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Based on quantitative complementarity relations �QCRs�, we analyze the multipartite correlations in four-
qubit cluster-class states. It is proven analytically that the average multipartite correlation Ems is entanglement
monotone. Moreover, it is also shown that the mixed three-tangle is a correlation measure compatible with the
QCRs in this kind of quantum state. More arrestingly, with the aid of the QCRs, a set of hierarchy entangle-
ment measures is obtained rigorously in the present system.
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I. INTRODUCTION

Entanglement, first noted by Einstein and Schrödinger, is
one of the most important features of a many-body quantum
system. Nowadays, it is a crucial physical resource widely
used in quantum-information processing �QIP�, as in quan-
tum communication �1,2� and quantum computation �3–5�.
Therefore, the characterization of entanglement, especially at
a quantitative level, is fundamentally important. Compared
with bipartite entanglement, which is now well understood in
many aspects, the characterization of multipartite entangle-
ment is still very challenging though a lot of effort has been
made �see �6��.

It is widely accepted that a good entanglement measure
should be non-negative, invariant under local unitary �LU�
transformation, and nonincreasing on average under local
operations and classical communications �LOCC�, i.e., en-
tanglement monotone �7�. Recently, based on quantitative
complementarity relations �QCRs� �8�, an average multipar-
tite correlation measure Ems is introduced, which was proved
to satisfy the first two conditions �9�. From much numerical
analysis, it was conjectured that Ems also has the entangle-
ment monotone property and thus may be able to character-
ize the multipartite entanglement in a four-qubit pure state
�9�. However, the analytical proof of the conjecture is ex-
tremely difficult for a general quantum state. In this sense, it
seems helpful to look into the conjecture in certain cases,
which, on one hand, allows us to obtain exact results, and, on
the other hand, gives us useful information beyond bipartite
entanglement.

Cluster states, which are typically multipartite entangled
states, are utilized in quantum error-correcting codes �10�
and tests of quantum nonlocality �11�. Moreover, they are
also a universal resource in one-way quantum computation
�4�. In optical systems, a four-qubit cluster state has been
prepared and applied to the Grover search algorithm �12,13�.
More recently, a six-photon cluster state was also produced
�14�. So, in order to make better use of the cluster state, it is
quite desirable to explore quantitatively the entanglement in
this kind of system.

In this paper, we analyze the multipartite quantum corre-
lations in four-qubit cluster-class states. Here, by a cluster-

class state, we mean the output state of a cluster state under
stochastic LOCC �SLOCC �15,16��. For this class of quan-
tum states, we prove exactly that the average multipartite
correlation Ems is entanglement monotone. Moreover, it is
shown that the three- and four-qubit correlations t3 and t4 are
also entanglement monotone when setting t3 to be a mixed
three-tangle. More intriguingly, a set of hierarchy entangle-
ment measures are thus obtained rigorously in the system.
The paper is organized as follows. In Sec. II, the entangle-
ment monotone property of multipartite correlations in the
cluster-class states is proven exactly. In Sec. III, we address
several relevant key issues and give a brief conclusion.

II. MULTIPARTITE QUANTUM CORRELATIONS
IN FOUR-QUBIT CLUSTER-CLASS STATES

Before analyzing these quantum correlations, we first re-
call the QCRs and the definition of average multipartite
quantum correlation. As an essential principle of quantum
mechanics, complementarity often refers to mutually exclu-
sive properties. The quantitative version of the complemen-
tarity relation in an N-qubit pure state is also provided and
formulated as �8� �k�Rk�+Sk

2=1, where the linear entropy �k�Rk�
characterizes the total quantum correlation of qubit k with
the remaining qubits Rk and Sk

2 is a measure of single-particle
properties. For an N-qubit pure state, the linear entropy is
contributed by the different levels of quantum correlation,
i.e., �t2 , t3 , . . . , tN�, in which tm represents the genuine
m-qubit correlation for m=2,3 , . . . ,N �9,17�. Based on the
QCRs, an average multipartite correlation measure in a four-
qubit pure state is introduced �9�:

Ems��4� =
M

4
=

MA + MB + MC + MD

4
, �1�

where M is the sum of the single residual correlations and
Mk is defined as Mk=�k�Rk�−�l�Rk

Ckl
2 �here, the square of the

concurrence quantifies the two-qubit correlation�. It is con-
jectured that Ems is entanglement monotone and can charac-
terize the multipartite entanglement in the system. However,
the proof of this property is extremely difficult for a generic
quantum state, although a numerical analysis supports the
conjecture.

