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IIR Approximation of FIR Filters Via Discrete-Time
Hybrid-Domain Vector Fitting

Chi-Un Lei and Ngai Wong

Abstract—We present a discrete-time hybrid-domain vector fit-
ting algorithm, called HD-VFz, for the IIR approximation of FIR
filters with an arbitrary combination of time- and frequency-sam-
pled responses. The core routine involves a two-step pole refine-
ment process based on a linear least-squares solve and an eigen-
value problem. Through hybrid-domain data approximation and
digital partial fraction basis with relative stability consideration,
HD-VFz exhibits fast computation and remarkable fitting accu-
racy in both time and frequency domains.

Index Terms—Approximation methods, identification, IIR dig-
ital filters, rational functions, vector fitting.

I. INTRODUCTION

D IGITAL filters are widely used in digital signal processing
and communication systems. Compared to a finite-im-

pulse-response (FIR) filter, an infinite-impulse-response (IIR)
filter generally features a smaller filter order though with more
stringent design constraints such as numerical stability in finite
precision arithmetics. There are various approaches to design
IIR filters with arbitrary frequency responses such as eigen-
filter, optimization, balanced truncation and approximation of
FIR responses, e.g., [1]–[3]. However, most algorithms cannot
achieve a hybrid-domain (viz. frequency- and time-domain) ac-
curacy since a purely frequency-domain design approach may
overlook certain time-domain requirements and vice versa. For
example, to avoid inter-symbol interference (ISI) in digital data
transmission, the designed Nyquist filter has strict time-domain
constraints at the zero crossing points [1].

Recently, vector fitting (VF) [4], a continuous-time system
identification technique, has been extended to its discrete-time
counterpart, called discrete-time vector fitting (VFz) [3], for ef-
ficient IIR approximation of FIR filters. It is shown that VFz
exhibits fast computation and a similar accuracy to the near-
optimal (but much more expensive) balanced model reduction
(BMR) [2] IIR filter design approach. The time-domain variant
of VFz, named TD-VFz, has also been formulated and applied to
linear macromodeling with excellent noise immunity [5]. Con-
sequently, to simultaneously achieve time- and frequency-do-
main accuracy, we integrate VFz and TD-VFz into a discrete-
time hybrid-domain counterpart, called HD-VFz, for designing
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IIR filters with arbitrary time and frequency responses. A pole
radius constraint is readily incorporated for numerical stability
in finite-precision implementation. Design examples then con-
firm the remarkable efficacy of HD-VFz.

II. DISCRETE-TIME HYBRID-DOMAIN VECTOR FITTING

Our objective is to approximate an FIR digital filter response

(1)

with a causal and stable IIR filter

(2)

Therefore, all poles of (zeros of ) must lie in .
Obviously, and

, where denotes complex conjugate, so both
and correspond to real time-domain sequences. To exclude
the trivial case , we assume .

VFz [3] utilizes a partial fraction basis to seek a rational ap-
proximation to the desired response , namely

(3)

Subsequently, ’s and ’s are either real or complex conjugate
pairs. Analogous to VF, suppose an initial set of poles

, is specified for VFz, by introducing a weighting
function , we have

(4)

for , where denotes the number of it-
erations when convergence is attained or the upper bound is
reached. Here (4) is linear with respect to its unknowns ,
and , and constrains and to share the same
poles, which in turn implies that the poles of in IIR form
are approximated by the zeros of . Solving for the zeros of

therefore produces, in the least-squares (LS) sense, an ap-
proximation to the poles of , viz. , which are then
fed back to (4) as the next set of known poles. We remark that
here (FIR in nature) actually has all its poles on the origin,
but is treated by VFz (based on partial fraction synthesis) as if
it is an IIR filter of unknown (possibly infinite) order, and an
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attempt is made to approximate it with another IIR filter
whose order is prescribed.

We subsequently transform (4) into its discrete-time time-do-
main counterpart. Applying an input to and letting

be the output, the time-domain relationship
is then given by the inverse -transform

(5)

where denotes convolution and is the Heaviside unit step
sequence. The combination of (4) and (5) then gives rise to the
hybrid-domain fitting algorithm HD-VFz.

