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Stabilization of Networked Control
Systems With a Logic ZOH

Junlin Xiong and James Lam, Senior Member, IEEE

Abstract—The technical note is concerned with the stabilization problem
of networked control systems. A general framework is proposed firstly,
where the zero-order hold has the logical capability of choosing the newest
control input packet. The continuous-time process is discretized as a system
with input delays. Then a sufficient condition for testing the stability of the
discretized system and two sufficient conditions for designing a stabilizing
controller are established based upon the Lyapunov theory. Finally numer-
ical examples and simulations are used to illustrate the developed theory.

Index Terms—Networked control systems, packet losses, stabilization,
time delays.

I. INTRODUCTION

Networked Control Systems (NCSs) have been an active research
topic in recent years. They differ from traditional control systems in
that the connections of their components are via shared communication
networks instead of point-to-point wiring. The use of the shared com-
munication networks between control system components is mainly
motivated by lower cost, easier maintenance and higher reliability of
the closed-loop systems [1]. The applications of NCSs can be found
in many fields such as automobiles, aircrafts, and HVAC systems [1].
However, the introduction of the networks complicates the analysis and
synthesis problems of control systems. Network-induced time delays,
packet losses and signal quantization are major issues in front of any
NCS designer (see [2]-[4] for a general introduction to NCSs).

Currently, several methodologies have been proposed to tackle the
control problems of NCSs, and may be divided into the following
three classes: a) Control system components are designed by tradi-
tional theory, much effort goes into the design and scheduling of the
communication networks [1], [S]-[8]; b) The characteristic of the
networks is given in advance, the main task is to design the control
system components under those communication constraints [9]-[20];
¢) The communication networks and the control system components
are co-designed [21].

Generally, time delays and packet losses are two essential issues that
need careful consideration in an NCS design. They can be handled
separately [9]-[14] or simultaneously [15]-[20]. An appealing idea is
modeling them as input delays so that the approaches developed for
time-delay systems can be adapted [15]-[20]. In [15]-[17], the Ho
control problem was studied in the continuous-time domain, where the
input delays belong to a given interval [16], [17] or are divided into
two parts [15]. In [18], the input delays were assumed to be two ho-
mogeneous Markov chains. A necessary and sufficient condition was
established for the stochastic stability of NCSs through augmentation
technique. The authors of [19], [20] assumed that the input delays are
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Fig. 1. General framework of networked control systems.

between two positive integers, and studied the stability problem of dis-
crete-time NCSs.

In this technical note, the networks are taken as given conditions
and the stabilization problem of NCSs is studied from the viewpoint of
zero-order hold (ZOH). The ZOH is assumed to be both time-driven
and event-driven, and has the logical capability of comparing the time
stamps of the arrived control input packets and choosing the newest one
to control the process. Under such a configuration, the overall NCS is
discretized as a linear discrete-time system with input delays. A suf-
ficient condition for testing the stability of the discretized NCSs and
two sufficient conditions for designing a networked controller are es-
tablished such that the NCS operating in closed-loop is stable. The ap-
proach is based upon the Lyapunov theory, and the conditions are given
in terms of linear matrix inequalities (LMIs). Moreover, several numer-
ical examples and simulations are used to illustrate the efficiency of the
developed theory.

Notation: 7+ is the set of nonnegative integers. R”, R™*" and
ST denote, respectively, the n-dimensional Euclidean space, the set
of m X n real matrices and the set of n X n real symmetric positive
definite matrices. Notation X < 0 means that —X € ST I is the iden-
tity matrix of compatible dimensions. The superscript “T” denotes the
transpose for vectors or matrices.

II. PROBLEM FORMULATION

Fig. 1 shows a general framework of networked control systems. The
physical process to be controlled is a linear continuous-time system.
The system state is sampled periodically. Let {¢, = kT, : k € Z4}
be the sampling instants, where 7, > 0 is the sampling period. The
sampler samples the value of the system state x(¢j) at time ¢, and
transmits the system state packet into the network during the interval
tr <t < tg41. The networks are unreliable and problem prone. Hence
time delays or even packet losses may occur. However, a certain level
of communication performance is maintained. That is, the time delays
and the number of the consecutive lost packets are upper bounded. The
networked controller is time-invariant. It is not necessary to be synchro-
nized with either the sampler or the ZOH, and independent of the time
delays and packet losses. The controller simply starts a new computa-
tion once it has received a system state packet from the network, and
transmits a control input packet into the network after it has completed
the computation. The control input package has the same time stamp
as the system state package. Because of the time-varying nature of the
transmission time delays, control input packets may arrive at the ZOH
with a different temporal order than that with which the corresponding
system state packets were transmitted from the sampler. Therefore, the
ZOH is configured to accept the arrived packet only if the time stamp
of it is greater than that of the packet that the ZOH currently stores.
Moreover, the ZOH is synchronized with the sampler by a clock (syn-
chronization here means that the ZOH adjusts its output only on the
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Fig. 2. An example of packets transmitted, lost and used.

