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Abstract—This paper addresses the joint optimization of power
control and receive beamforming vectors for a multiuser single-
input multiple-output (SIMO) antenna system in the uplink in
which mobile users are single-antenna transmitters and the base
station receiver has multiple antennas. Channel state information
at the receiver (CSIR) is exploited but the CSIR is imperfect with
its uncertainty being modeled as a random Gaussian matrix. Our
objective is to devise an energy-efficient solution to minimize
the individual users’ transmit power while meeting the users’
signal-to-interference plus noise ratio (SINR) constraints, under
the consideration of CSIR and its error characteristics. This is
achieved by solving a sum-power minimization problem, subject
to a collection of users’ outage probability constraints on their
target SINRs. Regarding the signal power minus the sum of
inter-user interferences (SMI) power as Gaussian, an iterative
and convergent algorithm which is proved to reach the global
optimum for the joint power allocation and receive beamforming
solution, is proposed, though the optimization problem is indeed
non-convex. A systematic scheme to detect feasibility and find
a feasible initial solution, if there exists any, is also devised.
Simulation results verify the use of Gaussian approximation
and robustness of the proposed algorithm in terms of users’
probability constraints, and indicate a significant performance
gain as compared to the zero-forcing (ZF) and minimum mean-
square-error (MMSE) beamforming systems.

Index Terms—Convex optimization, MIMO antenna, multiple-
access channel, robust design, SDP relaxation, S-procedure.

I. INTRODUCTION

ULTI-ANTENNA systems [or known as multiple-input

multiple-output (MIMO)] are the key of improving
the energy and spectral efficiency of communication over
wireless channels. This capacity gain is achievable not only
in a point-to-point communication system [1], but also in
both downlink and uplink of a multiuser wireless network
[2]-[7]. Previous studies on multiuser MIMO systems are
mostly based on the assumption of having perfect channel
state information (CSI), under which the optimal strategy
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in achieving the channel sum-rate has already been found
[3], [4] and some low-complexity beamforming approaches
have also been proposed (e.g., [S]-[7]). Remarkably, due to
duality theories, the referenced works apply for both up and
downlinks. However, it is known that the performance gain
depends greatly on the correctness of the CSI available at
both the transmitters and receivers and an unusable CSI will
degrade the system performance considerably [8]. Due to
estimation errors, the results based on a model with perfect
CSI at the receiver (CSIR) are rarely applicable in practice,
and a technique robust to CSIR errors needs to be sought.

Robust systems against channel mismatches can be obtained
by two approaches: 1) worst-case optimization and ii) stochas-
tic or statistical analysis. In worst-case approaches, the CSI
error has to be bounded and the system is required to maintain
a given quality-of-service (QoS) for every possible channel re-
alizations and error conditions [9]. This technique is, however,
impossible if the CSI error is unbounded, for instance, in the
case when the CSI is estimated at the receiver from training,
which results in an unbounded Gaussian uncertainty in the
channel estimates. For this reason, statistical approaches have
emerged to provide robustness, but in the form of confidence
level measured by probability [10]. Motivated by the fact that
CSI error tends to be Gaussian distributed at the receiver, this
paper will adopt the stochastic approach. Some of the related
works are now reviewed below.

In [11]-[14], robustness is realized via the outage prob-
ability or the probability of distortionless response being
considered as either a constraint or cost. To be specific, [11]
investigated a multiuser single-input multiple-output (SIMO)
system in the uplink! assuming the knowledge of the density
function of the spatial covariance uncertainty. A robust beam-
forming scheme to minimize each user’s outage probability
was presented. Later in [12], a multiple-input single-output
(MISO) downlink channel (i.e., the reverse link of a SIMO
uplink) was addressed and a zero-forcing (ZF) beamforming-
based cross-layer method which maximizes the system good-
put with users’ outage probability constraints was devised. Re-
cently, [14] studied an uplink space-time block-coding (STBC)
system and the receive beamforming vectors were optimized in
maximizing the users’ probability of distortionless response.
Nevertheless, in the uplink results [11], [14], power control

'In a SIMO uplink, mobile transmitters employ single antennas and only
the base station receiver has a multi-element antenna array, whereas for a
multiuser MIMO, both the base and mobile stations use multiple antennas.
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between users was not considered, which would have a severe
impact on the users’ power consumption, while the adoption
of ZF beamforming in [12] also inevitably compromises the
capacity performance considerably [15].

In this paper, we consider a multiuser SIMO uplink system
with imperfect CSIR. In an uplink system, the (transmit)
power consumption at the mobile stations, is crucial because
of the limited battery life. For this reason, power control
is particularly important since it can manage the interfer-
ence levels at the users’ output signals, thereby reducing
the required transmit power from the users for a given QoS
(e.g., [16]-[18] addressed the optimal power control in a
multiuser environment based on statistical CSI). The objective
of this paper is to minimize each mobile user’s transmit
power while attaining the users’ given outage probability
constraints, by jointly optimizing the power control and the
receive beamforming vectors of the users based on imperfect
CSIR and the statistical knowledge of the CSIR uncertainty.
Using the result in [19], it will be shown in Section IV-C
that in our setting, minimization of each user’s power can be
accomplished by minimizing the sum-power of the users. As
such, mathematically, we study the sum-power minimization
problem with individual users’ outage probability constraints
in the uplink. Note that for each user, outage occurs if the
target signal-to-interference plus noise ratio (SINR) is not
satisfied and is caused by the CSIR errors, which we model
as complex Gaussian, as is typical in the CSI estimates from
training based on minimizing the mean-square-error (MMSE).

