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PACS 74.72.−h –Cuprate superconductors (high-Tc and insulating parent compounds)
PACS 74.20.Mn – Nonconventional mechanisms (spin fluctuations, polarons and bipolarons,

resonating valence bond model, anyon mechanism, marginal Fermi liquid,
Luttinger liquid, etc.)

PACS 79.60.−i –Photoemission and photoelectron spectra
Abstract – Recent angle-resolved photoemission (Yang H.-B. et al., Nature, 456 (2008) 77)
and scanning tunneling microscopy (Kohsaka Y. et al., Nature, 454 (2008) 1072) measurements
on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the
pseudogap phase. New features of the normal state such as particle-hole asymmetry, maxima
in the energy dispersion, and accompanying drops in the spectral weight of quasiparticles agree
with the ansatz of Yang et al. for the single-particle propagator in the pseudogap phase. The
coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the
superconducting state can also be described by this propagator.

Copyright c© EPLA, 2009

The anomalous electronic properties of the pseudogap
phase in underdoped cuprates continue to challenge
theory. Angle-resolved photoemission spectroscopy
(ARPES) measurements of the Fermi surface in the
pseudogap state show only disconnected Fermi arcs
centered on the nodal directions [1–3]. A recent high-
resolution ARPES study on underdoped BSCCO by
Yang and collaborators [4] examined the spectra below
and above the chemical potential µ by carefully dividing
out the Fermi function. They found that the spectra
displayed particle-hole asymmetry away from the nodal
direction in the pseudogap state but not in optimal doped
samples, so that the asymmetry is a property of the
pseudogap phase. Scanning tunneling microscopy (STM)
by Kohsaka and collaborators [5] has determined the
coherent quasiparticle dispersion in a wide range of
hole densities in the superconducting (SC) state, by
an ingenious analysis of the voltage-dependent spatial
interference patterns [6]. The asymmetry in the tunneling
density of states measured by STM is weaker due to the
inherent particle-hole symmetry of superconductivity.
Recent angle-integrated photoemission spectroscopy

(a)E-mail: yang@phys.ethz.ch

(AIPES) experiments on underdoped samples [7] found
the density of states (DOS) varied linearly with energy
in contrast to the constant value that appears at a
band edge in two dimensions. In this letter, we analyze
ARPES, STM, and AIPES results using an ansatz for
the single-particle propagator proposed earlier by three
of us. Key properties of the quasiparticles (QP) in this
propagator, such as maxima in the energy dispersion in
the normal pseudogap state, the connection between the
QP dispersion in the superconducting state, and the hole
density, are directly confirmed by these experiments. An
alternative explanation of particle-hole asymmetry in
ARPES experiments has been proposed by Anderson [8].
As the hole density, x, crosses the underdoped pseudo-

gap region of the phase diagram, the cuprates crossover
from a full Fermi surface metal at overdoping to a Mott
insulator at stoichiometry. A Mott insulating state is
driven by strong onsite Coulomb repulsion and not per se
by translational symmetry breaking. The stoichiometric
underdoped cuprate, YBa2Cu4O8, shows no sign of a
charge or spin density modulation on either Cu or O
sites [9]. It is therefore desirable to examine theories where
the truncated Fermi surface appears as a precursor to
the Mott state without translational symmetry breaking.
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An example is the 2D array of two-leg Hubbard ladders
studied by Konik, Rice, and Tsvelik (KRT) [10]. They
showed that lines of zeros in the propagator GR(k, ω=
0, x) associated with the charge gap at half-filling, enclos-
ing a commensurate area of 1 el/site, do not move with
light doping. The Luttinger Sum Rule on the area enclosed
by the condition Re[GR(k, ω= 0, x)]> 0 is fulfilled with
the Fermi surface truncated to small hole pockets.
A relevant question is whether similar behavior can

occur in a fully 2D system. Honerkamp and coworkers [11]
argued for such behavior from the similarities in the flow
of the response functions in functional renormalization
group analyses of Hubbard models near half-filling. Yang,
Rice, and Zhang [12] (YRZ) proposed an adaptation of
the KRT approach to the lightly doped t-J model. They
introduced a self-energy, ΣR(k, ω, x), which diverges at
ω= 0 on a surface spanned by elastic particle-particle
umklapp scattering analogous to the behavior of the
ladder model. In the 2D square lattice, this umklapp
surface is a diamond connecting antinodal points on
the Brillouin zone boundary. Note this umklapp surface
appears as the energy gap surface also in the case of wider
Hubbard ladders with more than two legs [13].
YRZ took over the form for the gap function ∆R(k, x)

from the renormalized mean-field theory of Zhang
et al. [14] for the resonant valence bond (RVB)
state [15,16] of the strong coupling 2D t-J model
and proposed an ansatz for the single particle propagator:

GR(k, ω, x) = gt(x)/[ω− ξk−ΣR(k, ω, x)]+Ginc, (1)

where ΣR(k, ω, x) =
∣∣∆R(k, x)∣∣2 /(ω+ ξ(0)k

)
is the RVB

self-energy. The energy ξ
(0)
k =−2t(x)(cos kx+cos ky)

vanishes on the umklapp surface. The renormalized
dispersion ξk = ξ

0
k− 4t′(x) cos kx cos ky − 2t′′(x)(cos 2kx+

cos 2ky)−µ includes hoppings out to the 3rd near-
est neighbor with hole density dependent coeffi-
cients t(x) = gt(x)t0+3g

s(x)Jχ/8, t′(x) = gt(x)t′0, and
t′′ = gt(x)t′′0 . The Gutzwiller factors gt(x) = 2x/ (1+x)
and gs(x) = 4/(1+x)2 account for the no-double occupa-
tion projection on the kinetic and superexchange terms
in the t-J model. The RVB energy gap takes the form
∆R(k, x) =∆(0)(x)(cos kx− cos ky). χ corresponds to
the weakly doping dependent homogeneous amplitude
〈c†i,σcj,σ〉. Parameters are quoted in table 1.
As discussed by YRZ, the Fermi surface in the pseudo-

gap regime with divergent GR(k, ω= 0, x) has four pock-
ets centered on the nodal directions enclosing a total area
related to the hole density [12]. ARPES experiments [1–4]
show arcs rather than closed pockets, but as YRZ pointed
out the QP weight in GR varies rapidly with very small
values on the backsides of the pockets, which can account
for the failure to observe these parts of the pockets. Many
experimental features, e.g., the slow variation of the nodal
Fermi velocity vF and Drude weight scaling with hole
density, are reproduced by the YRZ propagator [12]. The
umklapp surface along which the energy gap opens up lies

Table 1: The bare hopping parameters t′0 and t
′′
0 , and the

superexchange J are quoted in units of the nn value t0 = 0.3eV.
The hole density determines the pocket area and is consistent
with the value determined independently [4].
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Fig. 1: (Color online) Comparisons between (a) QP dispersion
Ek, (b) spectral weight zk, from the YRZ propagator and the
values obtained from the ARPES results by Yang et al. [4].
Error bars reflect the uncertainties in the fitting procedures;
zk at low energies in cuts 2 and 3 have large error bars due to
uncertainties in the choice of the rising background.

above µ, causing particle-hole asymmetry in the QP spec-
tra in the pseudogap state. The spectra are symmetric
only along the nodal directions where ∆R(k, x) = 0, and
the asymmetry increases away from the nodal directions.
The spectra observed by Yang et al. [4] along three cuts

(see inset in fig. 1) in the pseudogap phase (T = 140K)
are shown in the Brillouin zone in fig. 2(a). They are fits
to a broadened Lorentzian plus a background term to be
defined below. The fitting uses an implementation of the
nonlinear least-square Marquardt-Levenberg algorithm.
We determine the QP dispersion, Ek, weight zk, and
inverse lifetime γk for each k-value from the form

A(k, ω) = Im[zk/(ω−Ek+ iγk)]+AB(k, ω). (2)
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Fig. 2: (Color online) Fits to the ARPES spectra along the
cuts (1–3) (see inset of fig. 1) [4]. In (1a) the MDC of cuts
1 and in (2/3a) the EDC of cuts 2 and 3 are shown, the
experimental data are the solid black lines, and the fitted
A(k, ω) are the dashed red lines. Individual components of the
fits are displayed in (b) for QP Lorentzian peaks and (c) for
smooth background AB(k, ω).

For the background, momentum distribution curves
(MDC) of cut 1 are well fitted with an almost constant
background AB(k, ω), for energy distribution curves
(EDC) of cuts 2 and 3, we use a broadened step function
which rises at lower energies well below µ,

AB(k, ω) = yk (tanh [λk(Ωk−ω)]+ 1)+αk. (3)