sampling instants). The mechanism of the ZOH can be concisely de-
scribed as follows.

Logic ZOH: Given u(0), letio = 0 and k£ = 0.
1 At sampling instant ¢z, ZOH changes its output to
’LL(t) = lL(ikTg) forty <t < tpyr1.Lletigyr = ik.
2 During ty < t < tp41, if a packet u(jT) arrives and j > ijy1,
then ZOH stores u(j7T5) and lets iz = j.
3 Repeat Step 2 until ¢ reaches the next sampling instant ¢41. Let
k =k + 1 and go to Step 1.

Remark 1: In the above description, u(i,;T) is the newest control
information available to the logic ZOH up to time #5; u (541 T ) is the
newest control information available to ZOH up to time ¢, where ;. <
t < tgy1; u(jTs) is the control information arriving at ZOH during
tr <t < tp41.The time instants iz, ix+1 and j can be considered as
the time stamps of the control input packets. In Step 1, the ZOH updates
its output with the newest control information. In Step 2, the ZOH only
holds the most up-to-date control information, which will be used in the
next sampling period. To complete this task, the ZOH is supplied with
a logic to compare and a memory to store the control input packets. In
addition, we have both i, < kand iy < iz < k4 1.

Let us define the input delay 7(k) 2k — iy for ty <t < tpgr.
Then the input «(¢) in Step 1 of Logic ZOH can be represented by
u(t) = u((k—7(k))Ts). Asigy1 > ir,wehave r(k+1) < 7(k)+1.
On the other hand, the characteristic of the networks ensures that 7 (%)
has an upper bound, that is, ) < T(k) < 7Tmax, Which means that at
least one new packet is accepted and used by ZOH every TmaxTs.

The time delays and packet losses of the network transmissions are
merged into the input delay 7(%). The sequence of the input delay
values provides the information needed to identify the transmission
time delays and packet losses. We already have 7(k + 1) < 7(k) + 1.
Then there are two cases. Case 1: 7(k+1) = 7(k)+1, this is equivalent
to that no new packet arrives during t; < t < #x41. The ZOH con-
tinues to apply the same control input, so the input delay is increased
by one. Case 2: 7(k 4+ 1) < 7(k), this case is the same as that a new
packet of delay 7(k + 1) is accepted by the ZOH up to time #41 . This
packet will be used in the next sampling period, and 7(k) — 7(k + 1)
consecutive packets prior to this packet have been lost during the trans-
mission. Fig. 2 illustrates these cases.

Based upon the analysis above, the continuity of the process in Fig. 1,
together with the sampler and the logic ZOH, can be discretized as a
linear discrete-time system with input delays:

2(k+1) = Ax(k) 4+ Bu (k — 7(k)) e}

3 4 2 3 0
time delays

where k € Z4 is the time step, »(k) € R" and u(k) € R™ are
the system state and the control input, respectively. 7(%) is the input
delay satisfying 0 < 7(k) < Tmax With Timax > 0 and 7(k + 1) <
7(k) + 1. The initial system state is xo 2 z(0). A and B are two
constant matrices of appropriate dimensions. Here we have omitted the
sampling period T for simplicity.

In this technical note, we are interested in designing a state-feedback
controller:

u= Kz 2)

where K is to be designed. The time step # is omitted in (2) to indicate
that the controller is event-driven only and is independent of the time
delay and packet loss issues of the network transmission. Then the re-
sulting closed-loop system is a time-delay system:

x(k+1)=Ax(k)+ BKx(k—7(k)), k€Zt 3)

The objective of this technical note is to design the networked con-
troller (2) such that networked control system (3) is asymptotically
stable.

Remark 2: Our proposed framework is similar to those in [17]-[20].
In[17], the ZOH is event-driven only, and the newest control input takes
effect immediately. In [18], the input delay 7 (k) is further divided into
two parts: one from sampler to controller and the other from controller
to ZOH. In [19], [20], the ZOH has no logical decision and always uses
the latest arrived control information. Specifically, 7(k+1) < 7(k)+1
is not guaranteed.