Due to the important applications in QIP, cluster states
have been paid more and more attention in recent years. As*zwang@hkucc.hku.hk
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shown in Fig. 1, these states are associated with graphs
where each vertex represents a qubit prepared in the initial
state ��0	+ �1	� /
2 and each edge represents a controlled
phase gate applied between two qubits �4�. In this paper, we
will consider the multipartite quantum correlations in four-
qubit cluster-class states that are related to the cluster states
by SLOCC. In the following, we will analyze the entangle-
ment monotone property of the average multipartite correla-
tion Ems and the three- and four-qubit correlations t3 and t4 in
this class of quantum state.

A. Average multipartite quantum correlation
and entanglement monotone

In one-dimensional �1D� lattices, the four-qubit cluster
state can be written as �C4

�1�	= ��0000	+ �0011	+ �1100	
− �1111	� /2 after LU transformation. The entanglement
monotone property requires that the correlation Ems does not
increase on average under LOCC. It is known that any local
operation can be implemented by a sequence of two-outcome
positive operator-valued measures �POVMs� such as �A1 ,A2�
which satisfies A1

†A1+A2
†A2= I �16�. According to the

singular-value decomposition �16�, the POVM operators
can be written as A1=U1diag�� ,��V and A2

=U2diag�
1−�2 ,
1−�2�V, respectively, where Ui and V are
unitary matrices, and � and � are real numbers in the range
�0,1�. Due to the LU invariance of the Ems, we need only
consider the diagonal matrices. The output state of �C4

�1�	 un-
der a general POVM operator �i.e., the SLOCC operation�
has the form

���1�	 = a�0000	 + b�0011	 + c�1100	 − d�1111	 , �2�

where the normalized parameters a, b, c, and d are complex
numbers and we refer to ���1�	 as the cluster-class state �18�.
Furthermore, since the form of this quantum state is not
changed under the next POVM, the entanglement monotone
property of Ems���1�� will be satisfied only if the quantity is
nonincreasing under the first level of the POVM.

For the quantum state ���1�	, the two-qubit reduced den-
sity matrix of subsystem AB reads

�AB =�
�a�2 + �b�2 0 0 ac� − bd�

0 0 0 0

0 0 0 0

a�c − b�d 0 0 �c�2 + �d�2
� . �3�

Note that the two-qubit quantum correlation may be defined
as t2��AB�=C2��AB�, where the concurrence C��AB�

=max�0, �
�1−
�2−
�3−
�4�� with the decreasing positive
real numbers �i being the eigenvalues of the matrix �AB��y

� �y��AB
� ��y � �y� �19�. After a simple calculation, we get

CAB=2�a�c−b�d�. Similarly, we have C��CD�=2�a�b−c�d�
and C��ij�=0 for other subsystems. The linear entropy of
qubit A, �A�RA��=4 det �A� �20�, can quantify the total quan-
tum correlation between subsystems A and BCD. So, the
multipartite correlation related to qubit A, i.e., the residual
correlation, is

MA���1�� = �A�RA� − CAB
2 = 4�ad + bc�2. �4�

With a similar derivation, we can obtain MB=MC=MD
=MA, which means that the single residual correlation
Mk���1�� is invariant under permutations of qubits and the
average correlation Ems���1��=MA���1��.