The problem under investigation is challenging because first
the joint power control and receive beamforming optimization
is non-convex and secondly, the outage probability expression,
which involves the distribution of the signal power minus the
sum of inter-user interference power (SMI) on the SINR, is not
known. To overcome the latter, we propose to treat the SMI as
Gaussian,? which permits to express the probability constraints
in closed form. We then tackle the problem by developing an
iterative algorithm which converges to a joint solution after a
number of iterations by optimizing one set of variables (i.e.,
the power control vector or the beamforming vectors) at a
time while keeping the other one fixed. Remarkably, we shall
prove, by the method of standard mapping, that the algorithm
converges to the global optimum?® though the problem is not
convex. Feasibility issues are also addressed by presenting
a method that guarantees to obtain a feasible solution as
long as there exists one. Simulation results will reveal that
probabilistic robustness at the user-level is achieved with each
mobile user’s power consumption minimized in the uplink.
Further, a significant performance gap between the optimal
power control with fixed ZF beamforming vectors and the
joint power and beamforming optimization is observed.

The remainder of the paper is structured as follows. In
Section II, we introduce the system model of an uplink MISO
system with imperfect CSIR. The robust optimization problem
is also formulated. Section III describes how one set of

2The Gaussian approximation improves with the number of users due to
the central limit theorem. Remarkably, results in Section VI will show that
this approximation is acceptable even for systems with small number of users.

3Note that the global optimality is claimed for the problem with Gaussian
probability constraints. For this reason, the proposed method is suboptimal.
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variables can be optimized with others being fixed. Section
IV then proposes an iterative algorithm which makes use of
the results in Section III to obtain a joint solution for the
power control and receive beamforming vectors. Convergence
analysis, a proof for global optimality, and a scheme to find a
feasible initial solution will also be given. Section V discusses
some practical issues of the algorithm. Simulation results are
presented in Section VI and we conclude the paper in Section
VII.

Throughout this paper, the following notations are adopted.
Complex number field is denoted as C. Scalar is represented

by a lowercase letter and | - | denotes its modulus. Vectors
and matrices are represented by bold lowercase and uppercase
letters respectively, and || - || is the Frobenius norm. E[]

denotes the mean of a random variable, which may be a scalar,
vector or even matrix. The superscript T is used to denote the
Hermitian transposition. X >~ 0 means that the matrix X is
positive semi-definite, while trace(A) denotes the trace of A.
Finally, x ~ CN (m, V) denotes a vector of complex Gaussian
entries with mean vector of m and covariance matrix of V.

II. SYSTEM MODEL
A. Multiuser SIMO Uplink

Consider an M-user uplink system where each mobile
user has single antenna and the base station receiver has
np receive antennas, as shown in Figure 1. For a particular
user, say user m, data symbol s,, € C is transmitted in
time with E[|s,,|?] = pm, where the time index is omitted
for conciseness. At each of the receive antennas of the base
station, a perturbed version of the transmitted symbol caused
by a multiplicative channel fading and an additive noise is
received. In this multiuser environment, the received signals
can be written in vector form as

M
X = § hannL +n,

m=1

ey

where h,, € C"F is the channel vector from user m to
the base station and n ~ CN(0, NoI) is the noise vector
of independent and identically distributed (i.i.d.) complex
Gaussian entries. We model h,, as CN(0,I) so that the
channel is in Rayleigh flat-fading, as is typical for indoor en-
vironments without the direct line-of-sight. It is also possible
to characterize the channel using a composite model g,,h,,
where the scalar g,,, can be used to account for the large-scale
path loss and shadowing and is assumed to be a constant
during the period of interest. As such, in the following, for
simplicity, we assume g,, = 1 VYm.

The soft-estimate of s,,, denoted by s,,, can be obtained
by multiplying x with a receive beamforming vector r,,, i.e.,

=1l x Vm. ()
The fidelity of the output signal is measured by the SINR

m Inhmz
M e |r | ’ (3)

Z DPn |rinhn|2 + Ny
n—1

Iy, =

n#m
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The system model of the multiuser SIMO uplink system.

Fig. 1.

B. Gaussian CSIR Uncertainty

At each user, SINR depends on the power allocation of all
users {p, }v, and the receive beamforming of this particular
user, r,,. ldeally, both the power control and beamforming
vectors should be jointly optimized in accordance with the
CSIR {h,, }v,. However, CSI is usually estimated from train-
ing at finite received signal-to-noise ratio (SNR) based on the
MMSE criterion and uncertainty in the CSI estimates will
exist. To model this CSIR uncertainty, we assume

h,, = h,, + Ah,, VYm, (4)

where flm is the CSI estimate known at the base station,
and Ah,, ~ CN(0,02I) corresponds to the CSIR er-
ror/uncertainty. This model is particularly suitable for the case
when CSIR is learned from an MMSE estimator which results
in a Gaussian error, independent of flm. In addition, the mean-
square-error (MSE) in the CSI estimates is measured by

ol

—E

nr
In general, 07 < 1 and typically, o7 should be smaller than
0.05 in order for the CSI estimates to be useful. This model
has been widely used to characterize the CSI uncertainty due
to channel estimation (e.g., [8], [12], [20], [21]). Henceforth,
we assume that “imperfect CSIR” includes the knowledge of
{fln}vn and o7, which will be exploited in the design of a
robust system.

~ 2
b ] = 18k, 2] <ot ©)

C. The Robust Design Problem

With unbounded CSIR uncertainty in (4), it is impossible
that a given SINR of a user can be maintained for every
possible channel error condition. For this reason, robustness
can only be achieved in the probabilistic sense. In light of this,
we consider that users are subject to individual probability
constraints on their target SINRs {v,}vn, and our aim is
to minimize each user’s (transmit) power consumption for
attaining the users’ service probability requirements {e, v
in the SIMO uplink (1) with imperfect CSIR. Mathematically,
that is,

PHTy > vm}) > em  Ym, (6)

where P(A) denotes the probability of an event A, and
p = (p1,...,pu) is the power control vector. The cost
function in (6) is an element-wise minimization of p. Notice
that the service probability is conditioned on the channel
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estimate {h,,} and the outage is caused by the estimation
error only.
To begin, we note that the probability constraint is

