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Abstract—The problem of discovering novel motifs of binding sites is important to the understanding of gene regulatory networks.

Motifs are generally represented by matrices (position weight matrix (PWM) or position specific scoring matrix (PSSM)) or strings.

However, these representations cannot model biological binding sites well because they fail to capture nucleotide interdependence. It

has been pointed out by many researchers that the nucleotides of the DNA binding site cannot be treated independently, for example,

the binding sites of zinc finger in proteins. In this paper, a new representation called Scored Position Specific Pattern (SPSP), which is

a generalization of the matrix and string representations, is introduced, which takes into consideration the dependent occurrences of

neighboring nucleotides. Even though the problem of discovering the optimal motif in SPSP representation is proved to be NP-hard, we

introduce a heuristic algorithm called SPSP Finder, which can effectively find optimal motifs in most simulated cases and some real

cases for which existing popular motif-finding software, such as Weeder, MEME, and AlignACE, fail.

Index Terms—Computing methodologies, pattern recognition, design methodology, pattern analysis.

Ç

1 INTRODUCTION

A gene is a segment of the DNA that is the blueprint for
protein. In most cases, genes seldom work alone;

rather, they cooperate to produce different proteins for a
particular function. In order to start the protein decoding
process (gene expression), a molecule called transcription
factor will bind to a short region (binding site) preceding the
gene. One kind of transcription factor can bind to the
binding sites of several genes to cause these genes to
coexpress. These binding sites have similar patterns called
motifs. Discovering novel motifs of unknown transcription
factors and the binding sites from a set of DNA sequences is
a critical step for understanding the gene regulatory network.

In order to discover motifs of unknown transcription
factors, we must first have a model to represent motifs.
There are two popular models: string representation [4], [6],
[7], [8], [13], [14], [17], [20], [22], [23], [25], [26], [27], [28],
[29], [30], [31], [32], [33] and matrix representation [1], [2],
[9], [11], [15], [16], [18], [19], [21]. String representation is the
most basic representation which uses a length-l string of
symbols (or nucleotides) “A,” “C,” “G” and “T” to describe
a motif. To improve the representation’s descriptive power,
wildcard symbols [6], [26], [31] can be introduced into the
string to represent choice from a subset of symbols at a
particular position (for example, “K” can denote “G” or
“T”). Matrix representation further improves descriptive
power. In the matrix representation, motifs of length l are
represented by position weight matrices (PWMs) or position
specific scoring matrices (PSSMs) of size 4� l with the four
entries in the jth column of the matrix, effectively giving the

occurrence probabilities of the four nucleotides at position j.

Although matrix representation appears superior, the

solution space for PWMs and PSSMs, which consists of 4l

real numbers is infinite in size, and there are many local

optimal matrices, thus, algorithms generally either produce

a suboptimal motif matrix [1], [2], [9], [15], [16], [21] or take

too long to run when the motif is longer than 10 bp [19].
As it turns out, the string and the matrix representations

share an important common weakness: They assume the

occurrence of each nucleotide at a particular position of a

binding site is independent of the occurrence of nucleotides

at other positions. This assumption does not represent the

true picture. According to Bulyk et al. [5], analysis of wild-

type and mutant Zif268 (Egr1) zinc fingers gives compelling

evidence that nucleotides of transcription factor binding

sites should not be treated independently, and a more

realistic motif representation should be able to describe

nucleotide interdependence. Man and Stormo [24] have

arrived at a similar conclusion in their analysis of Salmonella

bacteriophage repressor Mnt: They found that interactions

of Mnt with nucleotides at positions 16 and 17 of the 21 bp

binding site are in fact not independent.
When the positions of binding sites are known, we may

represent the motif by Hidden Markov Model (HMM) [36],

Bayesian network [3], or enhanced PWM [10], which can

overcome the above weakness. However, these models

cannot be easily extended to discover novel motifs espe-

cially when the number of coexpressed genes is small (say,

less than 10). It is because the input data does not contain

enough information for deriving the hidden motif and the

above models usually overfit the input data. Hence, they are

far less popular representations.
In this paper, we introduce a new motif representation

called Scored Position Specific Pattern (SPSP), which has the

following advantages:
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1. Better representation. SPSP can describe the interde-
pendence between neighboring nucleotides with
similar number of parameters as string and matrix
representations.