Remark 3: It is worth mentioning that the time delay and the packet
loss of the network transmissions manifest themselves in the input de-
lays of model (1). The values of the time delay and the packet loss can
be derived from the values of the input delay and vice versa.

III. MAIN RESULTS

In this section, we present a sufficient condition for the stability anal-
ysis and two sufficient conditions for the synthesis of networked control
systems. The following theorem provides us the stability condition of
networked control system (3), and plays an essential role in the con-
troller design.

Theorem 1: NCS (3) is asymptotically stable if there exist matrices
PecSt,ZesSt, Ty € R"*™ and Ty € R™*™ satisfying

(P] 1 (1)1 2 Tl
f, P T, <0 4)
A

Tmax 7/
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where
Py =ATPA - P (AT —DZ(A-D)+ Ty + T
1y =A' PBK + tmax (A" —1)ZBK - T\ + T4
$20 = K"B"PBR + tux K" B ZBK — Ty — T)

Proof: To facilitate the proof, we define the following symbols:

[IT(k) k=1 o 2" (k- /—111ax):|T

Tk

e

e(k) [ﬂ(k) o (k- T(k))]T
Ck) 2a(k+1) — 2(k)
and have

C(k) = (A = Da(k) + B (k - 7(k))

i C(h) =a(k) —x(k—7(k))

h=k—7(k)
Now take the Lyapunov functional as

V(ek k) 2 Vi(ar k) + Va(ar. k) + Va(ar, k)

where
Vi(zr k) =2’ (k) Px(k)
k—1
Voo k)= Y 2t (DQu(l)
I=k—7(k)
0 k—1 )
Vi(zi k)= ) > Tz
lI=—Tmax+1 h=k—1+1
Then

Vi(ggr, b+ 1) — Vi(ag, k)
=a2' (k+1)Px(k+1) — 2" (k) Pa(k)
S w [T AR Tew
K*B*PA KYBYPBK

Noticing that k — 7(k) < k+ 1 — 7(k + 1), we have

Valwrgr k4 1) — Va(ar, k)

k—1

=27 (k)Qu(k) + Z 2T (HQx(I)

l=k+1—71(k+1)
k—1
- Y 2 (D)
l=k—1(k)
<2 (k)Qu(k)

Finally
Va(zptr, b+ 1) =Va(zg, k)
0 “ 1 k-t o
= X [Zd(h)Zc(h)— 3 <—1<h>z<<h>}
l=—Tmax+1 Lh=k+!{ h=k—1+1
0
= Y [z ¢ =140 Z¢ (= 1+4D)|
l=—Tmax+1

k—1

= TII!&XCT(k)ZC(k)_ Z (;T(Z)Z(;(Z)

1=k~ Tmax
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Noticing that for Z > 0 and any matrix T = [%] € R"*™ we have

{TZ*TT T

T" Z]ZO

Hence

k—1 T r, 1
w1z T e
“S,E(Jcm o z) |

k—1
=7 (MTZ7' T ek + 26" (T > <)
I=k—7(k)

k—1
+ 5wz

I=k—7(k)
< Tan (WTZ7' T E(R)

LT BT et — o (k= r()+ 3 (D2

l=k—Tmax

>

r

Thus

1/73(1];4,_1 b k+ 1) - "{3(Ika k)
< Va(@pyr, b+ 1) = Va(ag, k) +T
.T Tl —1 T 4T
<& (k) (rm [TJ 7z 17 1]
N (A" —-DNZ(A-I) (A"-I)ZBK
fmex| gTRTz(A-I) KTBTZBK

T+ T1T -1 + TQT .
* [—Tf’ +1, —1, -1 | )

Therefore, for any £(k) # 0, we have

Vizkir b+ 1) = V(ee. k)

(bll @12
s&%k)([ o’ qJ

<0

if LMI (4) holds and @) is set to be small enough. |

Remark 4: The use of the logic ZOH ensures that k—7(k) < k+1—
7(k+1), which further guarantees that Zj:,clﬂfr(,cﬂ) 2T (Qu(l)—
Zf":_k]ir(k) 27 (1)Qx(1)< 0. This inequality however does not always
hold for a general time-delay system, where an additional term such
as Z([J:ﬂ_"mxﬂ Z,]z;,lklﬂ 2T (h)Qu(N) is often introduced in V4 to
cancel the positive term Z;‘:lg+lfr(k+1) 27 (1)Qx(1) [22]. In our case,
there is no need to introduce such additional term in V>, and it is fur-
ther shown in the proof that V5 is redundant since (7 > 0 can be set
sufficiently small in a positive definite sense.

