1444

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 4, APRIL 2009

Timing Synchronization in Decode-and-Forward
Cooperative Communication Systems

Xiao Li, Yik-Chung Wu, and Erchin Serpedin

Abstract—Cooperative communication systems have attracted
much attention recently due to their desirable performance gain
while using single antenna terminals. This paper addresses the
joint timing and channel estimation problem, and furthermore the
resynchronization of multiple timing offsets in a cooperative relay
system. The estimations of timing and channel are conducted in
two phases and the associated Cramér-Rao bounds (CRB) are
derived for both phases. It is demonstrated that the conventional
CRB is not valid for timing parameters under fading conditions,
and a new bound called Weighted Bayesian CRB is proposed.
With the timing and channel estimates, a general framework of the
resynchronization filter design is developed in order to compen-
sate the multiple timing offsets at the destination. The proposed
methods are applied to different scenarios with varying degrees
of timing misalignment and are numerically shown to provide
excellent performances that approach the perfectly synchronized
case.

Index Terms—Cooperative, timing offset, channel estimation,
Cramér-Rao bound (CRB), resynchronization, Tikhonov regular-
ization.

I. INTRODUCTION

ULTIPLE-INPUT-MULTIPLE-OUTPUT  (MIMO)
M systems have been demonstrated to be one of the most
promising and potential candidates for the future wireless
communications [1]-[3]. However, limited by the cost and the
size of equipment, the concept of distributed MIMO system
has been advocated by many researchers, where the sharing
of antennas among several single-antenna terminals [4] to
cooperatively transmit data is suggested. It has been pointed
out that with proper cooperative strategies, the same benefits
of centralized MIMO systems can be achieved in a cooperative
MIMO system [5]-[10].

So far, many results regarding cooperative communication
systems have been obtained under the assumption of perfect
synchronization among the users, which is generally very dif-
ficult to achieve due to the distributed nature. Analytical and
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numerical results on the performance degradation brought by
timing errors in a cooperative system have been reported in [11],
[12] and [13]. Furthermore, it is also found that if the timing
errors are large, the benefit of cooperation would even vanish
in terms of diversity gain [14] and system capacity [15]. All
these results demonstrate that appropriate countermeasures to
the asynchronous reception in distributed MIMO systems are
absolutely necessary.

Some researchers have suggested using delay-robust trans-
mission schemes so that the mentioned problem is bypassed
[16]-[20]. While these methods are promising and desirable,
they impose restrictions on how data are transmitted and how
users are cooperating, thus limiting their applicability. On the
other hand, many current cooperative transmission schemes and
their demodulation methods require the cooperative users to
be temporally synchronized, including (but not limited to) dis-
tributed space-time coding, cooperative relays [12], [13], coop-
erative eigen-coding scheme and distributed unitary space-time
modulation (USTM) [21]. Furthermore, frequency synchroniza-
tion and channel estimation issues in a cooperative system have
been addressed by [22] and [23], while timing synchronization
issues receive much less attention. Therefore, algorithms that
can resynchronize the distributed users at the receiver are of
tremendous value.

This paper develops a general framework for the estimation
and synchronization problem in cooperative decode-and-for-
ward relay systems. The contributions of this paper are
summarized as follows. First, the maximum likelihood (ML)
estimators and Cramér-Rao bounds (CRB) are derived for the
timing and channel parameters. Second, it is demonstrated that
the CRB is not applicable to synchronization problems in the
low signal-to-noise ratio (SNR) region and under fading envi-
ronment. We then derive a Weighted Bayesian CRB (WBCRB),
which is a valid bound for all SNRs even in fading channels.
Third, resynchronization filters are proposed to compensate
the multiple timing offsets at the destination terminal. As a
computationally efficient but less accurate method, a matched
filter that minimizes the residual intersymbol interference (ISI)
power is derived. Furthermore, a more general method to deal
with the resynchronization filter design problem is developed
by using the weighted regularized least squares (WRLS) ap-
proach, with the optimal regularization parameter chosen by
the L-curve technique. It is shown that the symbol error rate
(SER) after the compensation fundamentally improves and
approaches the ideal case when the timing misalignment is
relatively mild.

The rest of this paper is organized as follows. In Section II,
the system model for the considered relay system is presented.
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The estimators for both the broadcasting phase and the mul-
tiple access phase are investigated and derived in Section III,
followed by a thorough CRB analysis in Section IV. The design
of the resynchronization filter is discussed in Section V with an
in-depth analysis over the proposed methods. Section VI pro-
vides numerical results to validate the proposed estimation and
resynchronization schemes. Finally, the paper is concluded in
Section VII.

Notation : The operators R(-) and (-) correspond to the
real part and imaginary part of a complex number, while diag(x)
denotes a diagonal matrix with the elements of x located on the
main diagonal. Superscripts (-)*, (-)¥, and (-)T denote the
conjugate, the conjugate transpose, and the transpose operators,
respectively. Notation I is the identity matrix, ||x|| represents
the Lo norm of vector x, and Eg{-} assumes the expectation
with respect to variable 6.

II. SYSTEM MODEL

The system under consideration consists of one source,
one destination and K clustered-relay terminals located in the
middle as shown in Fig. 1. The propagation channels are con-
sidered to be quasi-static flat-fading [14]. Furthermore, we only
focus on a two hop system because it can be easily extended to
a multihop context. The transmission consists of two periods:
1) Training period: The source transmits a training sequence
to the K relays. After the timing offset and channel esti-
mation, each relay adjusts its own clock and sends out K
distinct training sequences. At the destination, a joint esti-
mation of the multiple timing offsets and channels is per-
formed. With the estimated timings and channels, a resyn-
chronization filter is designed using the proposed methods.