Under the POVM �A1 ,A2� performed on the subsystem
A, two quantum states ��1

�1�	=A1���1�	 /
p1 and ��2
�1�	

=A2���1�	 /
p2 are available with probabilities pi
=tr�Ai���1�	
��1��Ai

†� for i=1,2. Note that the linear
entropy and the concurrence are invariant under determinant
one SLOCC operation �i.e., for the quantum states
���1�	 , ��1

�1�	 , and ��2
�1�	, the two measures are invariant if

the POVM operator satisfies det�Ai�=1� �21�; we can obtain
MA��1

�1��= ��2�2 / p1
2�MA���1�� and MA��1

�2��= ��1−�2��1
−�2� /
p2

2�MA���1��. With a similar deduction as that in Ref. �16�,
we can derive the following relation:

MA���1�� − p1MA��1
�1�� − p2MA��2

�1�� 	 0. �5�

Combining the permutation invariance of the Mk���1��, we
can draw the conclusion that the single residual correlation
MA���1��=Ems���1�� is entanglement monotone and can
characterize the multipartite entanglement in the system.

For this kind of quantum state, the contour plot of Ems
versus the non-normalized real parameters a� and d� is de-
picted in Fig. 2�a�, where the parameters b�=c�=0.5 are
fixed. In the regions near �a�=d�=0� and �a� ,d�
0.5�, the
multipartite entanglement has larger values, as the quantum
a� state ���1�	 tends to the Greenberger-Horne-Zeilinger
�GHZ� state. In the regions �a�
b� ,c� ,d�� and �d�

a� ,b� ,c��, Ems has smaller values, as the quantum state
approaches the product state. In particular, when the real

1-d

2-d
3-d

FIG. 1. �Color online� Schematic graphs of four-qubit cluster
states in 1D, 2D, and 3D lattices.

(a) (b)

FIG. 2. �Color online� Contour plots of the average multipartite
entanglement Ems in four-qubit cluster-class states ���1�	 and ���2�	,
where the non-normalized parameters a� and d� are in the range
�0,5� and the parameters b�=c�=0.5 are fixed.
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parameters and b�=c�, the multipartite entanglement reaches
the maximum Ems=1. In this case, the quantum state can be
rewritten as

��4	 = ��00	 � ��	 + �11	 � ���	�/
2 �6�

where ��	= �a��00	+b��11	� /
a�2+b�2 and ���	=b��00	
−a��11	 /
a�2+b�2. This state is the generalized Bell state,
i.e., the maximal bipartite entangled state between sub-
systems AB and CD. When ��	 is a product state, ��4	 is a
GHZ state. When ��	 is a Bell state, ��4	 is a cluster state
�C4

�1�	.
In two-dimensional lattices, the four-qubit cluster-class

state has the form

���2�	 = a�0000	 − b�0111	 − c�1010	 + d�1101	 , �7�

where the parameters a, b, c, and d are also complex. This
kind of quantum state is related to the box cluster state
��C4

�2�	= ��0000	− �0111	− �1010	+ �1101	� /2� via SLOCC.
For the cluster-class state, we can obtain the concurrences
CAC

2 =4��ac�− �bd��2 and Cij
2 =0 for the other subsystems. Un-

like in the 1D case, the single residual correlation Mk���2��
is not permutation invariant and does not satisfy the en-
tanglement monotone property. As an example, we consider
the quantum state ���2�	, where the non-normalized coeffi-
cients a�=b�=2, c�=0.2, and d�=3. After a simple calcula-
tion, we have MA=0.5643 and MC=0.2915. Under the
POVM performed on qubit A �here �=0.9 and �=0.2�, the
change of the residual correlation is 
MC=MC���2��
− p1MC��1�− p2MC��2�=−0.1151.

However, the average multipartite correlation

Ems���2�� = 3��a�2 + �c�2���b�2 + �d�2� + 4�abcd� �8�

is entanglement monotone, which can be proven as follows.
First, we consider the POVM �A1 ,A2� performed on the sub-
system A. Due to the LU-invariant property of the Ems, we
need only consider the diagonal matrices in the singular-
value decomposition form, as the output states ��1	 and ��2	
are obtained with the probabilities p1 and p2, respectively.
The correlation Ems���2�� can be separated into two comp-
onents �1= ��A�RA�−2CAC

