The performance of red-to-blue organic light-emitting devices (OLEDs) has improved dramatically over the past decade.1–5 However, extending OLED emission into the ultraviolet (UV) or near-ultraviolet (n-UV) wavelength is still challenging, despite the useful applications of n-UV OLEDs as an excitation light source for red-to-blue or white luminescence conversion and in high-density information storage devices. In addition, UV or n-UV emitters are widely used as a host material for triplet dopant emitters in phosphorescent OLEDs.6,7 To date, only several n-UV emitters, such as 4,4′-dicarbazole-biphenyl (CBP),7 N,N′-diphenyl-N,N′-bis(3-methylphenyl)(1,10-biphenyl)-4,4′-diamine (TPD),8,9 and bi(9,9-diarylfluorene),10 have been proven to be effective UV or n-UV emitters for OLEDs.

Functionalized carbazoles have played an important role in OLEDs as a host material11,12 and hole-transporting material (HTM).13,14 Here, we report efficient n-UV emission with narrow full width half maximum (FWHM) from a novel 1,3,6,8-substituted carbazole derivative, 9-methyl-1,3,6,8-tetraphenyl-carbazole (MTPC-Me), the structure of which is shown in Fig. 1. Two types of high-performance OLEDs have been fabricated by using this star-configured MTPC-Me carbazole as a n-UV emitter and HTM.

The preparation method of MTPC-Me will be described elsewhere. The characteristic data of this compound are as follows: mp, 236.2 °C; MS-El(m/e), 485 (M+, 100.00%), 486 (30%), 243 (15%); elemental analyses: calculated percentage for C$_{39}$H$_{27}$N: C 91.51%, H 5.60%, N 2.88%; found: C 91.20%, H 5.56%, N 2.68%; 1H NMR(CDCl$_3$,500 Hz) δ: 2.94(3H,s), 7.38–7.42(4H,m), 7.47–7.52(8H,q), 7.60–7.65(2H,m), 7.80–7.81(4H,t), 8.42–8.42(2H,d). Three different types of OLEDs were fabricated:

- **device A:** indium-tin oxide (ITO)/MTPC-Me (50 nm)/Alq$_3$ (50 nm)/LiF (0.5 nm)/Al (100 nm),
- **device B:** ITO/NPB (50 nm)/Alq$_3$ (50 nm)/LiF (0.5 nm)/Al (100 nm), and
- **device C:** ITO/CuPc (30 nm)/MTPC-Me (30 nm)/BCP (10 nm)/Alq$_3$ (30 nm)/LiF (0.5 nm)/Al (100 nm), where ITO glass is transparent anode; copper(II) phthalocyanine (CuPc) is hole-injecting material; N,N′-bis(naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) is HTM; 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) is hole-blocking material (HBM); and tris-(8-hydroxyquinolato) aluminum(III) (Alq$_3$) is electron-transporting material (ETM) or emitting material (EM). In this work, all OLEDs were prepared13,14 on patterned ITO glass with a sheet resistance of 20 Ω/□. All layers of the OLEDs were grown by thermal evaporation under a vacuum of 1×10$^{-6}$ Torr. The device performance was examined using PhotoResearch PR-650 and Keithley 2400 source meter. All chemicals were sublimed before use.

We have not been able to obtain crystals of MTPC-Me with quality good enough for single crystal x-ray structure determination. Nevertheless, we have obtained crystals of its analog 9-ethyl-1,3,6,8-tetraphenyl-carbazole (MTPC-Et) and determined its crystal structure. As depicted in Fig. 2, due to the four phenyl groups, MTPC-Et is sterically bulky with a...
star-configured structure and this is essential for this kind of compounds to acquire enough morphological thin-film stability and thermal stability. The decomposition temperature and glass transition (T_g) of MTPC-Me was found to be 351 and 220 °C, respectively. The energy levels calculated using cyclic voltammetric data of this compound are shown in Fig. 1. The energy level of the highest occupied molecular orbital (HOMO, −5.2 eV) and lowest unoccupied molecular orbital (LUMO, −2.0 eV) of MTPC-Me are comparable to those of NPB (HOMO, −5.2 eV; LUMO −2.2 eV). With a large band gap of 3.2 eV, MTPC-Me emits a strong n-UV light ($\lambda_{\text{max}}=389$ nm, decay lifetime=5.3 ns) with a high photoluminescent (PL) quantum efficiency of 47% (quinine in 0.05 mol/l sulfate as standard) and FWHM of 40 nm in CH$_2$Cl$_2$ solution, as depicted in Fig. 3. The PL emission of MTPC-Me film ($\lambda_{\text{max}}=395$ nm) shows a little redshift from that recorded in CH$_2$Cl$_2$ solution, presumably this could be attributed to molecular aggregation in the solid state. On the basis of its good thermal and morphological stability, appropriate energy levels, strong n-UV emission, and hole-transporting nature of carbazole-containing compound, MTPC-Me is expected to be a good HTM and EM.