2) Data transmission period: After the training period, the
source transmits a data sequence to the K relays. With
the timing and channel estimates obtained in the previous
training period, each relay decodes the incoming mes-
sage. Afterwards, the K relays cooperatively transmit the
decoded data to the destination. At the destination, the
incoming signal is convolved with the resynchronization
filter to realign the signals and finally the data are decoded.
The timing diagram for the two periods is shown in Fig. 2.
Within each period, the transmission process is a com-
bination of a single-input-multiple-output (SIMO) broad-
casting system and a multiple-input-single-output (MISO)
multiple access system.

A. SIMO Broadcasting Phase

Due to the hardware inconsistencies and diverse relay loca-
tions, the signals arriving at different relays are not synchronized
to each other. The received signal (within 0 < ¢ < L,T) at the
kth relay can be expressed as

L,+L,—1
me(t)=ce Y s(D)g(t —il = mT) +wi(t) (1)
i=—1L,

where c;, is the complex channel coefficient from the source to
the kth relay and is assumed to be zero mean, circular complex
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Gaussian random variable with unit variance. The term wy(t) is
the zero mean, circular complex additive white Gaussian noise
(AWGN) with variance o?,,k . Notation 7T is the symbol duration,
5(4) is the complex valued symbol with E{|s(i)|?} = Es; 7% €
[0, 1) is the unknown timing offset normalized to the symbol du-
ration, and ¢(t) is the pulse shaping filter. Symbol L, represents
the observation interval while L, is the approximated effective
duration of the tail of g(¢) on one side.

Upon reception, the signal is oversampled at each relay by
aratio Q > 2 and thus the sample interval is Ts = T'/Q. By
stacking L, received samples, the received vector is given by
[24]

ry = CkATkS + Wi 2)

where

>

[ re((LoQ — DT)]T
[wi(0), wi(T5), ..., we((LoQ — 1)T,)]"
la_r, (7). a0(7k),- - ar, +1,—1(7k)]
[g(—=iT — 7 T), g(—=iT + Ty — .T),
s g(=iT + (LoQ = )T, — 7.T)]"
[s(=Lg),...,5(0),...,s(Lo + Ly, — 1)]7.

ry Tk(o),’l”k(TS),-..7

> 1>

A,

>

ai(Tk)

>
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B. MISO Multiple Access Phase

Denote the data transmitted from the kth relay as z(7), then
the corresponding signal (within 0 < ¢t < L,T) at the destina-
tion is

Lo+Ly—1

dk(t) = hk Z il,’k(i)g(t — T — GkT). (3)

i=—L,

The data are transmitted with E{|z4(i)|*} = E, and ¢;, € [0, 1)
is the unknown timing offset of the kth relay. At the destination,
the observed waveform d(t) is the superposition of the above
waveforms from the K relays plus noise d(¢t) = Zszl di(t) +
v(t), where v(t) is the zero mean, circular complex Gaussian
noise at the destination with variance o2. After sampling with

@ > 2 and putting the received samples into a vector d =
[d(0),...,d((L,Q — 1)Ts)]*, then we have

hixq

haxo

d=[A, A, - A, ] +v=AX+v &

€1 Fleg "

éAE hKXK

£x

the kthrelay, and let € = [€1,...,€ex]T. The matrix A, follows
the same definition of A, , and v contains the samples of v(¢).

Remark: It is worth noting that the phase offsets between
transmitters and receivers are not explicitly specified in the
system model in (2) and (4), because they can be incorporated
into the unknown channel coefficients while keeping the for-
mulation of the system models unchanged.

C. Timing Synchronization Issue in Cooperative Systems

In the broadcasting phase, the synchronization problem at the
relay is the same as the single user synchronization. Therefore,
all the conventional synchronization techniques can be used
[24], [27]. However, in the multiple access phase, asynchronous
signals from different users overlap with each other, hence,
there is no unique optimal sampling instant since the optimal
instants for distinct users are different.

To cope with this problem, one way is to treat the signals from
asynchronous users as signals passing through different paths in
a multipath channel, then a joint maximum likelihood sequence
estimator (JMLSE) can be used to jointly decode the data from
all the users [11], [25]. Although JMLSE, in principle, can be
applied to scenarios with any number of users, its implementa-
tion complexity becomes prohibitive when the number of users
is greater than two.

A more direct method to resynchronize the multiple users
is to design a resynchronization filter at the receiver to realign
the asynchronous signals as first demonstrated in [26]. Unfor-
tunately, general guidelines for choosing the optimal design
parameters and comprehensive performance analysis studies
are missing in [26]. In this paper, we will present a general
framework for the resynchronization filter design and show that
the scheme in [26] is a special case of the proposed framework.
Since the timing and channel estimates are needed in the
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resynchronization filter design, we first present the timing and
channel estimation algorithms.

