiently computes the prob-
ability Px of x to be NN of q, for all x having Px > 0.

Algorithm 1. Probabilistic NN on a 2D R-tree
Algorithm PNN2D(Query point q, 2D R-tree on R)

1: Pfirst :¼ 1; . Prob. of no object before x

2: while Pfirst > 0 and more objects in R do

3: x :¼ next NN of q in R;

4: Px :¼ Pfirst � Ex;

5: output ðx; PxÞ;
6: Pfirst :¼ Pfirst � ð1� ExÞ.

Algorithm PNN2D applies BF NN-search [9] on the R-

tree to incrementally retrieve the NN s of q, without

considering confidences. It also incrementally maintains a

variable Pfirst which captures the probability that no object

retrieved before the current object x is the actual NN. Pfirst

is equal to
Q

yð1� EyÞ, for all objects y seen before x. Thus,

the probability of x to be the NN of q is Pfirst � Ex. In the

example of Fig. 3, PNN2D gradually computes Pp7
¼ 0:1,

Pp6
¼ð1�0:1Þ � 0:1¼0:09, Pp8

¼ð1�0:1Þð1�0:1Þ � 0:2¼0:162,

Pp4
¼ ð1� 0:1Þð1� 0:1Þð1� 0:2Þ � 0:5 ¼ 0:324, etc. Note that

all objects of R in this example are retrieved and inserted to

the response set. In other words, PNN2D does not

terminate, until an object x with Ex ¼ 1 is found; if no

such object exists, all objects have a positive probability to

be the NN.
Thresholding and ranking. As discussed in Section 3, the

user may want to restrict the response set by threshold-
ing or ranking. Algorithm 2 is the thresholding version
of PNN2D, which returns only the objects x with Px � t.
The only differences with the nonthresholding version
are the termination condition at line 2 and the filtering
of results having Px < t (line 5). As soon as Pfirst < t,
we know that the next objects, even with 100 percent
confidence cannot be the NN of q, so we can safely
terminate. For example, assume that we wish to retrieve
the points in Fig. 3 which are the NN of q with
probability at least t ¼ 0:23. First, p7 with Pp7

¼ Ep7
¼ 0:1

is retrieved, which is filtered out at line 5 and Pfirst is
set to 0:9 � t. Then, we retrieve p6 with Pp6

¼ Pfirst �
Ep6
¼ 0:09 (also disqualified) and set Pfirst ¼ 0:81 � t.

Next, p8 is retrieved with Pp8
¼ 0:162 (also disqualified)

and Pfirst ¼ 0:648 � t. The next object p4 satisfies
Pp4
¼ 0:324 � t, thus ðp4; 0:324Þ is output. Then, Pfirst ¼

0:324 � t and we retrieve p3 with Pp3
¼ 0:0972 (disqua-

lified). Finally, Pfirst ¼ 0:2268 < t and the algorithm
terminates having produced only ðp4; 0:324Þ.

Algorithm 2. Probabilistic NN on a 2D R-tree with

thresholding

Algorithm PTNN2D(Query point q, 2D R-tree on R,

Threshold t)

1: Pfirst :¼ 1; . Prob. of no object before x

2: while Pfirst � t and more objects in R do

3: x :¼ next NN of q in R;

4: Px :¼ Pfirst � Ex;

5: if Px � t then

6: output ðx; PxÞ;
7: Pfirst :¼ Pfirst � ð1� ExÞ.

PRNN2D (Algorithm 3), the ranking version of
PNN2D, maintains a heap H of m objects with the largest
Px found so far. Let Pm be the mth largest Px in H; as
soon as Pfirst < Pm, we know that the next objects, even
with 100 percent confidence cannot be the in the set of m
most probable NN of q, so we can safely terminate. For
example, assume that we wish to retrieve the point with
the highest probability of being the NN of q in Fig. 3.
PRNN2D progressively maintains the object with the
highest Px. After each of the first four object accesses, Pm

becomes 0.1, 0.1, 0.162, and 0.324. The algorithm termi-
nates after the fourth loop, when Pfirst ¼ 0:324 and
Pm ¼ Pp4

¼ 0:324; this indicates that the next object can
have Px at most Pp4

, thus p4 has the highest chances
among all objects to be the NN of q.

Algorithm 3. Probabilistic NN on a 2D R-tree with ranking
Algorithm PRNN2D(Query point q, 2D R-tree on R,

Integer m)

1: Pfirst :¼ 1; . Prob. of no object before x

2: H :¼ ;; . heap of m objects with highest Px
3: Pm :¼ 0; . Px of mth object in H

4: while Pfirst � Pm and more objects in R do

5: x :¼ next NN of q in R;

6: Px :¼ Pfirst � Ex;
7: if Px � Pm then

8: update H to include x;

9: Pm :¼ mth probability in H;

10: Pfirst :¼ Pfirst � ð1�ExÞ.

4.2 Query Evaluation Using Augmented R-Trees

We can enhance the efficiency of the probabilistic search
algorithms, by augmenting some statistical information to
the R-tree directory node MBRs. A simple and intuitive
method is to store with each directory node entry e a value
emaxE ; the maximum Ex for all objects x indexed under e.
This value can be used to prune R-tree nodes, while
processing thresholding or ranking queries. Similar aug-
mentation techniques are proposed in [4] and [10] for
locationally uncertain data.

Table 2 summarizes the conditions for pruning R-tree
entries (and the corresponding subtrees) which do not
point to any results, during range or NN thresholding
and ranking queries. For range queries, we can directly
prune an entry e when: 1) e:MBR does not intersect the
query range or 2) its emaxE satisfies the condition in the
table. On the other hand, for NN search, a disqualified
entry cannot be directly pruned, because the confidences
of objects in the pointed subtree may be needed for
computing the probabilities of objects with greater
distances to q, but high enough probabilities to be
included in the result.
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TABLE 2
Checking Disqualified Entries in Augmented 2D R-Trees



Let us assume for a moment that for each nonleaf entry e
we know the exact number of objects enum in its subtree.
Algorithm 4 is the thresholding NN procedure for the
augmented 2D R-tree. BF is extended as follows: If a nonleaf
entry e is deheaped for which Pfirst � emaxE < t, the node
where e points is not immediately loaded (as in PTNN2D)
but e is inserted into a set L of deleted entries. For objects x
retrieved later from the BF heap, we use entries in L to
compute Pmin

x and Pmax
x ; lower and upper bounds for Px. If

Pmin
x � t, we know that x is definitely a result. If Pmax

x < t,
we know that x is definitely not a result. On the other hand,
if Pmin

x < t � Pmax
x (lines 6-12), we must refine the prob-

ability range for x. For this purpose, we pick the entry e
with the minimum mindðq; eÞ in L.2 Observe that any
entries with mindðq; eÞ > dðq; xÞ cannot contribute to the
probability of x. As Pmin

x < Pmax
x (at line 6), the entry e

selected at line 7 must satisfy mindðq; eÞ � dðq; xÞ. If e is an
object, then q must be nearer to e than x and we update
Pfirst with the confidence of e. Otherwise, its confidence
does not affect Pfirst, we access its child node ne and insert
all entries of ne into L. In either case, the probability range
of x shrinks. The process is repeated while the range
covers t.