2 � /4 and �2= ��B�RB�+�C�RC�
+�D�RD�� /4, on which the effects are different under the
POVM. The component �1 is invariant under the determinant
one SLOCC. With this property, we can derive


�1 = �1���2�� − p1�1��1� − p2�1��2�

= �1 − �2�2/p1 − �1 − �2��1 − �2�/p2��1���2�� ,

where �1���2��= ��ad�+ �bc��2− ��ac�− �bd��2 �in the general
case, this quantity is not guaranteed to be non-negative�. For
the component �2, the change is 
�2=�2���2��− p1�2��1�
− p2�2��2�=�k�A����k�− p1���k

1�− p2���k
2��, which is equiva-

lent to the changes of the linear entropies induced by the
mixed state decomposition of subsystems �k for k=B ,C ,D
�22�. After some tedious calculation, the change of the aver-
age multipartite correlation is


AEms = 
�1 + 
�2

= ��2 − �2�2�4�abcd���a�2 + �b�2���c�2 + �d�2�

+ 3��bc�2 − �ad�2�2�/p1p2, �9�

which is obviously a non-negative number. This means that
the correlation Ems���2�� does not increase on average under
the POVM performed on qubit A. But, since the quantities
�1 and �2 are variant under the permutation of two qubits, we
still need to consider the POVMs performed on the sub-
systems B, C, and D. After a similar analysis, we can derive
the change of the correlation under the POVM on qubit C
as 
CEms= ��2−�2�2�4�abcd���a�2+ �d�2���b�2+ �c�2�+3��ab�2
− �cd�2�2� / p1p2, which is also non-negative. For the POVM
on the subsystem B, one can separate the correlation Ems
into two components �1= ��B�RB�� /4 and �2= ��k�B�k�Rk�
−2CAC

2 � /4 �the non-negative property of �2 is guaranteed by
the monogamy relation �23��. �1 is nonincreasing due to the
SLOCC invariance, and �2 is nonincreasing because of the
concave and convex properties of the linear entropy and the
concurrence, respectively. Therefore, Ems is also nonincreas-
ing under this POVM. The case of the POVM on the sub-
system D is similar. According to the above analysis, we can
draw the conclusion that the correlation Ems���2�� is en-
tanglement monotone and can characterize the multipartite
entanglement in the system.

In Fig. 2�b�, the change of Ems���2�� with the non-
normalized real parameters a� and d� �b�=c�=0.5 are fixed�
is plotted. When �a�
b� ,c� ,d�� and �d�
a� ,b� ,c��, Ems

�0 and the quantum states tend to the four-qubit product
state. When �a� ,d��0� and �a� ,d�
b� ,c��, the multipartite
entanglement has rather large values �Ems�0.75�, where the
quantum state approximates to the product state of a single-
qubit state and a three-qubit GHZ state. The maximum Ems
=1 appears at the point a�=d�=0.5, where the quantum state
is just the box cluster state �C4

�2�	.
Finally, we address the entanglement monotone property

of Ems in a three-dimensional cluster-class state, which is a
trivial case. This state has the form

���3�	 = a�0000	 + b�1111	 , �10�

and relates to the four-qubit Greenberger-Horne-Zeilinger
state via the SLOCC operation. The quantum state ���3�	 is
invariant under the permutation of qubits and all its two-
qubit concurrences are zeros. Under the next level of the
POVM, the same properties still hold. So the single residual
correlation Mk=�k�Rk� is entanglement monotone and satisfies
MA=MB=MC=MD. It is obvious that the average correlation
Ems���3��=Mk=4�ab�2 is also entanglement monotone and
can characterize the multipartite entanglement in the system.

B. Three- and four-qubit entanglement measures

In a four-qubit pure state ��	ABCD, there are five multipar-
tite correlation parameters �cf. the Venn diagram in �9��, i.e.,
one genuine four-qubit correlation t4���	ABCD� and four
three-qubit correlations t3��ijk�. According to the QCRs, we
have a set of equations �9�
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t4���	� + �
i�j�k

t3��ijk� = Mk, �11�

where Mk is the single-residual correlation related to qubit k,
and the subscripts i , j ,k=A ,B ,C ,D. Note that these four
equations are unable to determine completely the five corre-
lation parameters. In fact, at least one additional independent
relation for either t3 or t4 is needed in this case.