III. TIMING AND CHANNEL ESTIMATIONS

A. Maximum Likelihood Estimation at Relays

The joint timing and channel estimation in the first hop is
performed at each relay individually, and it does not affect other
relays’ estimation performance. For the kth relay, the received
signal is given by (2), and the likelihood function of the timing
offset and the channel is

—L, r, — AL s ||?
pre: 7, ) = (w02, Qexp{_ll b ceAns | }

2
Oy,

where s is a known training sequence. Thus, maximizing the
above function is equivalent to minimizing the following cost
function:

J(Tk,ck) = || ry — CkA.,-kS ||2 (5)

It can be readily shown that the ML estimate of the unknown
channel coefficient cj, is (assuming 73, is fixed)

HAH
sTAL Ty

HAH .
s"AI A, s

Cr = (6)
After substituting (6) into (5) and ignoring some scaling con-
stants and irrelevant terms, a cost function that only depends on
71 18 obtained as

A(m) = |[PA (e )

where PL(rx) = I — Pa(r:) and Pa(m) =
A, ssHAfk /sHAfi A s. Then the timing offset 75 is
estimated as

7 = argmin A(7). )
Th

After the timing offset estimation, 7 is used to compensate
the timing offset by using a matched filter with opposite delay
g(t+7%). Also, the channel coefficient can be readily obtained as
Cp = sHAﬂc rk/sHAffc A, s. This channel estimate is stored
and used for decoding in the data transmission period.

B. Maximum Likelihood Estimation at Destination

In order to derive the joint timing and channel estimator in
the multiple access phase, we start with an equivalent model of

“4)

}Ll
ho
d=JA,x1 A,Xo A XK] +v 9)
éﬂf hx
——
Zh

where x;, denotes the distinct training sequence transmitted by
the kth relay. In this study, we assume that the training se-
quences from different relays are uncorrelated (notice that these
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sequences may not be optimal, but the problem of training de-
sign is beyond the scope of this paper).

The joint likelihood function of the timing offsets and chan-
nels is given by

- d - Q.h|?
p(d7€7h) = (71'0'12)) L.Q exp{_M}

2
0y

Similarly, maximizing the above function is equivalent to min-
imizing the following cost function:

J(e,h) =] d - Qch | (10)
Moreover, by substituting h = (27 Q,)~'QHd back into the
cost function and dropping some constant terms, we obtain the
compressed log-likelihood function

Ae) = || Pa(e)d ||” (1)

where Pq(€) = Q(QEQ)~1QH. Then the multiple timing
offsets € are estimated as

€ = arg max A(e). (12)

Finally the channels are estimated using the estimates of €

h=(27Q,)7 Q.d. (13)

In the above maximization problem (12), there are multiple
timing offsets from different relay-destination pairs, which
would require an exhaustive search over a multidimensional
space, imposing great computational complexity at the receiver.
To overcome this problem, alternating projection can be used
to reduce the K -dimensional maximization into a series of 1-D
maximization problems. Details on the implementation of al-
ternating projection is omitted here since it has been elaborated
in [28].

IV. CRB ANALYSIS

Traditionally, CRBs are used as performance benchmarks for
any unbiased estimators. In synchronization where channel esti-
mation does not play a dominant role, Conditional CRB (CCRB)
[27] is usually used to evaluate the performance of the timing es-
timator. However, strictly speaking, CRB or CCRB are not valid
bounds at low SNR for synchronization parameters because the
derivation of CRB and CCRB do not assume any prior infor-
mation on the parameter, while in fact, the range of the timing
offset [0,1) is informative in that the largest mean-square error
(MSE) possibly achieved by any timing estimator is on the order
of 10~!. On the contrary, notice that channel estimation errors
are well bounded by the CRB because there is no such range
limit for any channel realization.

The reason why the CRB or CCRB can serve as the perfor-
mance bounds for synchronization problems in previous studies
[24], [27] is that the CRBs/CCRBs are derived for single user
scenario and generally nonfading environments, in which the
limitation of CRBs has not yet begun to show at practical SNR
(medium to high SNR) levels. However, for synchronization
in fading channels, the equivalent SNR under deep fading is
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very low, hence, the CRB becomes inapplicable in this situa-
tion. Here we develop a modification on the CRB, called the
Weighted Bayesian CRB (WBCRB), for the timing estimation
to incorporate the prior information on the range of the timing
offset. WBCRB is more complicated than CRB but it is a valid
bound even in fading situations at any SNR. Since the derivation
of CRB represents the theoretical foundation for the derivation
of WBCRB, and the CRB for channels is still a valid bound,
we first derive the joint CRB for timing and channel estimation
without assuming any prior information for the timing parame-
ters.

A. Joint CRBs

Since the CRB for the timing and channel estimation at the
relay during SIMO broadcasting phase is the same as that in
the SISO case, it can be viewed as a special case of the MISO
multiple access phase when the number of relay equals to one.
Hence the joint CRB is derived for the MISO phase and the
result for SIMO phase is evaluated as a special case. Recall the
signal model in the second phase transmission given in (9) as
d=Qh+v. Letf 2 [T, R{h}T 3{h}T]T and denote
p = Qch. The Fisher Information Matrix (FIM) F of @ is given

by [29]
H
po L plon o
o2 90 99"
which is then readily obtained as
S

2
0y

R{HIGEG H} R{HIOIQ.) S{HI®IQ)

F =

X &E{QE‘IIEH} %{Qfﬂe} %{Qfﬂe}
—%{QflIIEH} —%{Qfﬂe} %{Qfﬂe}
where ¥, = [D. x1, D.,xo, ..., D, x| with D, =

0A., /D¢, and H = diag(h). The CRB is finally computed
through similar mathematical derivations as in [29], and as-
sumes the expressions

CRB4(€)
= o2 (R{H{WEPS (o)W H))
CRBa(h)
= o2 (2(0f Q)"

(14)

@) 0 v H

x (R{HAGHPS(e) W H})

xHIGHQ, (ane)’l) (15)
where the subscript “MA” stands for the multiple access phase.
By setting the number of relays to one and replacing the expres-
sions with their counterparts in the SIMO broadcasting phase,
the joint CRB for the kth relay in the SIMO broadcasting phase
is

0.2

CRBpc(ry,) = wi
Bo(7) |ck|?sHDH PX (7,)D,, s

(16)
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CRByo(cr) = H2o,§k +|Ck|2SHA§kDTks
S Af{Ans sHAgATks
H
xCRBBc(Tky(%) (17)
sHAHA s

where the matrix P (74) is defined in (7).