Algorithm 4. Probabilistic NN on an augmented 2D R-tree
with thresholding

Algorithm PTNN2Daug(Query point q, Augmented 2D
R-tree on R, Threshold t)

1: Pfirst :¼ 1; . Prob. of no object before x
2: L :¼ ;; . list of disqualified entries
3: while Pfirst � t and more objects in R do
4: x :¼ next NN of q in R;
. during BF-search, each nonleaf entry with
Pfirst � emaxE < t is removed from BF heap and inserted
into L

5: compute Pmin
x and Pmax

x by using Pfirst, L and Ex;
6: while Pmin

x < t � Pmax
x do

7: pick the entry e with the smallest mindðq; eÞ in
L; remove e from L;

8: if e is an object then . e is an object closer
to q than x is

9: Pfirst :¼ Pfirst � ð1� EeÞ;
10: else
11: read node ne pointed by e and insert all

entries of ne into L;
12: compute Pmin

x and Pmax
x by using Pfirst, L

and Ex;
13: if Pmin

x � t then
14: output ðx; Pmin

x ; Pmax
x Þ;

15: Pfirst :¼ Pfirst � ð1� ExÞ.
It remains to clarify how Pmin

x and Pmax
x for an object x

are computed. Note that L only contains entries whose
minimum distance to q are smaller than dðq; xÞ. For an
entry e in the list L, the confidence of each object in its
subtree is in the range ð0; emaxE	. In addition, there exists at
least one object in e whose confidence is exactly emaxE .
Thus, Pmin

x corresponds to the case where for all objects
under all entries in L are closer to q than x is and they all
have the maximum possible confidences. Pmax

x corresponds

to the case, where for all e 2 L, with maximum distance
from q greater than dðq; xÞ, there is only one object with
emaxE confidence (for all other objects under e the
confidence converges to 0):

Pmin
x ¼ Pfirst � Ex �

Y
e2L ^ mindðq;eÞ�dðq;xÞ

ð1� emaxEÞe
num

; ð1Þ

Pmax
x ¼ Pfirst � Ex �

Y
e2L ^ maxdðq;eÞ�dðq;xÞ

ð1� emaxEÞ: ð2Þ

So far, we have assumed that, for each nonleaf entry e,
the number of objects enum in its subtree is known (e.g., this
information is augmented, or the tree is packed). We can
still apply the algorithm for the case where this information
is not known, by using an upper bound for enum: flevelðeÞ,
where levelðeÞ is the level of the entry e (leaves are at level 0)
and f is the maximum R-tree node fanout. This upper
bound replaces enum in (1).

Let us now show the functionality of the PTNN2Daug

algorithm by an example. Consider the augmented R-tree of

Fig. 4 that indexes the pointset of Fig. 3 and assume that we

want to find the points that are the NN of q with probability

at least t ¼ 0:23. First, the entries in the root are enheaped in

the BF heap. Next, the entry e2 is dequeued. Since it

disqualifies the query ðPfirst � emaxE2 ¼ 0:2 < tÞ, it is inserted

into the list L. Then, the entry e3 is dequeued. Its objects p4,

p5, p6 are enheaped in the BF Queue. The nearest object p6 is

dequeued. From (1) and (2), we derive a probability range

for Pp6
by using Pfirst and L. p6 is disqualified as

Pmax
p6
¼ Ep6

¼ 0:1 < t. Then, Pfirst ¼ 0:9 � t and we retrieve

p4. Since Pmin
p4
¼ 0:9 � 0:5 � ð1� 0:2Þ3 ¼ 0:2304 � t, p4 is a

result. Next, Pfirst ¼ 0:45 � t and the next entry retrieved

from the priority queue of the BF algorithm is e1. We do not

access the node pointed by e1, since we know that for each

object x indexed under e1, Px � emaxE1 � Pfirst ¼ 0:225 < t.

Thus, e1 is inserted into L. Next, p5 is dequeued

and discarded as Pmax
p5
¼ 0:45 � 0:5 � ð1� 0:2Þ � ð1� 0:5Þ < t.

Now, the BF heap becomes empty and the algorithm

terminates. Note that PTNN2D accesses all nodes of the tree

in this example, whereas PTNN2Daug saves two leaf node

accesses.

Algorithm 5. Probabilistic NN on an augmented 2D R-tree
with ranking

Algorithm PRNN2Daug(Query point q, Augmented 2D
R-tree on R, Integer m)
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2. Throughout this paper, we use dðq; xÞ to denote the distance between
two points q and x; and use mindðq; eÞ ðmaxdðq; eÞÞ to denote the minimum
(maximum) possible distance between q and any data point indexed by the
subtree pointed by e.

Fig. 4. Example of augmented 2D R-tree.