The fitted MDC(EDCs) for the three cuts are shown in
the upper panels of fig. 2(a), and the two components,
the Lorentzian peak and background, in the lower panels
(b/c). For cut 1 along the nodal directions, we note that
the fitting to a broadened Lorentzian with an almost
constant background works well for all energies. For cuts
2–3 EDC fitting, as k moves away from kF , the back-
ground component AB(k, ω) increases at lower energies.
We believe this increase arises from contamination from
adjacent k-values, due to the enhanced broadening at low
energies. Since our interest focuses on energies near µ, we
believe this choice of background which is constant near µ
is reasonable.
Figure 1 shows the results for the QP properties of

interest. The QP dispersion, Ek, in fig. 1(a) rises linearly
with k along the nodal cut 1. Particle-hole asymmetry is
evident in cuts 2 (3) with a maxima in Ek lying above

(below) µ, respectively. Note that these maxima are not
at the boundary of the reduced Brillouin zone as the case
would be in the presence of a broken translation symmetry,
a point emphasized by Yang et al. [4]. The QP weight,
zk, represented in the dispersion plot as the line width,
is plotted in fig. 1(b). We see an almost constant zk
for cut 1 along the nodal direction, but a fall-off at the
maximum in Ek for cuts 2 and 3 in agreement with the
YRZ ansatz. The inverse lifetime γk is essentially constant
indicating substantial inelastic scattering at this elevated
temperature of 140K. To summarize with reasonable
parameters the phenomenological YRZ propagator gives a
good fit to the asymmetry of ARPES spectra and describes
both the maxima in the QP dispersion, Ek, away from
the nodal direction and the accompanying drop-off in the
weight, zk.
In their original discussion of the ARPES spectra, Yang

et al. [4] presented their results for a fourth scan closer
to the antinodal point (cut 2 in fig. 4 of ref. [4]) than
scans (1–3) in fig. 3 of ref. [4]. This showed particle-hole
symmetry in the accessible energy window near the Fermi
energy (� 40meV). Note, this energy window is too small
to see the actual gap on the particle side. However, the
observation that the minimum in the gap is located right
at the chemical potential led Yang et al. [4] to suggest
that the pseudogap at the antinodal regions has a pairing
origin, in agreement with the proposals of Kanigel et al. [2]
and Anderson [8]. In a standard pairing theory the energy
gap opens up along the Fermi surface, whereas in the
YRZ propagator the gap opens up at a fixed surface in
k-space. As such some of us (YRZ) argue that this occurs
due to the presence of umklapp particle-particle scatter-
ing in addition to the Cooper channel, similar to the case
of the half-filled Hubbard two-leg ladder [11]. As a conse-
quence of this difference, the RVB energy gap, ∆R, acts
as a charge gap, and only the quasiparticle excitations
at the Fermi pockets contribute to the reduced Drude
weight and reduced coherent stiffness in the supercon-
ducting state. These are characteristics of the pseudogap
state [17].
At this point, we wish to comment the apparent contra-

diction between the hole Fermi pockets associated with the
YRZ form and the electron Fermi pockets deduced from
recent quantum oscillation experiments on underdoped
YBCO samples [18]. These experiments are performed
at high magnetic fields and low temperatures, whereas
the ARPES experiments of Yang et al. [4] were made at
zero field and at a relatively high temperature of 140K.
Measurements of the Hall constant on the YBCO samples
show a hole-like behavior under the latter conditions but
electron-like Hall constant under the conditions of the
quantum oscillation experiments [19]. This suggests that
the sign change in the Hall constant and the electron pock-
ets arises from a reconstruction of the Fermi surface [20]
at high magnetic fields, possibly related to the similar sign
change in the Hall constant that accompanies the super-
lattice charge and spin order in the static stripe phase [19].
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The recent STM results of Kohsaka et al. [5] require
a generalization of the YRZ propagator to the supercon-
ducting state. Originally, YRZ added a self-energy term
in GR(k, ω, x) [12]. However, during this work we realized
that this is appropriate only in the presence of particle-
hole symmetry. It is more convenient to rewrite eq. (1)

GR(k, ω, x) =
∑
α=±
Wαk /

(
ω−Eαk

)
+Ginc, (4)

where E±k = ξ̄k±
√
ξ̄2k+ ε

2
k, ξ̄k = (ξk− ξ(0)k )/2, ε2k =

ξkξ
(0)
k + |∆Rk |2 and (W±k )

−1 = 1+ |∆Rk |2/(E±k + ξ(0)k )2.
The generalization to the superconducting state is
straightforward by treating the system as a two-
band d -wave superconductor with gap ∆S(k, x) =
∆S(x)[cos(kx)− cos(ky)] (for simplicity we use a single
SC gap) leading to a propagator

GS(k, ω, x)

=
∑
α=±
Wαk /

[
ω−Eαk − |∆S(k, x)|2/ (ω+Eαk )

]
(5)

with four QPs Ei,k =±
√
(Eαk )