P ({xm > 'YmNO}) > Ems @)
where
2 M 2
T 2 D |rinhm| — Ym Z Pn |rInhn| . (8)
n#m

In order to proceed further, we need to know the statistics of
Ty, whose randomness is caused by the channel uncertainty.
For given {r,,} and {p,,}, it is noted that |r] h,|? follows
a Chi-square distribution with 2 degrees of freedom and the
nonlinear parameters s = ,/p,|ri,h,| and ¢ = 2 ”20’1 As
such, x,, is the difference of non-central Chi-square random
variables. This kind of distribution has been studied in [22],
[23], but unfortunately, the cumulative distribution function
(CDF) is too complicated to be useful for the optimization of
the power and beamforming vectors. To resolve this, we note
that x,, is the sum of M? independent random variables and
from the central limit theorem (CLT), if M is large, then x,, is
anticipated to be approximately Gaussian with the parameters
la,, = Elzm] and 02 = VAR[z,,], given as (9a) and (9b)
(see top of next page and see Appendix A for the derivation)
As a result, the service (or non-outage) probability for user m
can be rewritten as

m No—Ha,,
& 3 —gerf (_V \/500:; _) > e (10)
T m N -
o en ol > erf 1 (22, — 1)

where erf(-) denotes the error function, and erf~*(-) denotes
its inverse. Substituting (9a) and (9b) into (10), (7) becomes
(11). For ease of exposition, we define the following param-
eters:

= V2erf1(2e,, — 1), (12a)
Am = h,,h{, + 071, (12b)
M
B,.(p) = > puAn +NoI | (12¢)
e
Cu(p) =1, [ (%iﬁmfﬁ + o—ﬁI) 2,
+92, Z (208hb] + 1) 22|, (129)
n#m
D, (p) = pmAm — Bin(p). (12e)

Further to the Gaussian approximation, (6) can be expressed
as

A

min  p st F,(p,rn,) rIan(p)rm

p>0, {rm}

rInCm(p)rmZO Vm. (13)

The cost function in (13) is an element-wise minimization
of p, which by the results in [19], [28], can be realized by
minimizing the sum of the elements of p or >  p, (more
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M
Pm—W’mZPn )

h,hi |t + 07 (92)
n#Em
M o
923 (2a,§hnh; + a;‘;I) 22| T, (9b)
n=1
nem

M M
rl | pm Ym Y puhphl | T+ 0% | D= Ym Y pa | — V2erf TN (26, — 1)
e nm
M

th | (202 BBl + o) 52, +92, > (203hab + o) 92 |r > 30 No - (1)

n=1

n#m

details will be provided in Section IV-C). In what follows, we
shall focus on

me s.t.

In the sequel, our efforts will be spent on solving (14)
optimally whereas the accuracy of the Gaussian approximation
will be tested and discussed in the numerical results section.

min Fon(p,tm) >0 VYm. (14)

P>07{rm}

III. FIXED-POINT ANALYSIS AT THE OPTIMUM STATE

Since (14) is non-convex and the optimizing variables p and
{r,»} depend on each other, the joint optimization problem is
extremely arduous. In this section, we look at how one set of
variables can be optimized if the others are given and fixed.
The results can be interpreted as the fixed-point analysis at the
joint optimum state, and will facilitate an iterative optimization
procedure to be presented in Section IV.

A. Optimal Receive Beamforming Vectors

If the optimal power vector p is known, finding the cor-
responding optimal r,, requires finding the vector that maxi-
mizes the individual user’s performance metric F,,(p,r,,) in
(14), i.e.,

Topt = arg max F(p,r) = r'Dr — VriCr,

15
l[rll=1 ()

where for convenience, we have omitted the user index m.
This problem is not convex because of the equality norm
constraint and an indefinite matrix D. However, we shall
show that the global-optimal solution can indeed be found
using semi-definite programming (SDP) relaxation followed
by an efficient one-dimensional search, such as the DIviding
RECTangle (DIRECT) algorithm [24]. Before we move on, it
is worth noting that with perfect CSIR, the optimal receive
beamforming vector can be easily found by MMSE, but this
is generally not the case here.

Step 1—Simplified Beamforming Optimization Using SDP:
We proceed by first considering that r'Cr = ¢ for some fixed
and known t. Then, (15) reduces to

fi) = min —r'Dr.

16
[[r]|=1,rfCr=t (16)

The optimal solution of (16) is summarized in Theorem 1.

Theorem 1: The globally optimal solution to the non-
convex quadratic problem (16) can be obtained by solving
the SDP:

trace(R) =1,

trace(CR) =t (1n

min —trace(DR) s.t. {
R>0
Also, there exists at least a rank-1 solution R such that R =
rri.
Proof: We outline the proof here with the technical details
given in Appendix B.

1) An equivalent convex problem (60) is first found in the
sense that both (16) and (60) achieve the same objective
value using the S-Lemma [25], [26].

Due to the rank relaxation, the solution to (17) generally
provides a lower bound for (16). However, it can be
shown that (17) is exactly the dual of (60) and because
of the slater’s condition, they have the same objective
value. As a result, the relaxation problem (17) is equiv-
alent to (16).

Finally, the optimal rank-1 solution to (17) in closed
form is derived based on the Karush-Kuhn-Tucker (nec-
essary and sufficient) condition, which gives rqp; of (16).
This completes the proof. [ ]

Step 2—One-Dimensional Sampling Search: In Step 1, it
has been shown that with a known ¢, an optimal solution
to (16) can be obtained. Denoting f(¢) as the optimized
objective value of (16), the original beamforming problem (15)
is expressed as

2)

3)

min F)+ Vi,
Amin (©)<t<Amax (C)

(18)

where A\pin(C) and \,ax(C) denote, respectively, the small-
est and largest eigenvalues of C. Note that (18) is a problem
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with only one bounded variable ¢. Therefore, the globally opti-
mal solution can be obtained efficiently by a one-dimensional
sampling search. One possible method is DIRECT [24], which
is a numerical sampling algorithm, and requires no knowledge
of the objective function nor its gradient, and uses the infor-
mation from the samples it has obtained to decide where to
search next.