1: Pfirst :¼ 1; . Prob. of no object before x
2: L :¼ ;; . list of disqualified entries
3: H :¼ ;; . heap of objects, organized by Pmin

o

4: Pm :¼ 0; . Pmin of mth object in H
5: while Pfirst > Pm and more objects in R do
6: x :¼ next NN of q in R;

. during BF-search, each nonleaf entry with
Pfirst � emaxE < t is removed from BF heap and inserted
into L

7: compute Pmin
x and Pmax

x by using Pfirst, L and Ex;
8: while Pmin

x < Pm � Pmax
x do

9: pick the entry e with the smallest mindðq; eÞ
in L; remove e from L;

10: if e is an object then . e is an object closer
to q than x is

11: Pfirst :¼ Pfirst � ð1�EeÞ;
12: for all entry o 2 H such that

dðq; eÞ � dðq; oÞ do
13: Pfirst

o :¼ Pfirst
o � ð1� EeÞ;

14: else
15: read node ne pointed by e and insert all

entries of ne into L;
16: compute Pmin

x and Pmax
x by using Pfirst, L

and Ex;
17: if Pmin

x > Pm then
18: enheapðH; ðx; Pfirst

x :¼ Pfirst; Pmin
x ; Pmax

x ÞÞ;
19: if H is changed or L is changed then
20: recompute, for each o 2 H, Pmin

o and Pmax
o by

using Pfirst
o , L and Eo;

21: Pm :¼ mth Pmin in H;
22: remove entries o from H with Pmax

o < Pm;
23: Pfirst :¼ Pfirst � ð1� ExÞ;
24: while jHj > m and jLj > 0 do
25: apply lines 9-16;
26: apply lines 20-22;
27: remove e from L with

mindðq; eÞ>maxfdðq; oÞ :o2Hg.
Ranking NN retrieval on the augmented R-tree is

performed by Algorithm 5. PRNN2Daug has several differ-

ences from the thresholding NN algorithm. A heap H is

employed to organize objects o by their Pmin
o . Pm denotes the

mth highestPmin
o in the heap. Observe that more complicated

techniques are used for updatingH, as the accesses to Lmay

affect the order of objects in H. Each object o in H maintains

Pfirst
o , which is the value of Pfirst when o is enheaped

(line 18). At lines 12-13, Pfirst
o (for some entries in H) is

updated for each object e found no further than o from q. The

new Pfirst
o value is used to update Pmin

o and potentially the

order of objects in H at lines 20-21. Note that H may store

more than m entries, since there may be objects o in it

satisfying Pmax
o � Pm � Pmin

o . However, entries o are re-

moved fromH oncePmax
o < Pm. The algorithm does not need

to access any more objects from the BF heap as soon as

Pfirst < Pm. In case H has more than m objects at that point,

we need to refine the probability ranges of the objects inH (by

processing entries in L) until we have the best m objects. In

this case, entries e are removed from L once mindðq; eÞ >
maxfdðq; oÞ : o 2 Hg because such entries cannot be used to

refine the probability ranges of the objects in H.

4.3 Query Evaluation Using 3D R-Trees

An alternative method for indexing existentially uncertain
data is to model the confidences Ex of objects x as an
additional dimension and use a 3D R-tree to index the
objects. Now, each nonleaf entry e in the tree, apart from the
spatial dimensions, has a range ½eminE; emaxE	 within which
the existential probabilities of all objects in its subtree fall.

Fig. 5 illustrates the differences between the augmen-
ted 2D R-tree and the 3D R-tree. Fig. 5a depicts the
structure of the augmented 2D R-tree for the points
p1; p2; � � � ; p6. The R
-tree insertion algorithm [14] aims at
grouping the points into leaf nodes such that their MBR
areas are minimized. As such, the (nonleaf) entry e1

points to a leaf node containing the points p1, p2, and p3;
whereas the entry e2 points to a leaf node containing
the points p4, p5, and p6. The spatial X, Y ranges, and
the augmented probability, for these two entries in the
augmented 2D R-tree are listed in Fig. 5c. Note that each
entry consists of six values (including its child node
pointer). Fig. 5b shows the structure of the 3D R-tree, for
the same set of points. The R
-tree insertion optimizes
the bounding rectangles of nodes defined by three
dimensions: spatial dimensions X and Y , as well as the
probability dimension E. Hence, the entry e1 points to a
leaf node containing the points p1, p2, and p5; whereas
the entry e2 points to a leaf node containing the points
p3, p4, and p6. The values stored in these entries in the
3D R-tree are also listed in Fig. 5c. Now, each entry
consists of seven values (including its child node
pointer), implying that the fanout of the 3D R-tree is
slightly smaller than the augmented 2D R-tree.

The methods for processing the probabilistic range and
NN queries over the augmented 2D R-tree (in Section 4.2)
are applicable for the 3D R-tree, since each tree entry still
stores an emaxE value. In particular, for the NN query, we
utilize eminE to derive tighter probability ranges:

Pmin
x ¼Pfirst � Ex

�
Y

e2L ^ mindðq;eÞ�dðq;xÞ
ð1� eminEÞð1� emaxEÞðe

num�1Þ;

ð3Þ
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Fig. 5. Structures of different R-tree variants. (a) Augmented 2D R-tree.

(b) 3D R-tree. (c) Comparison between the two trees.



Pmax
x ¼Pfirst � Ex

�
Y

e2L ^ maxdðq;eÞ�dðq;xÞ
ð1� eminEÞðe

num�1Þð1� emaxEÞ:

ð4Þ

If the exact number enum of objects in the subtree pointed by
e is not known, we can use the fanout f and the minimum
node utilization (0.4 for R
-trees) and replace enum by flevelðeÞ

in (3) and by ð0:4 � fÞlevelðeÞ in (4).

Interestingly, the query performance of the 3D R-tree is

not necessarily better than the augmented 2D R-tree. A

careful examination of (3) and (4) reveals that these

probability bounds are determined by both the spatial and

probabilistic intervals of the entries. Even though the eminE

values in the 3D R-tree are helpful for tightening the bounds,

this effect is counteracted by the large spatial bounding

rectangles in the tree. Thus, more (disqualified) entries e 2 L
satisfy the mindðq; eÞ � dðq; xÞ condition in (3), and fewer

entries e 2 L satisfy the maxdðq; eÞ � dðq; xÞ condition in (4).

Hence, the final probability bounds for the 3D R-tree may

indeed become looser. Besides, the 3D R-tree has a slightly

smaller fanout, which may lead to more page accesses.

5 ADVANCED SPATIAL QUERIES

In this section, we discuss probabilistic variants of spatial
skyline (SS) queries [15] and reverse nearest neighbor
(RNN) queries [16], due to their applications in spatial
decision support systems. For each query type, we first
present its background, then define its probabilistic variant,
and finally develop corresponding query algorithms for the
thresholding and ranking versions.

5.1 Spatial Skyline Queries

Given a set Q of query points (e.g., user locations) and two
points p and p0 (e.g., two facilities), p spatially dominates [15]
p0 when all query points in Q are closer to p than to p0:

8 q 2 Q; dðq; pÞ � dðq; p0Þ: ð5Þ

Given a point data set R, its SS [15] (with respect to Q)
contains the objects p 2 R that are not spatially dominated
by any other object in R. As an example, consider the
distances of the stations pi 2 R from a group of two users
Q ¼ fq1; q2g in Fig. 6a. The SS contains p1, p2, and p3. The
main application of SS queries is to discover facilities that
are not farther than other facilities, for all users.