A. Pole Computation

Poles are first iteratively approximated. For frequency-do-
main approximation, starting from (4), for the frequency
points and ,
the response can be put into a system of linear equations
as shown in (6), at the bottom of the page, where

and . For
time-domain approximation, from (5) and suppose samples
of the input and output sequences, and , are captured,
another system of equations are set up for the same in (6),
as shown in (7), at the bottom of the page. Consequently,
HD-VFz can fit both time- and frequency-sampled responses
simultaneously in the LS sense via the overdetermined equation
(provided )

(8)

Using the last elements of the LS solution of , i.e., to
of (4) can be constructed whose zeros, denoted by

, then form the new set of poles in the next HD-VFz

iteration. Similar to the formulation in VFz [3], the zeros of
are implicitly obtained as the eigenvalues of

. . .
...

. . .
...

... (9)

where . When only real poles are present,
is real. To ensure stability, it is required that every

. Otherwise, its reciprocal is taken, viz. ,
such that the pole is flipped back inside the unit circle. Here a
real is assumed but flipping of conjugate poles follows
exactly by multiplying two conjugate reciprocals.

B. Modification for Complex Poles

The transfer function in (3) may contain complex con-
jugate poles and residues whose time-domain transforms also
contain complex conjugate pairs, and thus conform to a real re-
sponse. If these complex quantities are directly used in (6) and
(7), finite-precision arithmetics would almost always result in
inexact cancellation of imaginary parts and lead to erroneous re-
sponses. Subsequently, (6) and (7) should be rewritten to ensure

all quantities in are real. For instance, assume
and , this is achieved by modifying the entries

in and as shown in (10), at the bottom of the next page,
where we get (11), also shown at the bottom of the next page,

...
...

...
...

...

(6)

...
...

...
...

...

(7)
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where and denote the real and imaginary parts, re-
spectively. Modification for other complex conjugate poles and
residues follows analogously. To compute the zeros of
which now contain complex poles, we apply similarity trans-
form to (9) to transform it to a real matrix. Each pair of con-
jugate poles now manifest as a 2 2 diagonal block in . For

example, when takes the form

. . .

... ...
(12)

in which is easily seen to be real.

C. Reconstructing the Rational Function

Suppose a converged set of poles are obtained,
the final step is to reconstruct the rational function. Re-
ferring to (4) and (5), we should now have or
equivalently . Therefore, we have

and
. The residues of [see (3)] are

computed in the same manner as in (6)–(8), (10), and (11), except
that the last columns in and the last entries in are now
omitted, making to and the only unknowns.

D. Remarks

1) As a generalization of VFz, HD-VFz converges to a near-
global-optimum in the LS sense for noise-free responses
and is robust to initial pole placement [3], [5]. Moreover,
using the ’s in (1), a Hankel singular value plot is readily
derived for guiding the selection of the IIR filter order in
HD-VFz [5].

2) The quantization effects of IIR filters in hardware imple-
mentation lead to deviated pole locations [6]. The response
of the realized filter may deteriorate or even become un-
stable. Similar to VFz, near-unity pole radius can be di-
rectly scaled away from the unit circle in HD-VFz to pro-
vide a stability margin for filter robustness.

3) The accuracy in the LS solution of (8) may be affected by
the initial poles and function basis. Orthonormal basis or
QR decomposition with rank-revealing column weighting
[7] can be used to normalize the columns of in (8), thus
reducing its condition number (i.e., closer to unity) for a
more accurate solution. Theoretically, HD-VFz generates
the same IIR approximant subject to any non-zero input. In

Fig. 1. (a) Condition numbers of � in (8) at each iteration in the Nyquist filter
example with and without column weighting. (b) Converged poles of the filter
designed by HD-VFz with column weighting.

practice, larger input and output amplitudes are preferred
for a better conditioning of (8). For example, apart from an
impulse input, a step input may sometimes result in a better
IIR approximant.