B. Weighted Bayesian CRB

As discussed at the beginning of this section, the CRB derived
above for the timing estimate is not applicable in the low SNR
region due to the fact that the given finite range on the timing
estimates serves as an informative prior during estimation [30].

The most common bound that considers the prior informa-
tion of the parameter of interest is the Bayesian CRB (BCRB).
However as demonstrated in [30], BCRB does not exist for pa-
rameters with uniform distribution. In order to derive a valid
performance bound for parameters with a given finite range and
uniform distribution, the WBCRB) was introduced and studied
in [30] . The WBCRB can be shown to be a valid lower bound
and evaluated in [31] as

WBCRBMA(G)
= E{Q(e} {Ee{Fu(€)} + Ec{Pu(e)}} T E{Q(e)}

where F, (€) is the weighted FIM for the timing offset parame-
ters and P, (€) is the weighted Prior Information Matrix (PIM),
which are defined in (21) and (20), respectively. The symbol
Q(e) 2 diag(q(e1),...,q(ex)) represents the weighting
matrix, with ¢(ez) being the individual weighting function for
the timing offset of the kth relay. As suggested by [30], the
weighting function ¢(e) is chosen as

V(1 — v
q(ek):{ek(l er)’, 0<e <1

0, otherwise (18

where -y is the weighting index. The value of y is chosen to adjust
the tightness of the WBCRB, and the optimal value of -y can only
be determined numerically [30].

1) Calculation of E<{Q(e)} and E{P,,(e)}: The evalua-
tion of E.{Q(€)} can be obtained easily as an extension of the
derivation in [30], and leads to the following result:

E{Q(e)} = —B(y+ 1,y + 1)1

where (-, ) denotes the beta function 5(a,b) = fol T4 (1 —
7)’~!dz. Meanwhile, the weighted PIM P, (e) is defined in
[31] as

[Puw(€)i,;
_ <(J(€i)(J(€j)aln[q(«gz)p(E)] . aln[qéz)p(e)]> 00,

19)

where p(e) is the prior distribution of timing offsets. With e,
being uniform distributed in [0,1) and the weighting function
q(ex) defined in (18), it can be shown that [30]

Ee{[Pu(e)i;} = {37 B(2y — 1,2y 4+ 1), z ;?
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2) Calculation of F,(€): The weighted FIM for the timing
offset parameters is defined in [31] as

Fu(e)]s, = <Q(€i)9(€j)aln§£id|e) . amape(;ile)) 1)

where the vector d represents the received samples in (9). Notice
that p(d|e) is the conditional probability distribution of d given
€. However, in the joint timing and channel estimation problem
considered herein, h is modeled as deterministic unknown, so
we only have p(d|e, h). In order to eliminate the nuisance pa-
rameter h, we employ the method introduced in [27] of using
a conditional approach to asymptotically (i.e., K is large) ob-
tain the distribution by substituting the estimate of h in (13)
back into the joint distribution function p(d|e, h). Following
this logic, it can be readily shown [27] that

dlnp(dle) dlnp(dle) , 1 [R{H" O PG (e) W HY]

. . 2
O¢; O¢; o2

g

Last but not least, even though the expression F,, (€) is in closed
form, the value of Ec{F,,(€)} can only be obtained numerically
because it depends on the pulse shaping filter g(¢) in a very com-
plicated and mathematically intractable manner. It is also worth
noting that if v = 0, the WBCRB has the following relationship
with CRB in (14)

WBCRB\14(€)]y=0 = (Ec {CRBy4(6)}) (22)
By setting the number of relays to one and replacing the expres-
sions with their counterparts in the SIMO broadcasting phase,

the WBCRB for the kth relay in the SIMO broadcasting phase
is

WBCRBBC'(’Tk)
_ Fr+1,7+1)
Er{Fu(m)}/02, +7-62y—1,2y+1)

where F, (1) = ¢*()|ck|*s"DE P4 (7))D-,s.

Finally, note that the WBCRB derived in this paper is novel
and different from the results available in [27], [30], and [31]
because there exist multiple nuisance parameters in the current
signal model (the channel coefficients), and also the bound is
with respect to multiple timing parameters. Comparisons be-
tween CRB and WBCRB will be provided in Section VI (Figs. 6
and 7).