To ease our discussion, we first introduce some notation.
The SS query is formulated in a feature space in which each

dimension captures the distance to a query point. Given a
set Q ¼ fq1; q2; � � � ; qzg of query points, a spatial location
(i.e., data point) p (or an MBR e) can be mapped to a point
 ðpÞ (or an MBR  ðeÞ) in a z-dimensional feature space,
where the ith dimension captures the distances of the points
to qi (for i 2 ½1; z	Þ. Table 3 illustrates the mapping of a data
point or an MBR (corresponding to a nonleaf R-tree entry,
assuming that the data points are indexed by an R-tree) to
this feature space.

As a shorthand notation, we use  ðpÞ �  ðp0Þ to mean
that p spatially dominates p0. Let  �ðeÞ and  þðeÞ be the
lower and upper bound corners of the MBR  ðeÞ, respec-
tively (see Fig. 6b). Since  þðe2Þ �  �ðe1Þ, each point in e2

must spatially dominate all points in e1. On the other hand,
only some point in e3 may spatially dominate some points
in e1 as  �ðe3Þ �  þðe1Þ and  þðe3Þ 6�  �ðe1Þ.

With the above mapping technique, Papadias et al. [17]
propose an R-tree-based algorithm for computing the
dynamic skyline in the feature space. The idea is to apply
the BF search algorithm [9] on the R-tree to visit the entries e,
from the origin 0z in the feature space, in ascending order of
the value:

!QðeÞ ¼
X
q2Q

mindðq; eÞ: ð6Þ

Papadias et al. [17] proved that a point must be discovered
earlier than the points it dominates (if any). Hence, a point p
is reported as a result if it cannot be dominated by any
examined points. We then adapt the above algorithm for the
probabilistic SS query.

Probabilistic SS query and its properties. For existentially
uncertain data, a point x is a query result with probability

Px ¼ Ex �
Y

x02R ^  ðx0Þ� ðxÞ
ð1� Ex0 Þ; ð7Þ

which corresponds to the case that x exists and the
points dominating x do not exist. A probabilistic SS query
takes as input a set Q of query points and returns all
ðx; PxÞ pairs, such that x 2 R and x belongs to the SS of
Q with probability Px > 0. For instance, in Fig. 6a, we
have Pp4

¼ 0:8 � ð1� 0:6Þ ¼ 0:32 because p2 dominates p4.
Since no points dominate p2, we derive Pp2

¼ 0:6 � 1 ¼ 0:6.
The probability of other points can be computed in a
similar way.

In Section 4.1.2, we used a single variable Pfirst to
incrementally compute the upper bound probability for the
remaining objects to be examined. This technique is
inapplicable to the SS query, since the points visited in
decreasing order from the origin do not necessarily
influence the points that will be visited next. For instance,
the existence of point p2 in Fig. 6a does not influence the
probability that p1 (which is further than p2 from the origin
and will be visited next) is in the skyline. However, it
influences p4, since p4 is dominated by p2. In general, given
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Fig. 6. Feature space defined by the distances from query points.

(a) A point set. (b) Dominance relationship.

TABLE 3
Mapping from the Original Space to the Feature Space



a set S � R of already examined points, in order of their
distance to the origin, an upper bound Pfirst

x ðSÞ of the
probability that point x is in the skyline with respect to S
can be computed by

Pfirst
x ðSÞ ¼

Y
x02S ^  ðx0Þ� ðxÞ

ð1�Ex0 Þ: ð8Þ

For an MBR e, the upper bound probability Pfirst
e ðSÞ of any

point in e to be in the skyline can be computed as follows:

Pfirst
e ðSÞ ¼

Y
x02S ^  ðx0Þ� �ðeÞ

ð1� Ex0 Þ; ð9Þ

since  �ðeÞ dominates any point in e. Next, we discuss how
thresholding and ranking versions of the query are
evaluated on a 2D R-tree.

Thresholding and ranking. Assume that we want to find the
points with probability at least t to be in the skyline.
Algorithm 6 describes the procedure to retrieve these points
from a 2D R-tree. At line 3, objects are incrementally
retrieved from the tree in increasing order of their !QðxÞ
value, which is defined in (6). Set S is used for storing objects
examined so far, in order to derive the probabilityPfirst

x ðSÞ of
remaining objects (using (8)). The probability derivation of
Px as Pfirst

x ðSÞ � Ex is correct because Papadias et al. [17]
proved that all the points dominating x must have been
examined before x (and stored into S). When Px � t, x is
reported as a result. In case Pfirst

x ðSÞ < t, any (remaining)
point x0 dominated by x must be at least dominated by the
same subset of points in S such that Pfirst

x0 ðSÞ < t. Thus, x is
inserted into S only when Pfirst

x ðSÞ � t. Following the above
logic, we can optimize the algorithm at line 3 by removing
nonleaf entries with Pfirst

e ðSÞ < t from the BF heap.

Algorithm 6. Probabilistic SS on a 2D R-tree with

thresholding

Algorithm PTSKY2D(Query set Q, 2D R-tree on R,

Threshold t)

1: S :¼ ;; . set of examined objects
2: while more objects in R do

3: x :¼ next point in R with minimum !QðxÞ;
. during BF-search, nonleaf entries e with

Pfirst
e ðSÞ < t are removed from BF heap

4: Px :¼ Pfirst
x ðSÞ � Ex;

5: if Px � t then

6: output ðx; PxÞ;
7: if Pfirst

x ðSÞ � t then

8: insert x into S.

Threshold-based retrieval (of Algorithm 6) can be ex-
tended to retrieve thempoints with the highest probability to
be in the skyline (i.e., the ranking probabilistic variant of the
query). The general idea is to maintain a heap H ofm objects
with the highest Px found so far. In addition, we replace the
fixed threshold t by a floating bound Pm, which indicates the
mth highestPx inH. IfPx is found to be greater thanPm, then
the result heap H and the bound Pm are updated. As Pm

increases, (unnecessary) objects with Pfirst
o ðSÞ < Pm are

removed from S in order to save space.
Extensions for augmented R-trees. As discussed in

Section 4.2, augmented R-trees can be used to improve
the query efficiency. Algorithm 7 generalizes Algorithm 4

to utilize information from an augmented 2D R-tree.