Based upon Theorem 1, we are ready to present two procedures for
the controller design. They can be combined together to balance the
computational complexity and conservatism of the conditions.

Lemma 1: Consider system (1), there exists a networked controller
(2) such that NCS (3) is asymptotically stable if there exist matrices
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PeSt,XeST,ZecSt, WesST, Ti € R"*", T, € R"*™ and
K € R™*" satisfying LMI

vy . . . .
-1 +1, -1, -17 . . o
7 7 - 1 . . <0
A—T BEK 0 W o
A BK 0 ) =X
)]
with equality constraints
ZW =1, PX =1 (6)
where ¥1 = —P + 17 + TlT.
Proof: Note that (4) is equivalent to
A . . . °
Tl +T, =T, - T o o
T 7 - lelx . . <0
A-T BK 0 —-Lz7' .
A BK 0 0 -pt
Q
This inequality is further equivalent to (5) and (6) if we define W =
Z'and X £ P, n

Although the cone complementarity linearization type algorithms
[23], [24] are efficient to solve such problems, in most cases, we prefer
LMI conditions since they can be solved more directly. Next we pro-
vide an LMI condition.

Lemma 2: Consider system (1), there exists a networked controller
(2) such that NCS (3) is asymptotically stable if there exist matrices
XesSt,West, T, e R"*", T, € R"*" and Y € R™*" such
that LMI

¥, ° ° ° .
—T1T +Tz —Tz —TQI L] L ] [ ]
Tr 5 Ty o e | <0 (8
(A-1)X BY 0 ——L—W
AX BY 0 0 —x
holds for some scalar « > 0, where ¥; = —X + T + 77 and
U3 = —(1/Timax ) (20X — o*W). In this case, the controller is given
by K =YX '

Proof: Pre- and post-multiplying (7) by
diag(P~',P~',P~",I,I), and defining X = P,
Y 2 Kp'w 2z T, &2 PP, T, 2 P'TLP Y,
we have

¥, ° ° ° .
—T1T + Tg —Tz - TQI L] * [
Tt T4 0, . e | <0 (9
(A-1)X BY 0 ——W
AX BY 0 0 —x
where ¥, =  —(1/Tmax)XW™'X. Note that (X -

aW)(aW)™ (X — aW) > 0 implies 20X — oW < XW™'X,
that is, ¥4 < 3. Therefore, the solvability of LMI (8) for some given
scalar « > 0 guarantees the solvability of inequality (9). ]

Remark 5: Lemma 1 and Lemma 2 can be combined to design the
controller. First one should try to solve (8) for some scalars o« > 0. If
a solution cannot be found, then try to solve (5) and (6).
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Fig. 3. Initial condition response of the closed-loop system.

IV. EXAMPLES

In this section, we illustrate the developed theory via several nu-
merical examples and simulations. The continuous-time processes are
taken from the recently published papers. Here, we first discretize them
to their corresponding discrete-time versions, then apply the controller
design methods in this technical note to construct the networked con-
trollers, and finally we conduct simulations based upon the framework
in Fig. 1 in Section II. For the transmission characteristic of the net-
works, 1 < 7(k) < 5 is assumed. The initial control input is chosen
to be zero.

Example 1: Consider an unstable batch reactor [1]:

138 —0.2077 6.715 —5.676
b= | 0OSIE —420 0 0.675 ()
1.067 4273 —6.654 5.803
0.048 4273  1.343 —2.104
0 0
5679 0
1136 —3.146 | “V)
1136 0
We discretize the system with 7 = 0.005 s and obtain
1.0070  —0.0010 0.0330 —0.0278
—0.0029 0.9788 —0.0000 0.0034
wk+D=| 0052 00211 09675 0.0288 | M)
0.0002  0.0211  0.0066  0.9897
0.0000 —0.0003
0.0281  0.0000
0.0060 —0.0155 | “*)
0.0060 —0.0001