V. RESYNCHRONIZATION FILTER DESIGN FOR THE
MULTIPLE ACCESS PHASE

At the destination node, after the multiple timing offsets
€ have been estimated through the proposed estimator, the
remaining issue is how to employ the estimates to compensate
the offsets to obtain ISI-free reception. Mathematically, this
problem can be solved by designing a resynchronization filter
f such that after the convolution with the received signal (4),
the ISI components are eliminated. This process is actually
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an equalization for the fractional timing offset distortion and
equivalent to the minimization problem

mfin[E{HXH (Agf—b)Hz} (23)

where the expectation is taken with respect to data realization.
The vector b 2 67,6017 and 6, = --- = bg 2
[Ryg(=Ly — M), ..., Ryg(0),..., Ryy(L, + M,)]" stands
for the ideal zero-ISI sampled waveform after matched filtering,
where M, = (L, — 1)/2 (for the sake of discussion, L, is
taken to be an odd number) and R, () is the autocorrelation
function of g(t) at ¢ = 7T The expression of X in (23) is
the X in (4) with h; replaced by h; and can be equivalently
expressed as

iLlI 0 X1

X = D | = HX. (24)
0 BKI XK
) Y " ox

Thus, (23) can be reformulated as the following weighted least
squares (WLS) problem

. H
min (Aff-b) " I (AJf-Db). (25)

The symbol IT 2 HR,H? represents the positive definite

m x m weighting matrix with m = K(L, 4+ 2L,), and Rx =
E{XX"} is given by

R x

»

R

>

R :
Rk Rk x
with the submatrix R; ; = E{x;x} being the correlation ma-
trix between x; and x ;. Note that once the transmission scheme
and cooperative strategy are fixed, the correlation matrix can be
determined and made available at both the transmitter and the
receiver.

Generally speaking, the solution to (25) is the WLS solution
f = (AcHAY) 1A IIb. However, the timing offsets in the
MISO phase can be represented as €, = ¢, + Ay, where ¢,
is the common offset with respect to a certain time frame at
the destination and Ay, is the residual offset between the indi-
vidual offset and the common offset, including the travel delay,
processing latency and the timing estimation error in the SIMO
broadcasting phase at each relay. Therefore, the columns of Ag
are quite similar one with respect to the other, and hence, (25) is
an ill-posed problem. Unlike a rank deficient problem which can
be solved by discarding the zero or close-to-zero singular values
and corresponding singular vectors, for an ill-conditioned ma-
trix there are no general rules to determine which singular values
to discard [32] as there is no significant gap between the singular
values (an example of the singular value distribution of Ag is
shown in Fig. 3), leading to the amplification of any perturba-
tion that exists in the system.
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Fig. 3. Example of the singular values distribution of the ill-conditioned matrix
Acwith L, =65,L, =4and Q = 2.

In the following, we present two methods to deal with the
filter design problem mentioned above. One is to bypass the ill-
posed problem by employing a transmitter pulse shaping filter
to compensate a nominal delay that minimizes the residual ISI
power, while the other is a more general framework that employs
the regularization theory to design a regularized filter with arbi-
trary shapes.

A. Matched Filtering

To bypass the ill-conditioned formulation, a natural choice of
the resynchronization filter f would be to use a transmitter pulse
shaping filter g(¢+ €.) with a nominal delay .. If there is only a
single timing offset, the mismatch can be perfectly compensated
by a matched filter with a nominal delay .. that is opposite to the
offset. When there are multiple timing offsets, the nominal delay
is chosen to minimize the residual IST power at the output. The
residual IST after resynchronization filtering can be expressed as
follows:

Pt = (Aff—b) I (Af - D). (26)
The quantity (Af f — b) is a vector including the residual ISI
errors from different users. Let AZf — b 2 el ... eH]H
notation simplicity. Now Pigr in (26) can be expanded as

for

K

K
§ : § :A 7% H
PISI = hkl hkzekl Rkl,kgekz-
ki1=1ko=1

27

The residual ISI error vector e; from the kth user can be
easily calculated as

Rgg(_Lg - M, + e — €r) — Rgg(_Lg - M,)
Rgg(ec —éx) — Rgg(())

Rgg(Lg + M, + €. — €x) — Rgg(Lg + M,)
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Since €. — €, is very small, by applying Taylor series expansion

on e, we have

I Rgg(—Lg — M,)(ec — é) T
+3 Ry, (—Lg — M,)(ec — éx)* 4+ O((ec — é)?)

o R (0)(eo — )
’ +LR)(0)(er — &) + O((ec — é0)?)

. R;g(Lg + Mo)(e(, - ék)
L +5Ryy(Lg + M) (e — éx)* + O((ee — é)°)

where O((e. — ¢;)?) represents the higher-order terms. Then
by expanding ekH1 Ry, k,er, and omitting the terms with order
higher than O((e. — ¢)?), we obtain

eg Rk1 ko €ko = (EC - ékl) (GC - ng)f(klv k2) (28)

where
Ly+M, Lg+M,

fhk) 2 Y Y

i=—Ly—M, j=—L,—M,

R{7) RL, ()R, ()

and R;:’l’jlzz represents the (4, 7)th element in the correlation ma-
trix Ry, r,. Hence (27) becomes

K

K
o> ki, [k ko)

ki1=1ko=1

Pisi(e.) =

X [63 — €c (€k1 + gkz) + €k1 gkz]

which is a quadratic function of e.. After rearranging the terms,
we have
Pisi = Ag - €2 — By e + Cs (29)

where

ki=1ko=1
K K A

By = Z Z iy b, £ (K1, ko) (€, + éxy)
k1=1ko=1
K K

Ox =37 D hhi, F(ka k2)én, e,
ki=1k>=1

Itis shown in the Appendix that Ay, > 0, therefore the minimum
of (29) is achieved when e, = Byx/2Ayx.In particular, when
Ry x I, we have

Y
e 2

which means that a matched filter that shifts back the weighted
mean delay of the signals is optimal.