During the BF-search at line 4, each nonleaf entry e with

Pfirst
e ðSÞ � emaxE < t is removed from BF heap because they

cannot contain any results. If the removed entry has

Pfirst
e ðSÞ at least t, then it may influence the remaining

points and e is inserted into the list L for further

processing. At line 5, the lower bound Pmin
x and upper

bound Pmax
x probabilities of a point x are computed from

S, L and Ex using (10) and (11), respectively:

Pmin
x ¼ Pfirst

x ðSÞ � Ex �
Y

e2L ^  �ðeÞ� ðxÞ
ð1� emaxEÞe

num

; ð10Þ

Pmax
x ¼ Pfirst

x ðSÞ � Ex �
Y

e2L ^  þðeÞ� ðxÞ
ð1� emaxEÞ: ð11Þ

When Pmin
x < t � Pmax

x , we need to refine the probability

range for x (lines 6-13). After that, x is reported as a result if

Pmin
x � t. In case Pfirst

x ðSÞ � t, x is inserted into S because it

influences the probability of other points that may end up in

the result.

Algorithm 7. Probabilistic SS on an augmented 2D R-tree
with thresholding

Algorithm PTSKY2Daug(Query point q, Augmented
2D R-tree on R, Threshold t)

1: S :¼ ;; . set of examined objects
2: L :¼ ;; . list of disqualified entries
3: while more objects in R do
4: x :¼ next point in R with minimum !QðxÞ;
. during BF-search, each nonleaf entry e with
Pfirst
e ðSÞ � emaxE < t is removed from BF heap, and

inserted into L if Pfirst
e ðSÞ � t

5: compute Pmin
x and Pmax

x by using Pfirst
x ðSÞ, L

and Ex;
6: while Pmin

x < t � Pmax
x do

7: pick the entry e with the smallest !QðeÞ in L;
remove e from L;

8: if Pfirst
e ðSÞ � t then . e may influence the

probability of potential results
9: if e is an object then

10: insert e into S;
11: else
12: read node ne pointed by e and insert

all entries of ne into L;
13: compute Pmin

x and Pmax
x by using Pfirst

x ðSÞ, L
and Ex;

14: if Pmin
x � t then

15: output ðx; Pmin
x ; Pmax

x Þ;
16: if Pfirst

x ðSÞ � t then
17: insert x into S.

Similarly, we can generalize the algorithm for evaluating

ranking SS queries on an augmented 2D R-tree. Regarding

3D R-trees, (12) and (13) are applied to compute the Pmin
x

and Pmax
x values of a point x, respectively. In case the exact

number enum of objects in the subtree pointed by e is not

known, we can use the fanout f and the minimum node

utilization (0.4) and replace enum by flevelðeÞ in (10) and (12),

and by ð0:4 � fÞlevelðeÞ in (13):

116 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009



Pmin
x ¼ Pfirst

x ðSÞ � Ex
�

Y
e2L ^  �ðeÞ� ðxÞ

ð1� eminEÞð1� emaxEÞðe
num�1Þ; ð12Þ

Pmax
x ¼ Pfirst

x ðSÞ � Ex

�
Y

e2L ^  þðeÞ� ðxÞ
ð1� eminEÞðe

num�1Þð1� emaxEÞ: ð13Þ

5.2 Reverse Nearest Neighbor Queries

Given a point data set R and a query point q, an RNN
query [16] retrieves the objects p 2 R having q as their
NN. This query has applications in decision support and
resource allocation. Stanoi et al. [16] and Tao et al. [18]
develop R-tree-based algorithms for RNN queries. In this
section, we extend the geometric partitioning method in
[16] to solve probabilistic versions of this problem.
According to [16], an RNN query can be answered in
two steps. In the filter step, the 2D data space (shown in
Fig. 7a) is divided into six equal sectors A1; A2; � � � ; A6

around the query point q. The NN of q in each sector (if
any) is included into the candidate set. In the example,
the candidates are the points p1 (in A2), p2 (in A5), and
p4 (in A3). Stanoi et al. [16] proved that the candidate set
is a superset of the result set. During the refinement
step, each candidate is verified by retrieving its NN. A
candidate (e.g., p2) is reported as a result if its NN is q.
Otherwise, the candidate (e.g., p3) is a false hit and it is
discarded.

Probabilistic RNN query and its properties. For existentially
uncertain data, a point x belongs to the RNN set of q with
probability:

Px ¼ Ex �
Y

x02R ^ x0 6¼x ^ dðx;x0Þ<dðq;xÞ
ð1� Ex0 Þ; ð14Þ

which corresponds to the case that x exists and the points x0

that are closer to x than to q do not exist. For instance, in
Fig. 7a, we have Pp3

¼ 0:7 � ð1� 0:6Þ � ð1� 0:5Þ ¼ 0:14 be-
cause p3 is closer to p1 and p4 than to q. Since p2 is closer to q
than to other points, we derive Pp2

¼ 0:8 � 1 ¼ 0:8.
The probability of other points can be computed in a
similar way.

Similarly to the skyline query and unlike the NN query
of Section 4.1.2, we cannot define an order of visiting the
points around q, such that the upper bound probability of
remaining points to be in the RNN result, can be maintained
by incrementally updating a single Pfirst value. To elaborate
this, suppose that we first examined the point p1 in Fig. 7a.
Note that p1 only influences the probabilities of p3, p4 but

not that of p2. The example also demonstrates that the upper
bound probability of a point can be computed by using
examined points. Given a set S � R of (examined) points,
the upper bound probability Pfirst

x of a point x with respect
to q and S is defined as

Pfirst
x ¼

Y
x02S ^ x0 6¼x ^ dðx;x0Þ<dðq;xÞ

ð1� Ex0 Þ: ð15Þ

Geometric properties of RNNs can be exploited to derive
the upper bound probability of remaining points in a
specific sector (see Fig. 7a). Stanoi et al. [16] proved that, if
two points p and p0 are in the same sector and q is closer to p
than to p0, then p0 must be closer to p than to q. Based on this
property, a natural solution for the query is to retrieve the
points in ascending order of their distances from q. For each
sector Aj, its Pfirst

Aj
value is used as the upper bound

probability of any remaining point in Aj. P
first
Aj

is set to 1
initially and it is multiplied by the factor ð1� ExÞ when a
new point x is discovered in Aj.

We observe that introducing additional sectors may help

deriving tighter probability bounds for unexamined points.