As is known, the mixed three-tangle is a good entangle-
ment measure for a three-qubit mixed state; it is defined as
�24�

�3��ijk� = min �
�px,�x�

px���x� , �12�

where � is the pure state three-tangle �25� and the minimum
runs over all the pure state decompositions of �ijk. However,
it is shown in Ref. �9� that �3 is not compatible with the
QCRs in some specific four-qubit pure states �for example,
the quantum state ��	ABCD= ��0000	+ �1011	+ �1101	
+ �1110	� /2 �26��. So, for the cluster-class states, it is neces-
sary to check whether or not the �3 can quantify correctly the
t3 in the QCRs. If �3 does this, we are able to obtain the
genuine four-qubit correlation t4 in terms of Eq. �11�.

For the cluster-class state ���1�	 in 1D lattices, the three-
qubit reduced density matrices have the form �ijk= p1�0	
0�i
� ��	
�� jk+ p2�1	
1�i � ��	
�� jk, in which ��	 and ��	 are two-
qubit entangled states. If one uses the mixed three-tangle to
quantify the three-qubit correlation, the relation t3��ijk�
=�3��ijk�=0 can be obtained. Substituting this relation into
Eq. �11�, one can solve the genuine four-qubit correlation
t4=Mk=4�ad+bc�2. According to the analysis in Sec. II A,
we know that the quantity �4= t4 satisfies all three require-
ments of an entanglement measure. Therefore, for the
cluster-class state ���1�	, a set of correlation measures
��2 ,�3 ,�4� which all are entanglement monotone �we define
�2��ij�=Cij

2 � can characterize the genuine two-, three-, and
four-qubit entanglement in the system. For the cluster-state
���3�	 in 3D lattices, the case is similar. Its three-qubit re-
duced density matrix is �ijk= �a�2�000	
000�+ �b�2�111	
111�
and the corresponding three-tangle �3 is zero. After using �3
to quantify the correlation t3, one can solve the correlation
t4=�4=Mk=4�ab�2, which is also entanglement monotone. So
the correlation measures ��2 ,�3 ,�4� can characterize the dif-
ferent levels of entanglement in the cluster-class state ���3�	.

In the cluster-class state ���2�	, the situation is nontrivial.
If one uses the mixed three-tangle to quantify the correlation
t3, it is straightforward to find that �3��ABC�=0 and
�3��ACD�=0. Substituting the two zero t3’s into Eq. �11�, one
can obtain the other three multipartite correlations t4���2��
=16�abcd�, t3��ABD�=4��ad�− �bc��2, and t3��BCD�=4��ab�
− �cd��2. At this stage, we need to consider whether or not the
mixed three-tangle �3 is compatible with the QCRs in this
system and whether the correlation t4 is appropriate to char-
acterize the genuine four-qubit entanglement.

We first analyze the compatibility of �3 with the QCRs in
the system. The decomposition of �ABD into its eigenstates
can be written as

�ABD = p��1	
�1� + �1 − p���2	
�2� , �13�

where ��1	= �a�000	+d�111	� /
p, ��2	= �b�011	
+c�100	� /
1− p, and p= �a�2+ �d�2. It is well known that any
other decomposition can be obtained with a unitary transfor-
mation on the eigenvectors �27�. Hence, the vectors of any
decomposition of �ABD are linear combination of ��1	 and
��2	, i.e.,

�Z�q,��	 = 
q��1	 − ei�
1 − q��2	

= ã�000	 − ei�b̃�011	 − ei�c̃�100	 + d̃�111	 ,

�14�

where ã=a�, b̃=b�, c̃=c�, and d̃=d�, with �=
q / p and
�=
�1−q� / �1− p�. For this pure state, the reduced density
matrix of qubits AB is