Based upon Lemma 2 with o = 1, a networked controller is

" 0.9762
T | 4.4068

—2.5469 0.1292
—-0.3153 5.2231

~1.8632]
~1.1676

The initial condition response of the closed-loop system is plotted in
Fig. 3, and Fig. 4 shows the distribution of the transmission time delays
and packet losses. The initial system state is given by o = [—5050]".
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Example 2: Consider the linearized state-space model of motion
about the upward unstable equilibrium position of a pendulum [8]:

0 1 0 0 0
. 63.25 0 0 O ) —520.72
e e o B 1)
-33.31 0 0 O 804.13

The discretized system at 75 = 0.005 s is

1.0008  0.0050  0.0000 0.0000
0.3163  1.0008 0.0000 0.0000
z(k+1)= x(k
wk+1=1_00004 —0.0000 1.0000 0.0050 |
—0.1666 —0.0004 0.0000 1.0000
—0.0065
—2.6043
k
0.0101 | “%)
4.0210

Lemma 2 with « = 1 provides us with a networked controller
© =10.3662 0.0539 0.0034 0.0082]x

A simulation is given in Fig. 5 and Fig. 6, and the initial system state
iszo =[-5050]".
Example 3: Consider the unstable dynamic system in [17]
-1 0 -0.5 0
w(t)y=11 =05 0 z(t)+ [0
0 0 0.5 1

u(t)

when the sampling period is chosen as T; = 0.2 s, the system is dis-
cretized as

0.8187 0.0000 —0.0955
x(k+1)= [0.1722 0.9048 —0.0094 | =(k)
0.0000 0.0000 1.1052
—0.0097
+ | —0.0006 | w(k).
0.2103
Lemma 1 gives us a networked controller
w=1[0.0599 0.0261 — 0.8385]x
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A simulation is given in Figs. 7 and 8, and the initial system state is
zo = [-505]T.

In the simulations, 7(0) is set to be zero and 7(k + 1) is first gener-
ated uniformly distributed over {1, ..., 5}, then compared to 7(k)+1.
Ifr(k+1) > r(k)+1,weletm(k+1) = 7(k)+ 1 to force the ZOH
to use the newest control information. This is also the reason why the
percentages of larger delays are smaller. The transmission time delays
and packet losses are calculated from the values of 7(%).

Example 4: Consider the unstable discrete-time system in [19]:

0.8 0.002
0 1

] a(k) + {()(.)3] u(k)

The optimization procedure in [19] gives the maximum upper bound
of the input delay 7 (%) as 3 (the reported value in [19] was 3.6239, but
integral value is considered here). However, applying Lemma 2 with
« = ().5 we can obtain a stabilizing controller

w(k+1) = {

uw = [0.0005 —0.1304]x

for Tmax = 15. Therefore, the results in this technical note are much
less conservative than those in [19].



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 2, FEBRUARY 2009

10 T T T T T
i . ﬁ;
Y
8t i’ ". B
P!
N 1
61 y
i
2 4r "\ ]
E2f y
@ .
@ N
>,
7
_6 L 1 1 1 1 1
0 5 10 15 20 25 30

time (s)
Fig. 7. Initial condition response of the closed-loop system.

0.7 T T T T T T

0.6+ 4

0.5+ 4

04l J

0.3+ J

0.2+ ]

0.1t 4

0 [ ]

1 2 3 4 5 lost

Fig. 8. Distribution of time delays and packet losses.

V. CONCLUSION

The stabilization problem of networked control systems has been
studied in the technical note. We have first discretized the continuous-
time system to a discrete-time system with input delays, then addressed
several sufficient conditions for the stability and stabilization of the dis-
cretized networked control systems based upon the Lyapunov theory.
Finally, the developed theory has been illustrated by the numerical ex-
amples and simulations.

One assumption of the theory developed in this technical note is that
the components of the system state are sampled simultaneously at the
sampling instants. A possible relaxation of this is to allow the sampler
sampling the system state within the sampling intervals. Another relax-
ation approach is to use multiple sensors to sample the system state. In
those cases, we may treat the difference between the sampled values
and the values of the system state at the sampling instants as uncer-
tainty, then the techniques from robust control may be borrowed.

Another assumption is that the sensor and the actuator are synchro-
nized at sampling instants. A possible way to remove this requirement
is to use multiple sensors/actuators and to synchronize them at dif-
ferent sampling instants. In this case, the closed-loop networked con-
trol system becomes a discrete-time system with multiple input delays,
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and co-design techniques might be used. That is, the communication
network is first designed to satisfy certain performance and then the
controller is designed.
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