Consider the 12-sector partitioning shown in Fig. 7b. When a

point (say, p1) is discovered in the sector A4, it is used to

update Pfirst
Aj

for the sectors (i.e., A3, A4, and A5) that are

within (maximum) 60 degrees angular range from A4.

Conversely, the probability bound of a sector is contributed

by the points within ð30 � 3Þ degrees ¼ 90 degrees angular

range. Recall that, for the original 6-sector partitioning in

[16], a sector is only affected by the points within 60 degrees

angular range. In general, given a positive integer V , in the

ð6V Þ-sector partitioning scheme, ð2V � 1Þ sectors need to be

examined per visited point. The more sectors we have, the

tighter probability bounds are derived for (unexamined

points in) the sectors, and the earlier unqualified sectors can

be pruned. On the other hand, the computational overhead

of updating probability bounds for the sectors is propor-

tional to V . In Section 6, we will determine an appropriate

number of sectors that achieves significant I/O cost

reduction and adds little computational overhead for

updating probability bounds for the sectors. Next, we

discuss how this partitioning scheme can be used to evaluate

probabilistic RNN queries.
Thresholding and ranking. Algorithm 8 shows how thresh-

olding RNN queries are evaluated on a 2D R-tree. The
system parameter � specifies the number of sectors to be
used. First, the space is divided into � sectors Ai and their
probability bounds Pfirst

Ai
are set to 1. The algorithm

maintains candidate objects (i.e., potential results) in a
set C and delays computing the actual probability of a
candidate until all objects influencing it have been
examined. Examined objects are stored in the set S and they
are used to compute upper bound probabilities for candi-
date objects. Both C and S are initialized to empty sets.

At line 6, we apply BF search [9] to incrementally retrieve
the next NN (i.e., the object x) of q from the tree R. Suppose
thatAðxÞ denotes the sector containing x. If the upper bound
probability Ex � Pfirst

AðxÞ is greater than the threshold t, then a
tighter upper bound probability Ex � Pfirst

x is computed, by
examining the objects in S (see (15)). When the above
probability is at least t, the object x is inserted into C. After
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Fig. 7. RNN query example. (a) Six-sector partitioning. (b) Twelve-sector
partitioning.



that, x is inserted into S and Pfirst
Ai

is updated for each sector
Ai within 60 degrees angular range from AðxÞ. In turn, x is
used to update the Pfirst

o value for objects in C, and those
satisfying Eo � Pfirst

o < t are removed from C. If the last
deheaped distance dlast (from the BF heap) is greater than
2 � dðq; oÞ for a candidate object o 2 C, then all entries in BF
heap cannot affect the probability of o. At line 17, we
compute the actual probabilityPo asPfirst

o � Eo and report o as
a result when Po � t. The loop (lines 5-20) continues while
some sectors may contain potential results to be discovered or
C is not empty.

Algorithm 8. Probabilistic RNN on a 2D R-tree with
thresholding

Algorithm PTRNN2D(Query point q, 2D R-tree on R,
Threshold t)
�: number of sectors (system parameter)

1: divide the space into � equal sectors around q: Ai,
i 2 ½1; �	;

2: for all i 2 ½1; �	 do
3: Pfirst

Ai
:¼ 1; . Upper prob. bound of remaining

objects in sector Ai

4: C :¼ ;; S :¼ ;;
5: while 9i 2 ½1; �	; P first

Ai
� t or jCj > 0 do

6: x :¼ next NN of q in R; dlast :¼ dðq; xÞ;
7: let AðxÞ be the sector of x;
8: if Ex � Pfirst

AðxÞ � t and Ex � Pfirst
x � t then

. apply cheap filter first, and then expensive filter
9: C :¼ C [ fxg;

10: S :¼ S [ fxg;
11: for all i 2 ½1; �	 such that Ai is within (maximum)

60 degrees angular range from AðxÞ do

12: Pfirst
Ai

:¼ Pfirst
Ai
� ð1� ExÞ;

13: for all o 2 C such that dðx; oÞ < dðq; oÞ do

. update Pfirst
o

14: Pfirst
o :¼ Pfirst

o � ð1� ExÞ;
15: remove objects o from C with Eo � Pfirst

o < t;
. filter false hits

16: for all o 2 C such that dlast � 2 � dðq; oÞ do

. entries in BF heap cannot affect the probability of o
17: Po :¼ Pfirst

o � Eo;
18: if Po � t then
19: output ðo; PoÞ;
20: remove o from C.

Algorithm 9. Probabilistic RNN on an augmented 2D R-tree

with thresholding
Algorithm PTRNN2Daug(Query point q, Augmented

2D R-tree on R, Threshold t)

�: number of sectors (system parameter)

1: divide the space into � equal sectors around q: Ai,

i 2 ½1; �	;
2: for all i 2 ½1; �	 do

3: Pfirst
Ai

:¼ 1; . Upper prob. bound of remaining

objects in sector Ai

4: C :¼ ;; S :¼ ;; L :¼ ;;
5: while more objects in R do

6: x :¼ next NN of q in R; dlast :¼ dðq; xÞ;
. during BF-search, each nonleaf entry e

intersecting only sector(s) with Pfirst
Ai
� emaxE < t is

removed from BF heap and inserted into L

7: apply lines 7-15 of Algorithm 8;

8: for all o 2 C such that dlast � 2 � dðq; oÞ do . entries

in BF heap cannot affect the probability of o

9: while Pfirst
o � Eo � t and 9e 2 L;mindðe; oÞ <

dðq; oÞ do . refinement step

10: remove the entry e with the smallest

mindðe; oÞ in L;

11: if e is an object then

12: apply lines 11-15 of Algorithm 8, but

by replacing x with e;

13: else

14: read the node ne pointed by e and

insert all entries of ne into L;

15: Po :¼ Pfirst
o � Eo;

16: if Po � t then

17: output ðo; PoÞ;
18: remove o from C;

19: for all o 2 C do . verify remaining candidates in C

20: apply lines 9-18 of this algorithm.