III. NUMERICAL EXAMPLES

The proposed HD-VFz algorithm is compared against BMR
[2] and the original VFz [3] (performance of VFz versus other IIR
filter design algorithms can be found in [3]). All algorithms are
coded in Matlab m-script files and run on a 3.4 GHz 1G-RAM
PC. We begin with a 90th-order Nyquist filter designed with the
Matlab filter design toolbox commandfirnyquist, using the
specification and a roll-off factor
0.65, such that its time response satisfies

(13)

i.e., the impulse response crosses the time axis every samples.
The prototype response is fitted by HD-VFz, VFz and BMR
into 16th-order IIR filters. We use 110 frequency samples and
91 impulse response samples (viz., to ) for HD-VFz,
210 linearly spaced frequency samples for VF, and again the
91 impulse samples in BMR. QR decomposition with column
weighting [7] is employed in HD-VFz and VFz to improve the
condition number of in (8) for better approximation accuracy,
as seen in Fig. 1(a). The poles in both algorithms converge in 15
iterations, as in Fig. 1(b). (In numerous experiments not reported
here, HD-VFz and VF always converge within 20 iterations.)
The CPU times of HD-VFz, VFz and BMR are 0.625 s, 0.484 s,
and 1.026 s, respectively. The longer time of HD-VFz than
VFz is mainly due to the convolution in (5). The frequency and
time responses of the designed IIR filters are shown in Fig. 2
and Tables I and II. It is obvious from the plots that HD-VFz
outperforms other algorithms and has the least group delay ripple

...
...

...
...

...

(10)

...
...

...
...

...
(11)
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Fig. 2. Responses of various IIR approximants of the Nyquist filter: frequency-
domain (a) magnitude responses and (b) passband group delays; time-domain
(c) impulse responses and (d) errors versus the original response.

Fig. 3. Various IIR approximations of the bandstop filter.

TABLE I
APPROXIMATION ERRORS OF THE NYQUIST FILTER: PASSBAND ��� �����
(A) MAGNITUDE AND (B) GROUP DELAY; AND (C) STOPBAND ������ ��

ATTENUATION. THE BEST TWO CANDIDATES ARE UNDERLINED

TABLE II
IMPULSE RESPONSES OF THE NYQUIST FILTER AT THE ZERO CROSSING POINTS.

THE BEST TWO CANDIDATES ARE UNDERLINED

TABLE III
APPROXIMATION ERRORS OF THE BANDSTOP FILTER: PASSBANDS ��������

AND ������� �� (A) MAGNITUDE AND (B) GROUP DELAY; AND (C) STOPBAND

���������	
�� ATTENUATION

(closest to linear phase) in the passband and smallest error on
the time axis. The tables, wherein the best two candidates are
underlined, further confirm the generally better performance of
the IIR filters designed by HD-VFz. In other words, the longer
computation in HD-VFz than VFz is justified by the much
more accurate design and better preservation of dual-domain
characteristics, in contrast to VF and BMR that operate purely
in the frequency domain and time domain, respectively. Next,
an equiripple 130th-order linear-phase FIR bandstop filter,
designed by the Parks-McClellan algorithm, is approximated
by TD-VFz (131 time-domain step responses, 220 frequency
samples and four iterations) and BMR (131 impulse responses),
both resulting in 55th-order IIR approximants. The magnitude
responses and approximation errors are shown in Fig. 3 and
Table III, which again demonstrate the superiority of HD-VFz.

Finally, to study the performance of HD-VFz under the mod-
ifications in Section II.D remark #3, the first example is tested
with: (i) a step input (to obtain the time response) while still
using column weighting in solving (8), and (ii) impulse input
but without column weighting. In (i), the CPU time is sim-
ilar to the above, while that for (ii) is only 0.365 s by skip-
ping the weighting operation. The results are also included in
Tables I and II. It is seen that QR decomposition with column
weighting, though requires longer computation, generally leads
to better numerical conditioning and higher filter quality. Also,
using step input/output may sometimes lead to more accurate
IIR approximants but the use of impulse response would gener-
ally suffice. In all cases, the accuracy of the HD-VFz approach
over that of VFz or BMR is obvious.

IV. CONCLUSION

VFz and TD-VFz have been generalized to a hybrid-domain
counterpart, called HD-VFz, for IIR filter approximation with
dual-domain accuracy. Compared to VFz or TD-VFz, HD-VFz
exhibits comparable complexity while producing more accurate
IIR approximants.
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