In summary, by using SDP relaxation together with DI-
RECT, the optimal receive beamforming vectors {r,,} can
be obtained for any given p. In other words, if the optimal
power vector is known, the optimal beamforming vectors can
be found.

B. Optimal Power Control Vector

With known {r,,}, the optimization of p is convex. In
particular, we use the following simple fixed-point update
[19], [28] for optimizing p such that each user’s performance
requirement is satisfied. That is, at the (n + 1)th iteration, we
have

n+l _ rIan(p”)rm + rInCm (p")rm
p s
" rInAmrm

(19)

where the superscript n denotes the variable at the nth itera-
tion. It turns out that this iterative update on p will converge
to the optimal solution given {r,, } is known. Technical details
on the optimality of this will be proved in the next section.

IV. ALGORITHM AND ANALYSIS
A. The Iterative Algorithm

The techniques above are now combined to jointly optimize
the power and beamforming vectors iteratively as follows:

1) Initialize the iteration index n = 0, and choose a feasible
joint solution ({r,},p™) (details on how a feasible
initial solution may be found, to be addressed in Section
IV-D).

2) For a known p™, the optimal receive beamforming
vectors {r’."!} are obtained by solving (18) using SDP
relaxation with a one-dimensional sampling algorithm.

3) For a given set of {r™F1}, p"*! is updated using (19).

4) Update n := n + 1 and go back to Step 2 until it
converges.

B. Convergence Analysis

Though the above algorithm emerges naturally, whether it
converges is an important issue and this is addressed below.
Theorem 2: Given a feasible initial solution, the total trans-
mit power in the iterative algorithm described in Section
IV-A is monotonically decreasing and hence the algorithm
converges.
Proof: Given an initial feasible solution (p°, {r% }), we
have F},,(p° %) > 0. The receive beamforming vector at the
(n + 1)th iteration is subsequently chosen such that r’! =

arg maxjen =1 Fim (p”,r”) Thus, F,,(p™, ”"‘1) >0 and

n+1l _ (r;ﬂn+1) ”+1 + \/ ”+1 TC )I‘ﬁ#l < n
Pm = ( 777}L+1)TAmrm S Pme-
(20)
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This means that each user’s transmit power (and so does the
total power) is monotonically decreasing. Furthermore, since
r'B,,(p)r and r!C,,(p)r are increasing functions of p,

- (n+1)TB n+1 n+1+\/ n+1)1‘%+1
Pm > ;
()t A e 3%“
(21)
which implies that
FE(p" ) > 0. (22)

It follows that all the constraints are satisfied in each iteration
and the total transmit power decreases as iteration goes, so
convergence follows. Finally, from the definition of the power
update, all the constraints must be satisfied with equality at
the fixed-point (p*, %)), i.e., F(p*, 1) =0 Vm. [ |

C. Proof of Global Optimality

Since (14) is non-convex, the above convergence proof
does not generally guarantee the optimality of the steady-state
solution. However, as shall be shown in Theorem 3 below, the
proposed algorithm is indeed globally optimal.

Theorem 3: Given any feasible initial solution, the iterative
algorithm above converges to the global optimum of (14).

Proof: To facilitate our analysis, we define

i B (@)8m + /8 Con(Q)sm

Grm(g,sm) = (23)

s,TnAmsm

Note that the proposed algorithm can be viewed as a mapping

T from p" to p"*1, or written as p"*! = T (p") given by
VYm it = arg ‘rghm —r'D,, (p™)r + 1/rfC,, (p")r
7: = arg min —Fn(p",r),
Vm: ptt = G (p", o).
(24)

Now, define another mapping S from q" to q"**, or "' =
S(q™), which is given by

B,.(g")s + /sTC.(q")s
Lan+1 S m\gd m\q
VYm:s, " = arg I\Hhml STA S
St = arg”m‘m Gm(q",s),

VYm:ghtt = G(g”, s,

(25)
It can be easily shown that S satisfies the following properties.

1) Positivity: S(p) > 0

2) Monotonicity: if p > p’, then S(p) > S(p’).

3) Scalability: for any constant o > 1, aS(p) > S(ap).
Although the solution of the mapping S is unknown, it has
been proved in [19] that if the problem is feasible, such
properties can guarantee the convergence of S to the global
and unique optimum. Numerical results, however, indicate that
the proposed algorithm (i.e., the mapping 7)) does not have
all the properties. Despite this, the proof here shows that the
mapping 7 actually converges to the same fixed-point as the
mapping S, thereby ensuring the optimality of 7. This proof
goes as follows.
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By definition, (g*,s},) is the fixed-point of S if and only if

Vm :s), = arg Ir‘nn Gm(q",s),

lIsll
vm : Qm = Gnl(q ) jn)
_ (53)"™Bum(q)sy, + V/(55,)TCm(q")ss,
B (S:"L)TAmsm 7
(26)
and the power vector ¢* is unique. Denoting the fixed-point
solution of 7 as (p*,r},), we have also

. *
Vm:r,, =

= arg Hrrhln —F,(p*,r) and F,,(p*,r;,) =0,

vVm : pl, = G (p*, 1)

B,.(p*)r), + r;‘nTCm (p
v} TA,,r

)T,

(27)
We prove the main result by the method of contradiction. First,
we assume that for the fixed-point power vector p* in the
steady state of 7, there exists a better vector ¢, than r}, so

Gm(p*> Cm) < G’m(p*> I':n) = p:n (28)
Then, this implies that
ch,Bm(P)em +\/chCm(p)em (29)
<Pm
CInAmCm
and
— Fo(p*,cm) = Cjn B (p*) — ppAm] Cm
chCom(p*)em <0, (30)
which contradicts (27). Thus,
r; =arg Hnﬁm —F,(p*,r) = arg Hnﬁm Gm(p*,r). (31
Therefore,
VYm :r), = arg mln G (p*, 1),
lIrll= (32)
Vm : py, = Gm(p",17,).