The above algorithm can be extended to retrieve the

top-m ranked RNNs from the 2D R-tree. It maintains a

heap H of m objects with the highest Px found so far. In

addition, we replace the fixed threshold t by a floating

bound Pm, which indicates the mth highest Px in H. At

lines 18-19, if Po is greater than Pm, then the result heap H

and the bound Pm are updated.
Besides, the above thresholding3 algorithm can be

adapted to Algorithm 9, for augmented 2D R-trees and

3D R-trees. At line 6, each nonleaf entry e intersecting only

sector(s) with Pfirst
Ai
� emaxE < t is removed from BF heap

because they cannot contain any results. However, such

entries may affect the probability of other points so they

are inserted into L. Lines 9-14 compute the actual

probability for such an object, by refining its Pfirst
o value

with the entries in L. For this, we check whether the upper

bound probability Pfirst
o � Eo is above t and q is closer to

some entries in L than to q. If so, the entry closest to o is

removed from L and its child node ne is accessed. In case

ne points to a tree node, all its entries are inserted into L.

Otherwise, entries in ne are used to update the set S, Pfirst
o

values of candidate objects, and Pfirst
Ai

values of sectors. At

lines 19-20, the remaining candidates in C are verified by

accessing entries in L that may influence their probabilities.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the efficiency of the proposed

techniques. We compare the performances of five indexes

and their corresponding algorithms for thresholding and

ranking versions of range queries, NN search, skyline

queries, and RNN retrieval. The five indexes are

1. a simple 2D R-tree (denoted by 2D),
2. a 2D R-tree, where each nonleaf entry e is augmen-

ted with emaxE (denoted by AUG),
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3. Adaptations of ranking algorithms for RNN queries are omitted due to
space constraints.



3. a 2D R-tree, where each nonleaf entry e is augmen-
ted with emaxE and enum (i.e., the number of objects in
the subtree indexed by it), denoted by AUG COUNT,

4. a 3D R-tree (denoted by 3D), and
5. a 3D R-tree, where each nonleaf entry e is augmen-

ted with enum (denoted by 3D COUNT).

For indexes 4 and 5, all (spatial/probability) dimensions are
normalized to the same domain interval. Note that index 1
captures minimum information in nonleaf entries and
occupies the least space, whereas index 5 is at the other
end (entries capture maximum information and the index
occupies the most space).

All algorithms were implemented in C++. Experiments
were run on a PC with a Pentium D CPU of 2.8 GHz. The
page size of indexes was set to 1 Kbyte; the relative
performance results of the above methods were observed
for other page sizes (up to 8 Kbytes). No memory buffers
are used for caching disk pages between different queries;
the number of node accesses directly reflects the I/O cost. In
each experiment, the measured I/O cost is the average I/O
cost of 100 queries with the same parameter values (but
with different locations randomly chosen from the data set).
For range queries, NN search, and RNN retrieval, the I/O
time is over 90 percent of the total execution cost so the CPU
time is not reported.

6.1 Description of Data

For our experiments, we used various real data sets of
different sizes and object distributions, described in Table 4.
The data sets TG and SF are obtained from [19], while the
other data sets are obtained from the R-tree Portal
(www.rtreeportal.org).

Due to the lack of a real spatial data set with objects

having existential probabilities, we generated probabilities

for the objects, using the following methodology. First, we

generated K ¼ 20 anchor points randomly on the map,

following the data distribution. These points model

locations around which there is large certainty for the

existence of data (e.g., they could be antennas of receivers

close to which information is accurate). For each point x of

the data set, we 1) find the closest anchor a and 2) assign

an existential probability proportional to 1
ðc�distðx;aÞÞ� . Thus,

the distribution of probabilities around the anchors is a

Zipfian one. The probabilities are normalized (using c)

with respect to the maximum probability (1) correspond-

ing to the anchor point. The default skew value is � ¼ 1;

experiments on different skew values can be found in our

preliminary work [20].

6.2 Experimental Results

Table 4 shows the performances of the five indexes for
thresholding and ranking NN queries on different data sets.
We fix t ¼ 0:005 for thresholding NN queries andm ¼ 10 for
ranking NN queries.4 Observe that the augmented and
3D R-trees perform better than the 2D R-tree even though
they are larger in size. Algorithms 4 and 5 manage to prune a
large number of nodes that do not contain query results,
which are otherwise visited in the simple 2D R-tree index.
The cost of 2D R-tree variants (i.e., methods AUG, AUG
COUNT) does not change much with the database size. The
I/O costs of 3D R-tree variants increase slowly as the
database size increases. This is due to the fact that 3D R-trees
group entries using both spatial and probability dimensions,
but the query algorithms mainly search for objects based on
spatial dimensions.

In subsequent experiments, we compare the performance
of the indexes on the SF data set and default parameter
values are t ¼ 0:005 and m ¼ 10 for thresholding and
ranking queries, respectively. Fig. 8 shows the I/O
performance of the indexes for thresholding and ranking
queries. Augmented and 3D R-trees perform much better
than the simple 2D R-tree for all tested values of t and m.
For t � 0:02, less than five accesses are required to find the
query result when using the four advanced indexes and
Algorithms 4 and 5. When comparing these indexes, we
observe that augmenting enum is not a good idea; using the
fanout f gives accurate enough estimations of Pmin and
Pmax. Thus, the extra space (translated to extra accesses)
required for augmenting enum does not pay off. In addition,
the augmented R-tree performs better than the 3D R-tree.
First, the 3D R-tree occupies more space (the capacity of
each nonleaf node is smaller) and results in more accesses,
since the extra space is not compensated by tighter Pmin and
Pmax (see (3) and (4)). Second, since the 3D R-tree groups
entries to nodes using the existential probabilities as well as
spatial dimensions, it does not achieve as good partitioning
as the one using the spatial dimensions only; however,
search is performed primarily using the spatial dimensions.

Next, we examine the performances of range queries on
the indexes. The parameter len denotes the extent of the
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TABLE 4
I/O Cost of Thresholding/Ranking NN on Different Data Sets,

t ¼ 0:005, m ¼ 10

4. A small value for t is necessary in order to observe difference between
the indexes. Larger values for t will be tested in a subsequent experiment.

Fig. 8. NN queries on the SF data set, � ¼ 1. (a) Thresholding queries.

(b) Ranking queries.



query window (in each dimension), whose default value is
set to 5 percent of the domain length. Figs. 9a and 9b show
the cost of thresholding and ranking queries as a function of
t and m, respectively. Except for the simple 2D R-tree, all
indexes follow similar trends as in probabilistic NN queries.
The cost of range queries on the 2D R-tree is independent of
t and m as all points within the spatial range are retrieved.
Observe that for very small t, the augmented and
3D indexes may perform worse than the 2D R-tree because
1) they prune no or very few directory entries that have
lower emaxE than t and 2) they are larger in size than the
simple 2D R-tree. Similarly, Pm decreases with m, affecting
the costs of the advanced methods. The 3D R-tree performs
worse than the augmented 2D R-tree also for range queries.
Fig. 9c shows the cost of thresholding queries as a function
of len. The costs of all methods increase with len.