(30)

(&

B. Regularized Filtering

The method of employing the transmitter pulse shaping filter
is intuitively appealing, however it presents limited performance
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due to the filter shape constraint. Therefore, we hereby pro-
pose the weighted regularized least squares (WRLS) [33] (also
known as scaled Tikhonov regularization) method to deal with
the ill-posed problem in (25). To simplify our notation in the
following analysis, the optimization problem in (25) is rewritten
compactly as
min(Gnf - bn)? (Gnf - bn) 31)
where G = H%Ag and by = H%b, with TT% representing
the Cholesky square root of the weighting matrix II. Now the
WRLS problem can be stated as
mfin[(GHf —bn)#(Gpnf — by) + M FALALE]  (32)
where £ LE Lf controls the properties of the regularized solu-
tion norm by choosing different regularization matrices L (e.g.,
identity matrix for minimum energy, first derivative for max-
imum flatness [32]); the variable A stands for the regulariza-
tion parameter that balances the minimization of the two terms.

When A = 0, formulation (32) reduces to the WLS problem in
(25). In order to find the solution of (32), we rewrite (32) as

() (%)

For a fixed A, the solution is readily obtained as

2
min
f

fy = (GEGn + N’LYL) " GHby. (33)
Notice that in (33), if A is too large, the solution is overregu-
larized and the residual error may be overwhelming, while if
it is too small, the solution becomes underregularized and the
stability of the solution is highly affected. As can be seen, the
performance of the regularized solution f, depends heavily on
the regularization parameter X\ (the choice of L is relatively
straightforward as different L present different physical mean-
ings).

1) Choice of Regularization Parameter \: As discussed pre-
viously, the value of X could significantly affect the performance
of the resynchronization filter. Therefore, choosing an appro-
priate A is very important. A conceptually simple tool for the
analysis of discrete ill-posed problems is the L-curve technique
[32], which is a plot of the discrete smoothing norm || Lfy || of
the regularized solution versus the corresponding residual norm
|| Gnfx — by ||? for different A. The L-curve clearly displays
the compromise between minimization of these two quantities
as illustrated in Fig. 4 (with L = I).

The L-curve corner, defined as the maximum curvature point
on the curve (log || Gnfy — by ||, log || Lfy ||), appears to be
a good compromise that balances the regularization errors and
perturbation errors in the regularized solution fy [32]. There-
fore, we will take this point for the regularization parameter \.
In order to find the A that corresponds to the L-curve corner, let
p =|| Gufx — b || and £ = || Lf) ||. Then the curvature x(\)
is given by [32]

€0 N2 p 4 20Ep + Mgt

K(A) = & (N2 p2)32

(34)
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L-curve
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Fig. 4. An example of L-curve.
where
4 -1
y H (~H o7 H H
¢ =—1 (GH G + AL L) Gq (an)\ - bH) 35)

A

Note that when channel and timing offset realizations are given,
p, & and ¢’ can be computed. Therefore, the regularization pa-
rameter A with maximum curvature in (34) can be located (e.g.,
by exhaustive search).

2) Special Case—Least Squares With a Quadratic Con-
straint: The resynchronization filter design was first discussed
in [26] using the LS with a quadratic constraint (the Fixed SNR
Loss or the Fixed Fidelity Loss methods). Note that there is
no weighting matrix IT in the original method in [26]. In the
following, we incorporate the weighting matrix I to make the
discussion more general, and setting II = I will reduce the
formulation back to that of [26]. The methods in [26] can be
stated as

* Fixed SNR Loss Requirement

min|| Guf — by || st. || Lf|* <« (36)
 Fixed Fidelity Loss Requirement
min || Lf ||* s.t. || Guf —bn ||* < 6. (37)

The constraints « and 3 are design parameters that bound
the norm of the solution and the errors, respectively. In the fol-
lowing, we derive the relationship between the regularization
framework and these two methods. In order to do this, the gener-
alized singular value decomposition (GSVD) of the matrix pair
(G, L) is needed
L=VMY™!

Gn=UXY!, (38)

where X = diag(oy,...,0,), M = diag(p1, ..., ) are the
singular values of Gy and L, respectively, with n = L,Q.
Matrices U and V represent the unitary singular vector ma-

trices of G and L (i.e., UPU = VHV = I), while Y is
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a nonsingular matrix that satisfies Y/GHIGpY = X2 and
YHLAELY = M?2. With the GSVD of (G, L), the regular-
ized solution f) (33) is expressed as

f\ = Y(22 +2>M?) 12U by, (39)
» For the WLS with Fixed SNR Loss requirement (36), the

solution would occur on the boundary || Lf ||>= « [26].
Substitute (39) into the boundary, we have

| VMY~ Y(2? + \>°M?)"'2U by ||= .
After some tedious but straightforward manipulations, the
relationship between A and « is given by

112)2
(O"L/l/z) Zb* (,')2 — aQ
i=1 (07 + N2p?)

(e (40)
where bj; = UHby. From (40), it can be seen that once a
threshold value « is specified, there exists a corresponding
A in the regularization framework.