In other words, the fixed-point (p*,r},) of 7 is also the fixed-
point of S. As the fixed-point of S is unique and optimal, 7°
is also optimal, which completes the proof. [ ]

Element-wise Minimum Power Vector—It has been
proved in [19] that the fixed-point power vector from S is
element-wise minimum; i.e., for any feasible power allocation
q, ¢ < ¢, and the same is true for 7. As a result, it
can be concluded that the proposed algorithm is not only
optimal in minimizing the sum-power, but also in minimizing
the individual users’ power.

D. Initialization and Feasibility Issue

Thus far, little is understood about the feasibility of linear
multiuser MIMO antenna systems with imperfect CSI and
even perfect CSI. The above analysis we have presented is
based on the condition that (14) is feasible, and the proposed
algorithm also works on the assumption that a feasible starting
point exists and is known to begin the required iteration. Here,
we address this critical issue by devising a method to check
the feasibility and to find a feasible initial solution, if there
exists any.
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D.1 Feasibility Check: The main result for feasibility check
is the QoS-balancing algorithm, which is based on solving the
problem (14), written in the following form:

pmrj;@Amrm

m=1 rIanrm + 4/ rInCnLrnL
(33)

It is proved in Lemma 1 that at the optimum, all the constraints
must be active, meaning that the constraints hold with equality.
Lemma 1: All constraints in (33) should be satisfied with
equalities to achieve the optimum.
Proof: The proof uses the method of contradiction. To
start with, without loss of generality, we assume that at the

>1Vm.

optimum p*, the mth user’s requirement is over satisfied, i.e.,
pirl At
rh B, + \/nfn [(QUZﬁmflfn + U;‘;I) (px,)? + c}
=a>1, (34

where we have defined

c2 A2 Z (2ahh hi + (ThI) (pr)? (35)

n=1
n#m
for ease of composition. Then, it is always possible to choose
— Pm -
a new power element g,, = == that gives

G Ay,

rh, Bty + \/ n2,

_(QU,%ﬁmﬁIn + UﬁI) a2, + c}
—’”rJr A, r,,

(207 B,y + 1) 220

rIanrm + \/nm + C:| (36)

Pon
Py rl Apry,

rIanrm + \/77,%1 (
1

> (—) a=1.
«

As a result, the mth user’s power can be further reduced
to Lz ~m without violating the users’ requirements (i.e., the
mth user’s requirement is still satisfied and all the other
users’ requirements are over satisfied), which contradicts the
optimality of p and therefore completes the proof. |

Now consider the following QoS-balancing problem, which
has the physical meaning of balancing the values of the users’
requirements with a total power constraint Pr:

>

h,,hi, + Uﬁl) (px,)? + c}

max
p>0,y>0,{rm}

pmrin Amrm

5Bt + \/ T Conl,
M
Z Pm < PT-
m=1

(37) is equivalent to the original problem (14) if the optimal
value of y equals one and in this case, the required Pr in

>y Vm,
(37
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(37) gives the optimal objective value of (14). Using the same
argument as in Lemma 1, we know that at the optimum, all
the constraints are satisfied with equalities. For a given fixed
r,, obtaining the optimal power allocation requires to solve

-1

min S.t.

Y
p>0,y>0

_ 1 —
(rIanrm)ypml + (rLLCm«rm«) Zypml S rInAWLrWLa
M
m=1
(38)

Note that (rf B,,r,,) and r},C,,r,,) are all posynomials of
the power allocation {p,, }. Hence, the above power optimiza-
tion problem is recognized as a geometric programming (GP)
problem [27], and thus, the optimal power allocation can be
readily found. To jointly optimize power and beamforming,
the following QoS-balancing algorithm is proposed.

QoS-balancing algorithm:

1) Initialize n = 0 and {r”,} arbitrarily.

2) For known {r" }, find the optimal {p"*! y"*1} using
GP to solve (38).

3) For given {p"*! y"*1}, the optimal {r”;"'} is found
by

n+1

Tm

m

= arg mhril [rT B,. (pn-i-l)rm] yn-i-lp;ll—l—

rml||=

5, Co (P )1y ot — vl Aty (39)

This problem can be solved in a similar way described in
Section III-A for the receiver beamforming optimization.
4) Go back to Step 2 until convergence.

Very importantly, we can see that if the optimal 3°P* > 1,
then (33) [and hence (14)] is feasible. Therefore, y°P* can
serve as a feasibility indicator. On the other hand, it can be
proved that y™ is a non-decreasing sequence as the iteration
goes, so it converges. In order to show that this algorithm
can ensure to find a feasible solution if there exists any, we
also need to prove that this algorithm can achieve the optimal
y for any given power Pr. The reason is that although y
is non-decreasing, it is not necessarily a strictly increasing
function of Pr, and when Pr — oo, y may remain in a local
optima. In other words, if the above algorithm is suboptimal,
there is a chance that the problem (14) is indeed feasible but
the algorithm fails to find a feasible solution or it can only
converge to some y*° < 1.

Theorem 4: The QoS-balancing algorithm converges to the
global optimum of (37).
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Proof: Note that the QoS-balancing algorithm converges
to the stationary point {p*, {r¥ },y*}:

[rjan (p*)rm] y*

VYm :r; =arg min
l[rm =1 P
T *
| o @, (p*)rmy
” — r,TnAmrm,
Pm
(r5,) B ()17, + /(r5,)TCm (P71}
v . * — * m m m m
e Pm Y (r;kn)TAmr;kn 7
M
Z pm = Pr.
m=1
(40)
Given y*, {p*,{r},}} is clearly optimal for the problem
l pmrInAmrm

min Z Pm St
PO frm} m=1 rIan.rm. + \/ I'Incmrm

and 2%:1 p* = Pr. As a consequence, there exists no better
solution y > y*, unless the optimal solution p to the problem
M

Z Pm St

m=1

Zy', (4D

min pmrj;q,A’mrm
p>0,{rn}

>y, (42)

1Bty + /T Conty,

permits to have Zi\n/le Pm > Pr, which, however, contradicts
the stationary property in (40). [ |

D.2 Generating Feasible Initial Points: Based on the QoS-
balancing algorithm, we provide a systematic way to obtain a
feasible solution if there exists any, which we detail as follows.