2+∆S(k, x)2 with spectral
weight zi,k.
The superconducting gap opens up along the hole

pockets. Kohsaka et al. [5] derived the coherent QP
dispersion in the superconducting state from the evolution
of the interference pattern in the STM spectra measured in
a wide surface area as the tunneling voltage is changed in
BSCCO samples, ranging from near optimal doping (x=
0.19) to strongly underdoped (x= 0.06). This determines
a set of q-vectors connecting the turning points in the
iso-energy contours of the QP dispersion [6,21]. These
turning points can be compared to the values obtained
from eq. (5). We use the same values of the parameters
t0, t

′
0, and t

′′
0 , and J as fits to the ARPES spectra at

x= 0.12. Following Zhang et al. [14], we assume the RVB
gap value ∆0(x) [=∆0(1−x/xc)] drops linearly with x
with a critical doping xc = 0.20. Note the value ∆

0 = 0.5
is used in fitting to ARPES results on a sample with
x= 0.12. In fitting to the STM results, we shall allow for
the possibility that the superconducting ∆S and RVB ∆

0

gaps are not independent and that ∆0 may change in the
superconducting state from its value in the normal state.
The remaining issue is the form for the superconducting

gaps ∆S(k, x). Generally we expect that ∆S(k, x) will
not continue to grow as k moves beyond the Fermi
pockets and the normal state QPs drop below the Fermi
energy. Therefore, we assume a d -waveform for ∆S(k, x) =
∆0(x)(cos kx− cos ky) only for k-values on the pockets
and set ∆S(k, x) to be constant beyond the pockets.
This results in a two-gap description [22–30] with the
antinodal energy gap dominated by the RVB gap at
underdoping, while the superconducting gap along the
hole pockets is more important near optimal doping. We
display in fig. 3 the evolution of the contours of constant
QP energy near µ. Note the strong variation in QP weight,
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Fig. 3: (Color online) The red curves are the contours of the
constant QP energy below and close to the Fermi energy.
The black dots are the turning points deduced from STM
interference data. The dashed blue lines are the hole Fermi
pocket in the normal pseudogap state. The cyan curves are the
turning points of the iso-energy contour of the corresponding
band in the SC state. Note only the turning point of the iso-
energy contour with the largest spectral weight are shown.

discussed earlier, means that only the outer contours
closest to the zone center are relevant. The turning points
of these contours are determined by the maxima in the
inverse velocity (dE(k)/dk⊥)

−1
along these contours. The

comparison to the STM results is illustrated in fig. 3 for
four representative hole densities. We see that the overall
agreement is quite satisfactory. Note that the contours
defined by the turning points are slightly larger than the
underlying hole Fermi pockets and enclose a slightly larger
area. This causes the hole density implied by the turning
point contour to be slightly larger than the actual hole
density. This discrepancy is evident in fig. 3(a) of Kohsaka
et al. [5]. The relevant areas are plotted in fig. 4.
Note that in the above analysis we used a standard

d -waveform for the superconducting gap, ∆S(k, x)
=∆0S(x)(cos kx− cos ky) as observed in ARPES. Kohsaka
et al. in their STM experiments found a different angular
dependence with a strongly reduced gap near to the nodal
directions. The origin of this discrepancy is not clear at
present. One possibility could be enhanced forward impu-
rity scattering in the samples used in the STM experiments
which Haas et al. showed can lead to a gap suppression
near to the nodal directions [31]. However, since both
techniques are sensitive only to the surface layers, it is
far from clear that such an explanation is viable.
Kohsaka et al. [5] reported an abrupt end to the coher-

ent QP dispersion in the STM experiments when k reaches
the umklapp surface. The YRZ propagator contains
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Fig. 4: (Color online) Hole densities implied by areas enclosed
by different interpretations of the QP dispersion shown in
fig. 3, and dispersion extrapolated using LDA band structure
(� from ref. [5]), hole pockets determined by turning
points in fig. 3 and lines connecting antinodal points
(� from ref. [5], � from this work), cyan line and � from
the YRZ propagator for the Fermi pocket.