We proceed to compare the performances of SS queries on
the indexes. For each query, a set of jQj query points are
randomly generated in a query window with side length len,
such that the window follows the data distribution. The
default values of jQj and len are 6 percent and 5 percent of
the domain range, respectively. Fig. 10 shows the I/O-CPU
time breakdown of thresholding and ranking queries as a
function of t and m, respectively. Each page fault is charged

10 ms of I/O time. Observe that the method AUG outper-
forms its competitors for a wide range of parameters. In
terms of I/O, the trends are similar to the ones in Fig. 8.
However, the CPU time of augmented and 3D trees becomes
high at low t value and high m value.

Fig. 11 plots the cost of the indexes by varying the
number jQj of query points. In general, when jQj increases,
a point is spatially dominated by fewer points, and thus the
probability of the point to be in the skyline increases. Thus,
more points need to be examined by thresholding queries
and its I/O cost increases rapidly. On the other hand, Pm
increases with jQj, strengthening the pruning power of
advanced indexes. Thus, the cost of ranking queries
increases at a slower rate.

Finally, we study the performance of the indexes for
RNN queries. Fig. 12 shows the effect of the number of
sectors in performance. When more sectors are used, tighter
probability bounds are derived for the sectors, and hence,
the algorithm terminates faster. In particular, the 96-sector
partitioning achieves substantial cost reduction (over the
basic 6-sector partitioning) for thresholding and ranking
queries, respectively. Observe that the cost starts conver-
ging to its final value with as few as 24 partitions. Fig. 13
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Fig. 9. Range queries on the SF data set. (a) Thresholding queries versus t. (b) Ranking queries versus m. (c) Thresholding queries versus len,

t ¼ 0:005.

Fig. 11. SS queries on the SF data set, varying jQj. (a) Thresholding

queries, t ¼ 0:005. (b) Ranking queries, m ¼ 10.

Fig. 10. SS queries on the SF data set, jQj ¼ 6, len ¼ 5 percent.

(a) Thresholding queries versus t. (b) Ranking queries versus m.

Fig. 13. RNN queries on the SF data set, using the 24-sector

partitioning. (a) Thresholding queries versus t. (b) Ranking queries

versus m.

Fig. 12. RNN queries on the SF data set, varying the number of sectors.

(a) Thresholding queries, t ¼ 0:005. (b) Ranking queries, m ¼ 10.



plots the cost of the methods as a function of t and m,
respectively, when using the 24-sector partitioning. For
thresholding queries, the performance gap between the 2D
R-tree and other indexes widens as t increases because of
the increased pruning power of the advanced indexes. On
the other hand, the cost differences among the indexes are
not sensitive to the value of m. As with previous queries,
AUG prevails.

7 DISCUSSION: RELAXING THE INDEPENDENCE

ASSUMPTION

Our analysis so far assumes that the existential probabilities
of objects are independent. This assumption is valid in a
large number of applications (e.g., those mentioned in
Section 1); hence, our solutions have significant value in
practice. However, there are also other applications where
the existential probabilities of different objects are corre-
lated. For example, consider a collection of sensors
distributed in a forest for detecting wildfire. When a sensor
detects smoke, sensors in its neighborhood are likely to
sense it as well. A thorough solution in this scenario falls
out of the scope of this paper. Nevertheless, in the sequel,
we point out the direction toward extending the proposed
algorithms and indexing schemes to support correlated
existential probabilities.

We now elaborate how to evaluate the thresholding

probabilistic NN query using a simple 2D R-tree, in the

correlated probability model. Instead of Definition 2, we

define the probability of an object x to be the NN of q as:

JPx ¼ JPrð�ðxÞ ^
V
x02R;x0 6¼x;dðq;x0Þ<dðq;xÞðNOT �ðx0ÞÞÞ, w h e r e

JPr denotes the joint probability that x exists (i.e., the event

�ðxÞ) and all objects x0 closer to q do not exist. This

probability can be computed from a Bayesian network

modeling dependent probabilities among the objects. The

value JPrð
V
x02R;x0 6¼x;dðq;x0Þ<dðq;xÞðNOT �ðx0ÞÞÞ serves as an

upper bound of JPx, regardless of how the probabilities

are correlated. Based on this property, we modify Algo-

rithm 2 as follows: 1) we maintain the set S of visited

objects, 2) at line 7, we insert the object x into S and

compute Pfirst ¼ JPrð
V
x02SðNOT �ðx0ÞÞÞ, and 3) at line 4, we

compute JPx ¼ JPrð�ðxÞ ^
V
x02SðNOT �ðx0ÞÞÞ. The above

idea works also for SS ((7), Algorithm 6) and RNN ((14),

Algorithm 8), after replacing each multiplication by ^, each

Ex by �ðxÞ, each ð1� Ex0 Þ by NOT �ðx0Þ, and the final

probability by JPr().
Extensions of other R-tree solutions (e.g., 2D augmented

trees and 3D trees) generate nontrivial research issues, due
to the fact that: 1) the number of possible joint probabilities
is enormous (i.e., exponential to the data cardinality) and
2) it remains unclear how to augment a nonleaf entry to
effectively capture the joint probabilities of the objects in its
subtree. In the future, we will develop efficient solutions for
augmented trees that are applicable for the correlated
probability model.

8 CONCLUSIONS

In this paper, we have presented the interesting problem of
evaluating spatial queries for existentially uncertain data.
Variants of common spatial queries, like range and NN

search, have probabilistic versions for this data model. We
proposed algorithms for these probabilistic versions and
several extensions of spatial access methods (i.e., R-trees)
where these algorithms are applied. In addition, we discuss
how complex spatial queries such as SS queries and RNN
queries can be processed in our framework. Finally, we
conducted extensive experiments to evaluate the search
algorithms and the corresponding spatial indexes. In most
of the tested cases, the data structure that performs best is a
R-tree, where nonleaf entries are augmented with max-
imum existential probabilities of the subtree they point at.
In the future, we plan to study in detail more advanced
query types and extend our methods to apply on data that
are both existentially and locationally uncertain, as well as
results of fuzzy classifiers [1].
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