» For the WLS with Fixed Fidelity Loss requirement (37),
the solution is also found to be on the boundary || Gpf —
by ||>= B [26]. In the following, we take A = 1/ to
simplify the expression of the solution fy. With GSVD of
(G, L), we have

f; = YI(O222 4+ M?) " I\2SUby. (41)

After substituting (41) back to the boundary condition, it

is readily obtained that

| UERY - Y 1(A222 + M?) ' A22U by — by ||= 6.
Similarly it can be simplified as

n T\ 2
Z ~/1Ji2b?1(z) — 32
Nof +

i=1

(42)

It is clear that WLS with a quadratic constraint method is
a special case of the proposed framework when the constraint
values «, (8 are optimally chosen according to (40) and (42).
Although WLS with a quadratic constraint methods are equiv-
alent to the regularization method under some circumstances,
generally there is no guideline for choosing optimal « and S.
Furthermore, because the elements of G depend on different
timing offset and channel realizations, there is no single ) that is
in general optimized for all the scenarios. Thus, fixing the values
of a and 3 in LS with a quadratic constraint as in [26] can fail
substantially (more details can be found in the next section).

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the performance of the proposed algorithm
for estimation and resynchronization is demonstrated by Monte
Carlo simulations, where each point is obtained by averaging
over 10 runs. In all simulations, the QPSK modulation is used.
During the data transmission period, Alamouti Scheme [34] is
employed for the K = 2 case, and the rate-1/2 orthogonal STBC
for four antennas [19] is used for the K = 4 case to coopera-
tively transmit data. In both cases, it can be easily shown that the
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Fig. 5. WBCRB against different values of weighting index v at SNR =
—10dB.
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Fig. 6. MSE, CRB, and WBCRB of single timing offset estimation in fading
and nonfading environment.

correlation matrix is diagonal as Ry = FE,I and the weighting
matrix becomes

|hy |21 0
E, . (43)
0 |hc|2T

ma

The pulse shaping filter g(¢) is assumed as root-raised
cosine waveform with roll-off factor 0.22 and normalized
energy f 2(t)dt = 1. In the training period, the training
sequence from the source and the relays are all generated as
[exp(—jé-1,),--.,exp(—jdr,+1,)], where ¢; is uniformly
distributed between [—m,|. The regularization matrix L is
taken to be I such that || Lf ||? represents the energy of the
filter. The channel coefficients are modeled as independent
identically distributed (i.i.d.) complex Gaussian random vari-
ables with zero mean and unit variance. The SNR is defined
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as the average transmit SNR SNR;, = E,/ U?Uk for the broad-
casting phase and SNR; = E, /o2 for the multiple access
phase. The length of the training sequence is fixed to L, = 65
and L, = 4.

A. Weighting Index for Weighted Bayesian CRB

Fig. 5 shows the WBCRBs for timing as a function of -,
at both the relay and the destination (with K = 2 and K =
4). Although numerous values of v are evaluated for different
WBCRB during the simulations, only representative values of
v =1[0.6,1,1.5,2,2.5, 3] at SNR = —10 dB are shown in the
graph for a clear presentation. We only show the simulation re-
sults at low SNR since at high SNR, WBCRBs with different y
all asymptotically converge to the CRB. From Fig. 5, it is no-
ticed that v = 1 gives the tightest bound in all cases, and thus
we will use v = 1 for the rest of the simulations.

B. Estimation Performance

In Fig. 6, we present an illustration of the relationship be-
tween CRB, WBCRB, and the MSE of the timing estimate in
both fading and nonfading channels at the relay node. The non-
fading channel is generated as unit gain with random phase shift
¢, = eJ®t. As can been seen from the curves, CRB is gener-
ally a valid bound in nonfading channels (inapplicable in low
SNR < — 20 dB). However in fading channels, the validity of
CRB does not hold until the average SNR becomes consider-
ably large (at least >20 dB) because the equivalent (receive)
SNR of a fading channel is comparatively smaller, which levers
up the equivalent SNR threshold for the estimate to touch the
CRB. On the other hand, by incorporating the prior knowledge
on timing, the WBCRB is valid for both cases even under deep
fading because the prior knowledge limits the error within a cer-
tain range. Notice that at low SNR, the WBCRB is reduced to
the variance of the uniform distribution of timing offsets (i.e.,
Var{r,} = 1/12), while at high SNR, the WBCRB asymptoti-
cally converges to the CRB.

InFig. 7, the CRB, the WBCRB and the corresponding timing
estimation MSE at the destination node are plotted as a function
of SNR. The timing MSE is defined as the average MSE over
all the simulation runs MSE(e) = SN 2K (&) _¢)2/N,
where e( ") is the estimate of the kth offset in the nth simula-
tion run, with N = 10* being the total number of simulation
trials. It can be seen that the CRB and WBCRB coincide in high
SNR region while the CRB becomes inapplicable even when the
SNR is relatively high (30 dB). This is caused by the fading as
well as the fact that the CRB simply considers the parameter as
a real number with infinite range, hence it goes upward infin-
itely as SNR decreases. At low SNR, the WBCRB is reduced
to the variance of the uniform distribution of timing offsets, i.e.,
S Var{er} = K/12.

The MSE of the channels MSE(h) = N K (3" _
hk) /N and the corresponding CRB are plotted in Fig. 8, where
A" x ") is the estimate of the kth channel coefficient in the nth sim-
ulation run. In Fig. 8, it is clear that on the contrary to the timing
estimates, the channel MSEs are well bounded by the CRB since
the values of the channel taps do not assume any a priori given
range as in the case of the timing offsets. Finally, it can be seen
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Fig.7. MSE, CRB, and WBCRB for timing estimation at the destination (X =
2 and 4) with fading channels.
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Fig. 8. MSE and CRB for channel estimation at the relay and destination with
fading channels.

from Fig. 6 to 8 that the timing and channel estimators are effi-
cient under high SNR since the MSE curves touch the CRB for
all the cases as SNR increases.