A double-layer device A with MTPC-Me as HTM and Alq$_3$ as EM and ETM was fabricated. For comparison, a standard device B with a similar structure but using NPB as HTM was also fabricated. Similar to the NPB-based device B, the MTPC-Me-based device A gave a green emission with a peak λ_{max} at 530 nm, a characteristic of the emission of Alq$_3$ (Fig. 4), indicating that charge recombination is localized in the Alq$_3$ layer and MTPC-Me acted primarily as a HTM without causing exciton formation at the interface with Alq$_3$. This should be attributed to the appropriate HOMO
energy level of MTPC-Me which is favorable for hole injection from ITO to the MTPC-Me and, subsequently, to the Alq3 layer. Similarly, the appropriate LUMO level of MTPC-Me (a bit higher than that of NPB) blocks electron injection from Alq3 to itself.14 The electroluminescent (EL) performance of devices A and B are shown in Fig. 4. Both the current density and luminance of the MTPC-Me-based device A are comparable to that of the NPB-based standard device B (Fig. 4). The maximum external quantum efficiency (η_{ext}), luminous efficiency (η_L), brightness, and turn-on voltage (V_{on}) of the MTPC-Me-based device A are 1.1 $\%$, 3.3 cd/A, 18 000 cd/m2, and 2.4 V, respectively, comparable to the related values found for NPB-based standard device B (maximum η_{ext}, η_L, brightness, and V_{on} of 1.3 $\%$, 4.0 cd/A, and 25 000 cd/m2, and 2.3 V, respectively). The hole mobility of MTPC-Me determined by time-of-flight measurement is about 1.9×10^{-4} cm2/V s, which is comparable to the value reported for NPB.

In device C, a 10-nm-thick BCP film was inserted between MTPC-Me and Alq3 to prevent leaking excitons into the Alq3 layer as BCP layer has a high HOMO level compared to Alq3 and would block the passage of holes out of MTPC-Me. Device C gave a pure n-UV EL emission (λ_{max}, 396 nm) with a narrow FWHM of 40 nm, as shown in Fig. 5. The maximum η_{ext}, brightness, and V_{on} of device C are 1.2 $\%$, 1040 cd/m2, and 3.5 V (Fig. 5), respectively, comparable to that found for CBP (Ref. 7) and TPD-based8,9 n-UV OLEDs. Recently, a high-performance n-UV OLEDs with a high η_{ext} up to 3.6 $\%$ was reported by using 2,2$^\prime$-bi-9,9$^\prime$-spirobiﬂuorene (B2).10 However, the EL emission from this n-UV OLED extended into visible region ($\lambda_{max} \approx 425$ nm) and its FWHM broadened to ~ 70 nm. The V_{on} of device C was higher than that of device A or device B, this would be attributed to the LUMO level of MTPC-Me (~ 2.0 eV) at higher energy level than that of BCP (~ 2.9 eV), resulting in higher energy barrier for electrons to jump into the MTPC-Me layer. This barrier might be reduced by replacing BCP/Alq3 with a HBM and ETM of (1,3,5-phenylene)trilis(1-phenyl-1H-benzimidazole).15

In summary, a novel wide-band-gap 1,3,6,8-substituted carbazole derivative with a good thermal stability, a good hole-transporting property, and a stong n-UV emission was prepared and successfully used as an efficient n-UV EM and HTM in OLEDs. Given the fact that the molecular structure and, hence, the electronic properties of MTPC-Me and its derivatives could be varied, the development of high-performance n-UV OLEDs using this kind of compounds is envisaged. The present findings also suggest that MTPC-Me is a potential good host material in electrophosphorescence devices.

This work was supported by the Joint Research Scheme NSFC/RGC (N_HKU 742/04), the University Development Fund (Nanotechnology Research Institute, No. 00600009) of The University of Hong Kong, the Innovation Technology Fund (ITF), Strategic Theme on Nano-Biotechnology, the Strategic Theme on Organic Electronics and RGC of HKSAR (Project Nos. HKU 7158/04E and HKU 200607176144), the Guangdong Province Natural Science Foundation (Grant No. 031805), the Major Program in Key Field of Guangdong Province Government (Grant No. 2003-03), Science and Technology Program of Shenzhen (Grant No. 2006-007). We acknowledge Clover & Sunic Systems, Ltd., for their support with the fabrication system housed at The University of Hong Kong.