�AB�Z� =�
�ã�2 0 − ãc̃�e−i� 0

0 �b̃�2 0 − b̃d̃�ei�

− ã�c̃ei� 0 �c̃�2 0

0 − b̃�d̃e−i� 0 �d̃�2
�
�15�

and its concurrence is zero �in fact, �AB is a mix of two
product states�. Similarly, for the quantum state �AD�Z�, we
can obtain CAD=0 as well. So, in any pure state decomposi-
tion of �ABD, the entanglements of subsystems AB and AD
are both zeros. Then, according to the definition of the mixed
state three-tangle, we have the following relation:

�3��ABD� = min �
�px,Zx�

px��Zx�q,���

= min �
�px,Zx�

px��A�RA�
�x� − �CAB

�x��2 − �CAD
�x� �2�

= min �
�px,Zx�

px�A�RA�
�x�

= CA:BD
2 ��ABD�

= 4��ad� − �bc��2, �16�

where we have replaced the basis ��00	 , �11	�BD with

��0̃	 , �1̃	�BD for the calculation of the last equation. This value
coincides with the correlation t3��ABD� obtained using the
QCRs. For the quantum state �BCD, we can get �3��BCD�
=4��ab�− �cd��2= t3��BCD� after a similar derivation. There-
fore, in the cluster-class state ���2�	, the mixed three-tangle
�3 can quantify correctly the correlation t3 and is compatible
with the QCRs.

With the QCRs, we solve the genuine four-qubit correla-
tion t4���2��=16�abcd�, which is obviously non-negative.
The LU-invariant property is guaranteed by the correspond-
ing property of the correlations Mk and t3 in Eq. �11�. Before
using t4���2�� to characterize the genuine four-qubit en-
tanglement in the system, we should prove first that it is
entanglement monotone. Since the correlation t4 is invariant
under the permutations of qubits, we need only consider the
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POVM �A1 ,A2� performed on the subsystem A in which the
diagonal matrices are diag�� ,�� and diag�
1−�2 ,
1−�2�,
respectively. After the POVM, two output states are available
with probabilities p1 and p2, respectively, and the change
of the correlation is 
t4���2��= �1−�2�2 / p1− �1−�2��1
−�2� / p2�t4���2��. Due to the non-negativity of the two fac-
tors in 
t4 �16�, the correlation t4���2��=�4 is entanglement
monotone. Therefore, the set of correlation measures
��2 ,�3 ,�4� is able to characterize the entanglements of two,
three, and four qubits in the cluster-class state ���2�	, namely,
they can be good entanglement measures for the correspond-
ing multibody systems.

In Fig. 3, the variations of the two-, three-, and four-qubit
entanglements with the non-normalized parameters a� and b�
are plotted. The behaviors of CAC

2 and �3��ABD� are the same
and both attain the maximum 0.4999 when �a�=0, b�
=0.7� and �a�=0.7, b�=0�. The value of �3��BCD� tends to 1
when �a�=b��0� and �a�=b�
0.5�, because the quantum
state �BCD approximates the pure GHZ state in these regions.
The genuine four-qubit entanglement �4 will be 1 when a�
=b�=0.5. At this point, the quantum state is just the box
cluster state �C4

�2�	.
Based on the above analysis, we conclude that not only is

the mixed three-tangle �3 a compatible correlation measure
with the QCRs but also a set of hierarchy measures
��2 ,�3 ,�4� can, respectively, quantify the two-, three-, and
four-qubit entanglement in the cluster-class states, as listed in
Table I.

III. DISCUSSION AND CONCLUSION

For the cluster-class state ���2�	, the single residual corre-
lation MC is not entanglement monotone as we showed in
Sec. II A. Here, we explain the reason. This residual corre-
lation can be written as MC=�4+�3��BCD� in terms of the

analysis in Sec. II B. Although the two components are both
entanglement monotone functions under the POVMs per-
formed on the subsystems B, C, and D, the effects of the
POVMs on the subsystem A are different from them. Due to
the invariance of the qubit permutations, �4 is still monotone
under this POVM. For the reduced density matrix �BCD, the
effect of the POVM on qubit A is equivalent to a mixed state
decomposition of �BCD. Because the mixed three-tangle is a
convex function, the parameter �3��BCD� is nondecreasing
under this POVM. Therefore, when the decrease of �4 is less
than the increase of �3, the residual correlation MC will not
be monotone. Just as in the example in Sec. II A, the changes
of the three- and four-qubit correlations are 
�3��BCD�=
−0.1964 and 
�4=0.081 27, respectively, which results in

MC=−0.1151. It should be pointed out that, for quantum
states that do not have three-qubit correlations under LOCC
�like the cluster-class states ���1�	 and ���3�	�, the residual
correlation Mk could be entanglement monotone.