1) Initialize the beamforming vectors by choosing standard

solutions such as ZF or matched filter (or even randomly
generated). If they give a feasible solution, then exit.

2) a) Initialize n = 0 and the total transmit power Pr.

b) With P}, use the QoS-balancing algorithm to find
the optimal balanced y™.

¢) If y™ > 1, then a feasible initial solution has been
found and exit. Otherwise, update n = n + 1, and
increase the power budget by P}”l = OPp for
some preset # > 1 and then go back to Step 2-
b). If Pr is unreasonably large but still y” < 1,
(14) is declared to be infeasible, which means that
in (14), the users’ requirements (e.g., SINR, the
service probabilities or even the number of users)
have to be compromised or the transmission has
to be postponed until the channels improve to a
better state.

To conclude, as long as the reformulated problem (14) is
feasible, we can always find a feasible initial solution using
the above approach. Note, however, that (6) and (14) generally
have different feasible regions. Therefore, whether or not
the original problem (6) is feasible is not indicated by (14)
although it is arguable that they should be equivalent in the
asymptotic limit (as M — oo). More discussion will be given
in Section VI.

V. FURTHER IMPROVEMENTS

A. Extraction of Rank-1 Beamforming Vectors

In Appendix B, we describe how the optimal {r,,} can
be extracted from the higher-rank solution R,,. However, it
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turns out to be unnecessary to do so at each iteration of the
algorithm. This can be seen from the power update (19) that

trace (Bm(p”)rmrin) + \/trace (Cm(p”)rmrin)

trace (Amrmrin)

n

Pm =

(43)
and it depends only on r,,r] . As a result, the higher-rank
solution R,,, obtained from (17) can be used to perform the
power update. The rank-1 extraction is only needed if the
steady-state beamforming solution is obtained after conver-
gence.

B. Faster Convergence

In Section III-A, the fixed-point update of (19) is adopted.
Note that before the algorithm converges, this simple update
(19) does not guarantee the optimality of p” in terms of total
or individual power minimization for fixed {r”"'} at each
iteration. On the other hand, we note that it is a second-order
cone programming (SOCP) problem [27] and can be solved
efficiently. Though SOCP can be used to find the optimal
power vector, the following method is found to be much more
efficient.

For a fixed r,,,, in Step 3 of the nth iteration in the proposed
algorithm (see Section IV-A), perform the following update

m T \/rmC n+1( )) T'm
rmAmrm
(44)

and loop it over ¢ until convergence, where we have used 4
to denote the inner iteration index, and p"*1(0) = p". Proof
of this method to find the optimal power follows from that of
[28].

rIan( n+1

P (i41) =

VI. SIMULATION RESULTS
A. Setup

Simulations are conducted to evaluate the performance of
the proposed algorithm in i.i.d. MIMO Rayleigh flat-fading
channels. The total transmit SNR (defined as %) and

the per-user transmit SNR (defined as W), both aver-
aged over many independent channel realizations and channel
error conditions, are used as the performance measures. In
addition, the users are assumed to have the same target
SINR and probability constraint, v, = v = 10 (dB), and
e =¢cm Ym.

B. Benchmarks

We have considered the following three benchmarks.

o Optimal power control with ZF beamforming receivers—
A straightforward benchmark is a two-step optimization,
which first obtains the receive beamforming vectors using
ZF based on the estimated CSIR {h,,} and then deter-
mines the power by (19) given the ZF vectors.

e Optimal power control with MMSE receivers—This
benchmark integrates the power solution (19) with mul-
tiuser MMSE beamformers. The MMSE beamforming
receivers are aimed at minimizing the expected MSE of
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Fig. 2. Comparison of the outage probability of the actual and the Gaussian-
approximated xzo for 2, 5, 10 and 15-user systems using the proposed
algorithm.

the received signal over the channel error. Based on (1)
and (2), we have

M
MSE,,, = (rInhm - 1)2pm + Z |rILhn|2pn + HrmH2N0
g
(45)
and its expectation given by
Eah,, [MSE] = r, KZ h.h, + o7, ) P+ NoI| rp
— 2Pt B — 2pm bl e, + 1. (46)

Therefore, the MMSE receiver for a given p is found as
-1
h,,

M
T = [Z (Bab, + 02T) py -+ Nol (47)

n=1

where ¢ is chosen to ensure ||r,,|| = 1.

This receiver structure depends upon p, which makes the
joint optimization complicated. In particular, we use the
method in [13] to decouple the power control and the
beamforming design by removing their dependence, so

-1

M
I = < lz (BnBL + 051) +NoI| B (48)

n=1

The modified MMSE receivers balance both the interfer-
ence and estimation error, as opposed to the ZF receivers
that handle the interference based on the estimated CSIR.
The robust power allocation is also found by (19).

« Optimal power control with matched filtering receivers—
Another possible solution is to use the matched filtering
receivers in accordance with the estimated CSIR {h,,},
and then apply the power allocation solution (19) with the
matched filters. Nevertheless, in our simulations, we have
never found any feasible power allocation given these
receivers, indicating that it is utterly inappropriate to use
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purely single-user receivers without concerning the inter-
user interferences or channel errors. Because of that, no
numerical results are shown for this benchmark.

o Non-robust beamforming (NRB)—In this case, the beam-
forming vectors and power allocation are optimized based
on the estimated CSIR without concerning the CSI errors.

C. Results

Figure 2 shows the impact of Gaussian approximation on
the outage probability constraints. In particular, this is as-
sessed by the simulated outage probabilities and the Gaussian
approximated results against x5 for 2, 5, 10 and 15-user
SIMO systems with target SINR ~,, = 5 (dB) and outage
requirement 102, In this figure, the CDF results over the
random channel error statistics are plotted for a given channel
realization H_yser 2 [fll . l~1M} = 1:115(1 M, 1: M),
which is given in Figure 3. Results for both o7 = 0.01 and
o7 = 0.02 are shown to cover a wide range of channel
estimation conditions.