C. Synchronization Performance

The performances of the resynchronization algorithms pro-
posed in this paper are thoroughly illustrated in this section.

In Fig. 9, the performance of the proposed regularized filter
is illustrated against several LS methods with K = 2 and travel
delay differences |A| < 0.17. It can be seen that the perfor-
mance of the regularized filter overlaps with the ideal case (i.e.,
Ay = 0) while the ordinary LS solution provides disappointing
results due to the ill-conditioned nature of the problem. On the
other hand, for the LS with a quadratic constraint [26], it is ob-
vious that the nonoptimal quadratic constraint parameters « lead
to significant performance degradation, especially in the case
with o = 4. Similar results are obtained for the Fixed Fidelity
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Fig. 9. Symbol error rate (SER) performance for resynchronization filter de-
signed by Weighted Regularized LS against the performance by ordinary LS
solution, and LS with a quadratic constraint with ¢ = 4, 2,1 under QPSK
modulation, |A| < 0.1T for K = 2.
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Fig. 10. SER performance of the Regularized Filter and the Matched Filter
under QPSK modulation with travel delay differences |Ay| < 0.1 and 0.37,
respectively, for k' = 4.

Loss method, and, thus, not presented here. The performances
of weighted LS with a quadratic constraint are not displayed
because although they are slightly better than the LS method in
[26], no significant gap is found.

In Fig. 10, the regularized filter is compared against the
matched filter under different travel delay differences of
|Ak| < 0.1 and 0.37 (with K = 4). With the data correlation
in (43), the matched filter is the weighted mean delay filter with
nominal delay ¢, = Zle |}Alk|2€k/2£(=1 |hi|2. It is observed
that when the delay difference is relatively small (Ay < 0.17),
the performance of the regularized filter and the matched filter
both overlap with the ideal case. For medium to large timing
jitters (|Ag| < 0.3T), the performance of the matched filter
degrades considerably due to the increasing residual ISI which
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results from the uncompensated timing mismatch as well as
the filter shape constraint. On the other hand, the performance
of the regularized filter under large timing jitters remains at a
satisfactory level. Although the matched filter is less accurate,
it is a good engineering tradeoff in terms of computational and
implementation complexity.

Next, we provide a simple calculation on the relationship
between the actual distance and the timing delay difference
Ag, which is normalized to the symbol duration 7'. The
travel distance differences can be calculated accordingly as
Al € (—|Ag|cT, |Ag|cT), where c is the speed of light. Gen-
erally, the delay spread of a wireless channel is on the order of
10~5s [35], so for a single carrier system over flat fading chan-
nels, the symbol duration 7 is usually on the order of 10~°s.
Hence the distance difference can amount to (—300 m, 300
m) for [Ag| < 0.17 and (=900 m, 900 m) for |Ax| < 0.3T.
Therefore, the proposed filter can generally perform well even
when deploying a cluster of relays that are quite far away from
each other.

VII. CONCLUSION

In this paper, the problem of joint timing offset and channel
estimation, and furthermore the resynchronization of multiple
timing offsets in a decode and forward cooperative relay system
has been considered. The ML estimators, CRB and WBCRB are
derived for the timing and channel parameters. In order to design
the resynchronization filter, two methods have been proposed.
The first one is a matched filter that minimizes the residual ISI
power. Its implementation is simple and provides satisfactory
performance. The second one is the weighted regularized least
squares method. The proposed regularized filter is novel and ef-
fective in that: 1) The design parameters in the proposed frame-
work are optimally chosen for each realization of channels and
offsets; 2) The weighting incorporated into the regularization
effectively extracts the information from those less attenuated
components in the received signal. The regularized resynchro-
nization filter outperforms the matched filter at the expense of
higher computational complexity. Simulation results have well
supported our presented analysis and also verified the efficiency
of the estimation and synchronization algorithms.

APPENDIX
PROOF OF Ay, > 0 IN (29)

For notation simplicity, define d,, 2 (R}, (= Lo
M,),..., R (0),--- R (L, + M,)]". Then using ma-
trix notation, we can obtain f(ki,k2) = dé‘;R;c1 < P
Furthermore, denote matrix F such that [Flg, x, = f(k1,k2),
then F can be written compactly as

dgy, -~ 071"
F=1": S
0 - dg
Ri. Rix] [dy --- O
X : : S I C o))
Rk, Rk k 0 - dy
d ~ L ~ L

=Dy,
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Thus, Ay, can be reexpressed as

As =h¥ Fh (45)

where h = [il,l? cey h x|T. Therefore, As > 0 is equivalent to
matrix F being positive definite.

In order for F = ngRngg to be positive definite, it is
required that y ngRnggy > 0 for any vector y. Since
Ry, = E{XX} we have

y"DERD,y
=E{y"D} xx"D,y}
=E{|X"D,,y|*}
= Var{|2"Dy,y|} + E*{| 2" Dyyyl} > 0

- -

>0 >0

where the term [X"D,,y]| is the magnitude of the weighted
conjugated sum of the elements in vector X. The first inequality
Var{|X”D,,y|} > 0 comes from the fact that X is a random
vector (data), and the variance of a random variable is always
positive (since it is equal to zero if and only if X is constant or
exhibits extreme correlation characteristics).

Now that F = D! R, Dy, is a positive definite Hermitian
matrix, it is guaranteed that

As = h” Fh > 0. (46)
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