In this paper, we prove analytically that Ems is entangle-
ment monotone for the four-qubit cluster-class states, and
thus it can characterize the multipartite entanglement in the
system. For general four-qubit states, Ems is conjectured to
be entanglement monotone according to the numerical analy-
sis in Ref. �9�. Moreover, for a type of four-qubit state, nu-
merical analysis of Bell inequalities �28,29� shows a similar
property to that of Ems, which also supports our conjecture. A
proof or disproof for an arbitrary N-qubit case is still
awaited. At present, we know that, in a kind of quantum state
whose two-qubit concurrences are zeros under the POVMs,
the average correlation Ems=�k�k�Rk� /N is entanglement
monotone. A trivial example is the N-qubit GHZ-class state
�G	N=a�00. . .0	N+b�11. . .1	N. A nontrivial example is a type
of six-qubit cluster-class state ��6	=a�000000	+b�000111	
+c�111000	−d�111111	, where the parameters a, b, c, and d
are complex numbers; the corresponding cluster states have
been prepared recently by Lu et al. with a photon system
�14�.

In the four-qubit cluster-class states, the mixed three-
tangle �3 is shown to be a compatible measure for quantify-
ing the correlation t3 in the QCRs. With this evaluation, the
genuine four-qubit entanglement measure �4 can be obtained.
Based on this pure cluster state entanglement, we are able to
introduce a mixed state entanglement measure by the convex
roof extension �30�,

FIG. 3. �Color online� Two-, three-, and four-qubit entanglement
measures versus the non-normalized real parameters a� and b� in
the cluster-class state ���2�	=a��0000	−b��0111	−0.5�1010	
+0.5�1101	.

TABLE I. Entanglement measures in different four-qubit
cluster-class states.

State parameters ���1�	 ���2�	 ���3�	

�4 4�ad+bc�2 16�abcd� 4�ab�2

�3��ABD� 0 4��ad�− �bc��2 0

�3��BCD� 0 4��ab�− �cd��2 0

�2��AB� 4�a�c−b�d�2 0 0

�2��AC� 0 4��ac�− �bd��2 0

�2��CD� 4�a�b−c�d�2 0 0
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�4��ABCD� = min �
�px,�x

�C��

px�4��x
�C�� , �17�

where an extra restriction is that the general vector ��x
�C�	

in the pure state decomposition has the form of cluster-class
states. As an example, we analyze the quantum state
�ABCD=1 /2���1	
�1�+ ��2	
�2��, in which ��1	= ��0000	
+ �1111	� /
2 and ��2	= ��0011	+ �1100	� /
2. The general de-
composition vector �Z�qk ,�k�	= �
qk��1	−ei�k
1−qk��2	� has
the form of the cluster-class state ���1�	. After choosing q1
=q2=0.5, �1=0, and �2=�, we can obtain �4��ABCD�=0 in
terms of the formula in Eq. �17�. Furthermore, via the mixed
state parameter �4, one can solve the five-qubit correlation t5
with the help of the QCRs, which can possibly be entangle-
ment monotone in a kind of five-qubit pure state.

In conclusion, we have explored the multipartite quantum
correlations in four-qubit cluster-class states. It is shown that
the average multipartite correlation Ems is entanglement
monotone in these systems, partly supporting our previous
conjecture �9�. Moreover, we find a set of hierarchy measures
��2 ,�3 ,�4� that can characterize the different levels of en-
tanglement in the cluster-class states. The entanglement
monotone property of Ems in a general N-qubit pure state is
still an open problem, which is worth study in the future.
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