As we can see, the CDF of o7 = 0.01 is sharper than
that of ‘7% = 0.02 and this is because U% = 0.01 leads
to a smaller variance on xy, as is anticipated from (9b).
Besides, it is observed that for small 0,21 = 0.01, the Gaussian
approximated probability matches very well to the exact one,
even if the number of users is as small as 2. For a larger
o7 = 0.02, this agreement continues to be seen for 15-user
systems. Importantly, for all the results we show, the outage
probability is always guaranteed to be less than the required
value 1072, As a final remark, we are indeed not expecting to
see the improving accuracy of Gaussian approximation with
the number of users in the figures, as the results are limited to

TABLE I
SERVICE PROBABILITY FOR 10-USER SIMO SYSTEMS.
e =0.85 e =0.99 e = 0.9999
| Proposed | NRB | Proposed | NRB | Proposed [ NRB
User 1 0.8631 0.0231 0.9831 0.0062 0.9989 0.0464
User 2 0.8579 0.0032 0.9816 0.0094 0.9980 0.0226
User 3 0.8612 0.0253 0.9792 0.0375 0.9987 0.0208
User 4 0.8599 0.0194 0.9843 0.0484 0.9983 0.0283
User 5 0.8571 0.0055 0.9879 0.0308 0.9996 0.0869
User 6 0.8629 0.0066 0.9825 0.0548 0.9981 0.0182
User 7 0.8629 0.0147 0.9817 0.0282 0.9980 0.0093
User 8 0.8631 0.0078 0.9825 0.0675 0.9987 0.0286
User 9 0.8589 0.0669 0.9837 0.0416 0.9990 0.0415
User 10 0.8638 0.03710 0.9797 0.0325 0.9982 0.0178

some particular channel realizations Hs, though the tightness
should improve in the statistical sense (if the effect of the
channel realization is averaged out) from CLT.

Results in Table I provide the achieved service (or non-
outage) probability for the proposed algorithm with 10 users
and o7 = 0.01, when the probability requirements at SINR of
10 (dB) are ¢ = 0.85,0.99,0.9999. The simulation results
were obtained by averaging over 10° independent channel
realizations in the presence of channel errors. As can be
observed, the probability constraints are closely met by the
proposed algorithm whereas the non-robust approach attains
only a very low service probability (< 9%), which reveals
the importance of considering the channel error statistics
for beamforming and power allocation optimization for QoS
provision.

The convergence of the proposed algorithm is illustrated by
the results in Figure 4, which we show for a 10-user system.
Results verify that the algorithm converges, in both the total
transmit SNR and the individual users’ SINR. Remarkably,
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Fig. 4. Convergence behavior of the proposed algorithm for a 10-user system.

convergence is typically achieved in just a few iterations.
Figure 5 studies the impacts of the channel error variance
and the target SINR on the total transmit SNR against the
service probability requirements for the proposed system with
10 users. In particular, the proposed algorithm and the optimal
power control with ZF and MMSE beamforming receivers
are compared. First, as expected, the required transmit SNR
increases with the target SINR, the service probability and
the channel error variance. In addition, there is a consider-
able SNR gap between the proposed algorithm and the ZF
approach, which can be as large as 10 (dB) if the target
SINR is 7 (dB), UZ = 0.02 and ¢ = 0.99, demonstrating
the importance of joint receiver beamforming and power
allocation optimization. We also note that for the case with
e = 0.99 and o7 = 0.02, the required transmit SNR for the
ZF systems is nearly 30 (dB) while the proposed algorithm
needs only slightly under 20 (dB). In addition, the performance
of robust power control with MMSE receivers is also shown
with the target SINR of 7 (dB) and ¢ = 0.8 ~ 0.95 (other
results are not available due to the difficulty of finding feasible
channel realizations). Results illustrate that for relatively small
€, it has about 1 (dB) gain as compared to the system with
ZF receivers, while this gain vanishes and may require even
more SNR than the ZF system if the channel error is severe.

In Figure 6, we study the impact of channel spatial corre-
lation on the system performance. We assume that the (i, j)th
entry of the channel correlation matrix is chosen to be pl*~!
with p = 0.4. Compared the results in Figures 6 & 5, it
is easily seen that with channel correlation, more transmit
SNR is required to attain the required individual users’ QoS
performance. Another observation we have is that when there
exists channel correlation, there is a detrimental effect on the
system feasibility for each particular channel realization. In
addition, from the results in both Figures 5 and 6, it can be
concluded that the proposed algorithm is much less sensitive
to the channel estimation errors, as compared to the ZF and
MMSE approaches.
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Finally, the average transmit SNR per user results are
provided for 2-user, 5-user, 10-user and 15-user systems in
Figure 7. Results illustrate that the average transmit SNR
per user increases with the target SINR and the channel
error variance but decreases with the number of users, which
indicates that multiuser diversity is in use to lower the required
transmit SNR.

VII. CONCLUSION

This paper has investigated the robust beamforming design
in the multiuser SIMO uplink with CSIR uncertainties at the
base station receiver. The objective is to minimize each mobile
user’s transmit power by jointly optimizing the power alloca-
tion and the receive beamforming vectors subject to individual
users’ probability constraints on the output SINRs. Regarding
the SMI as Gaussian, we proposed an iterative algorithm
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Fig. 7. Average transmit SNR per user against the required service probability
of the proposed algorithm for various settings.

which is proved to converge to the globally optimal solution.
Results have shown that the proposed method outperforms
the power-only allocation with ZF and MMSE beamforming
vectors significantly.