coherent QP also in the gapped antinodal regions. QP in
these regions, however, should be sensitive to the strong
local variations in the hole density and the accompanying
large variations in the RVB energy gap, ∆0R(x) [32]. This
may well lead to localization of the corresponding QP
states that lie at energies away from the chemical poten-
tial µ. The constant value of µ makes the Bogoliubov QP
states associated with the superconducting gap much less
sensitive to disorder. This difference offers a plausible
explanation for the change from propagating to localized
states that Kohsaka et al. [5] propose takes place as k
reaches the umklapp surface.
Kohsaka et al. [5] reported characteristic tunneling

spectra, which we can compare to the DOS obtained
from the superconducting propagator in eq. (5) N(ω) =∑
i,k zi,kδEi,k−ω, as shown in fig. 5. The experimental

results are shown in fig. 5 as the dashed black curves.
At higher hole densities, 0.1<x< 0.19, the spectra are
dominated by the maximum superconducting gap which
is larger than the RVB gap, ∆0(x). As a result, the QP
bands near the Fermi energy are all split by ∆S(k) with
symmetric low-energy DOS. At lower hole density, the
RVB gap ∆0(x) rises and exceeds the maximum of ∆S(k)
leading to two structures in the DOS. One at lower energy
related to ∆S(k, x) at the tips of arc and the other at
higher energies associated with the RVB gap. If we keep
the RVB gap ∆0 to the value used in the ARPES fits,
the DOS shown in blue in fig. 5 displays a much stronger
particle-hole asymmetry than the experiments. However,
if we reduce the value of ∆0 to 0.2, the agreement is
much improved, suggesting that the two gaps are not
independent of each other. Note that the total gap near
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Fig. 5: (Color online) The density of states in the superconduct-
ing state for various dopings. The d-wave SC gap is chosen to
saturate at ends of Fermi pockets at a fixed value ∆S |max = 0.14
to agree with experiments. Two choices for the RVB gap ∆0

are displayed (red ∆0 = 0.2 and blue ∆0 = 0.4). The dashed
black curves show the STM data [5] in units of t0 (300meV).
The inverse of lifetime Γ= α|EQP | with α= 0.1 is used.

the antinodal points does not change so much. We do not
claim a quantitative fit to the STM DOS but the main
features are reproduced, at least qualitatively, by the YRZ
ansatz.
Next we turn to recent angle-integrated photoemis-

sion spectroscopy (AIPES) experiments on hole doped
La2CuO4 which showed several anomalous features at
underdoping in the normal pseudogap phases. First, the
total DOS (i.e., angle integrated) shows an approximate
linear dependence on the hole energy, E, with only a small
quadratic correction which grew with increasing x. This
behavior contrasts with the constant DOS expected from
a small hole pocket in a valence band in two dimensions.
Secondly, the shift of the peak in the first derivative of the
angle-integrated spectra (I(E, T, x)), dI/dE ∝ T 2/Tcoh
approximately, and moves to positive hole energies (not
negative). The value of Tcoh(x) increases with increas-
ing, x. Interestingly, these anomalous features are repro-
duced by the YRZ model dispersion for quasiparticles.
In fig. 6(a), we show the results for the angle-integrated
spectra I(E, T, x) calculated by multiplying the total DOS
for quasiparticles by the Fermi function. An approximate
linear dependence on E is evident. In fig. 6(b), we show
that the peak Ep of the derivative |dI/dE| moves to posi-
tive hole energies opposite to the negative shift of the
chemical potential, with a roughly quadratic dependence
on the temperature, fig. 7. The resulting characteristic
coherence temperature Tcoh(x) increases with increasing
x. The key anomalous properties of the AIPES spectra
are well reproduced by the YRZ form.
The YRZ ansatz for the single-particle propagator

explains the anomalous properties of the underdoped
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Fig. 6: (Color online) The upper panels are the angle-integrated
spectra I(E, T, x) near the chemical potential (at zero temper-
ature) for various doping (0.05–0.14). The lower panels are
the first-order derivative of I(E, T, x), with the peak posi-
tion Ep shifting toward negative electron energy (i.e., positive
hole energy), opposite to the shift in the chemical potential.
Blue, black, cyan, and red curves are for the temperatures
kBT = 3, 6, 10, and 15meV, respectively. The same parame-
ters as shown in table 1 are used, except ∆0 = 0.4. Experi-
mental data for La2CuO4 can be found in fig. 1 of Hashimoto
et al. [7].
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Fig. 7: (Color online) The shifting value of the peak position
Ep of the derivative of dI/dE towards positive hole energy for
various dopings and temperatures. It shows a clear quadratic
temperature dependence.

pseudogap phase as a precursor to the Mott insulating
state at stoichiometry. The recent spectroscopic measure-
ments on underdoped BSCCO using ARPES and STM
have shed new light on the evolution of the QP proper-
ties. In this paper, we have shown that the YRZ ansatz
provides the basis to understand the key features of the
new experimental data, such as particle-hole asymmetry,
energy dispersion, and wave vector dependent spectral
weight of normal state QP as well as the coherent QP,

dispersion and DOS in the superconducting state over a
range of hole densities.
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