APPENDIX A: MEAN AND VARIANCE OF z,,

M
Define t,,, £ Py — Ym > pn. Then, we have
n=1

n#m
M
Mz, = rjn pmhmhjn - Tm Z pnhnhIL rm + U}%tm
n=1
n#m

(49)
and (50) (see top of next page), which can be simplified to

(%gfljnm + a;fI) 2,

o3, =1h y . T,
+2, 3 net (QU%hnhIl + UﬁI) p2
(51
where ||r,,||> = 1 has been used and
E [r;ﬁnAermrinAhnAerm] —0, (52)

E [rinflnAermranhnfler} =o?rl h,hir,,, (53)

E [r;AhnAh;rmrinAhnAerm} = 201, (54)

Note that W, £ AhnAhIl obeys the complex Wishart
Distribution, i.e., W,, ~ CW(0?1,1). Therefore, (53) and (54)
have been simplified by

E [Ahlr,rl Ah,]| = Eftrace(r,,r], W,,)]

= r] trace(E[W,,])r,,, o

E {rInAhnAermrinAhnAerm} =E [rIanrmrIanrm] ,

(56)
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which follow from the useful expectations for complex
Wishart matrix W, ~ CW(X, k) in [29]:
{ E[W,] = kX,

; (57)
E[W,RW,] = k’SRY + ktrace(RX) 3.

APPENDIX B: PROOF OF THEOREM 1

Note that part of the proof is based on the previous work
with two inequality constraints in [30].

B.1 The Tightness of the SDP Relaxation

First note that (17) can be rewritten as

maxg st. —riDr—¢>0, ri’r=1, rfCr=1¢

g,r

(58)

Using the extended S-Lemma in [25], [26], the following two
claims are equivalent:

(1) —r'Dr — g > 0,Vr € C"#*! such that rfr = 1 and

riCr =t
(2) There exist real A, A2, such that
—g+ A+ Aot 0
[ 0 “D-nI-Mc |50 69
As a result, (58) becomes a semi-definite problem
—g+ A1+ Aot 0 .
s, 9 st { 0 D-MI-Mne |20
(60)

Because of the fact that (17) and (60) are equivalent, they have
the same objective value.
Now, consider the SDP relaxation of (17)

gi% —trace(DR) s.t. trace(R) =1, trace(CR) =t. (61)

Because R is not necessarily rank-1, (61) will in general yield
a lower bound for (17). However, we are going to show next
that (61) is indeed the dual of (60).

Let the dual variable of (60) be

Qo = [ Qxll (3 ] ~0c C(Nr+1)><(Nr+1)7 (62)

where Q11 > 0 is the (1, 1)th element of Qy and Q = 0. The
Lagrangian is given by

L(>\7 51,52, QO)

B —A+ 81+ sot 0
__A_”ace({ 0 —D—sll—szc]Q‘J)

=— A= Q11(—=A+ 81 + sat) + trace(DQ)
+ sitrace(Q) + sotrace(CQ)
=X (Q11 — 1) + trace (DQ) + s1 (trace(Q) — Q11)

+ 59 (trace(CQ) — tQ11) -
(63)
The dual function is

9(Qo) = /\inf L(\, s1,52,Qo)

»S1,52

= inf
A,81,82

+ s1(trace(Q) — Q11) + 59 (trace(CQ) — thl)J .
(64)

A(Q11 — 1) + trace (DQ)
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i hi Anf © Ahl R t Aht Al ?
) Dm (rmhmAhmrm +r] Ah! hi r,, + rmAhmAhmrm) '
0y = —opt, (50)
m

—Ym Zj\fj Pn (rlnflnAhIer +r} Ah,hir,, + rInAhnAhIer)

Apparently, g(Qg) is unbounded unless

Q11 = 1,trace(Q) = Q11 = 1,and trace(CQ) = tQ1;.
(65)
Therefore, the following dual problem of (60) is obtained:

g;% —trace(DQ) s.t. trace(Q) =1, trace(CQ) =t, (66)

which is exactly (61). Because both (61) and (60) are convex
and feasible, the strong duality holds and they attain the same
objective value. As a consequence, (17) and (61) also have
the same objective value, which means that the relaxation
problem (61) is exact and importantly, it has at least one rank-
1 solution.

B.2 The Recovery of the Exact Rank-1 Solution

R can be easily found by solving (61) but it is not
necessarily rank-1. The remaining challenge is to find the
optimal r based on the solution of the dual problem of (61),
derived as

max —A1 — Aot s.t. M I+ X C —D = 0.

jnax 67)

The Karush-Kuhn-Tucker condition, which is both sufficient
and necessary for the optimality of R in (61) is

(MI+ AC —D)R = 0,trace(R) =1, trace(CR) = ¢.
(68)
As such, the sufficient and necessary condition for the opti-
mality of the rank-1 solution r is

r'(MI+XC —D)r=0, r'Cr=t, and |r|| = 1. (69)

In the following, r that satisfies the conditions in (69) will be
found. Suppose E forms a basis for the null space of A\ I+
Ao C — D, then r should have the structure r = Ew, where
w is a vector to be determined. Using (69), it follows that

w/ETCEw = t. (70)

Suppose E'CEwy = Apinwo and ETCEw; = A\paxWi,
in which An.x and Apjn are the maximal and minimal
eigenvalues of EfCE, respectively, and wy and w; are the
corresponding eigenvectors. Without loss of generality, we can
assume

w = sin(0)wq + cos(0)wy. (71)

Substituting this into (70) gives
W ETCEwW = sin?(0) Amin + c05? () Amax =t,  (72)

which has the solution

Amax — t t— Ami
.. 92 max 2 min
g) = Jmax 0 )= ——‘min (73
S ( ) >\max - )\min7 o8 ( ) /\max - )\min ( )
As a result, the desired rank-1 solution is
max t - >\min

74
max — \min >\max — Amin ( )

Note that this solution requires Amax > Amin- If Amax = Amin,
w is chosen to be either wy or w;. Up to now, we have
provided a complete solution for (15). The main computational
part is to find the solution of (67), which involves 2 scalar
variables and its computation complexity is about O(n %)
[31] per accuracy digit. The software package, SeDuMi [32],
is available to solve the SDP problem and there is also
a very convenient interface called YALMIP [33] for easy
implementation.
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