2. Generalization of string and matrix representations.
These two commonly used representations are
special cases of the SPSP representation. Thus, SPSP
representation can model more motifs than these
two representations.

3. Computationally feasibility. Finding the optimal motif
in SPSP representation, for some restricted cases, is
more feasible than finding the optimal PWM or
PSSM.

This paper tackles a “restricted” motif discovering
(RMD) problem based on the SPSP representation.
Although this is a restricted problem, it can model all
motifs in string representation and most motifs in matrix
representation. Because this restricted problem is NP-
complete (proof shown in the Appendix), we introduce a
heuristic algorithm called SPSP Finder, which can find the
optimal SPSP motifs in most simulated cases and some real
cases, for which Weeder [25], MEME [16], and AlignACE
[12] fail.

This paper is organized as follows: In Section 2, we
describe the SPSP representation, the corresponding motif
problem and its restricted version in detail. In Section 3, we
introduce the heuristic algorithm SPSP Finder. Experimen-
tal results on simulated data and real biological data
comparing SPSP Finder with some popular software are
given in Section 4, followed by concluding remarks in
Section 5.

2 SCORED POSITION SPECIFIC PATTERN (SPSP)

Consider the wildcard-augmented string representation
with 15 symbols representing all combinations of the four
nucleotides “A,” “C,” “G,” and “T.” For example, the
wildcard symbol “Y” represents “C” or “T” and wildcard
symbol “S” represents “C” or “G.” Consider the motif for
the transcription factor HAP2 [34], which exists as a
heterotrimeric complex with the HAP3 and HAP4 proteins.
The HAP2/3/4 complex binds to the patterns “CCAAT-
CA,” “CCAATGA,” or “CCAACCA.” We can represent the
motif by “CCAAYSA” with two wildcard symbols. In fact,
we may also represent “CCAAYSA” as follows:

ðCÞðCÞðAÞðAÞ C
T

� �
C
G

� �
ðAÞ:

However, this representation has the problem that the
pattern “CCAACGA” is also considered as a binding site
(false positive). In order to prevent the inclusion of false
positive patterns, we replace the substring “YS” by a set of
length-2 patterns, i.e.,

ðCÞðCÞðAÞðAÞ
TC
TG
CC

0
@

1
AðAÞ or ðCCAAÞ

TC
TG
CC

0
@

1
AðAÞ:

The SPSP representation uses such an idea to represent
motifs. Based on this SPSP representation, our algorithm
can find the motif and binding sites of HAP2, whereas the

other software fails to do so. The formal definition of SPSP
is described in Section 2.1.

2.1 Formal Definition of Pattern Sets
Representation

A set of length-l binding site patterns can be described by a
SPSP representation P , which contains c ðc � lÞ sets of
patterns Pi, 1 � i � c, where each set of patterns Pi contains
length-li patterns Pi;j of symbols “A,” “C,” “G,” and “T,”
and

P
i li ¼ l. Each length-li pattern Pi;j is associated with a

score si;j that represents the “closeness” of a pattern to be a
binding site, that is, the lower the score, the more likely that
the pattern is a binding site. The score of a length-l string
� ¼ �1�2 . . .�c, where j�ij ¼ li, 1 � i � c with respect to P

can be defined as follows:

scoreð�; P Þ ¼
Xc
i¼0

si;j 9j; Pi;j ¼ �i
1 otherwise:

�

A string � is a binding site with respect to an SPSP motif P if
and only if scoreð�; P Þ is no more than some predefined
threshold �.

For example, consider the following SPSP representation
for the length-11 binding sites of the transcription factor
CSRE [37], which activates the gluconeogenic structural
genes:

P ¼ ðCGGAÞ
TGA

TAA

CGG

0
B@

1
CAðAÞ A

T

� �
ðGGÞ and

n
si;j

o
¼ ð� logð1ÞÞ

� logð0:5Þ
� logð0:3Þ
� logð0:2Þ

0
B@

1
CA

ð� logð1ÞÞ
� logð0:7Þ
� logð0:3Þ

� �
ð� logð1ÞÞ:

Note that the score si;j is the negative of the logarithm of the
occurrence probability of the corresponding pattern Pi;j.
The score of the length-11 string � ¼ 00CGGATAAAAGG00

with �1 ¼ 00CGGA00, �2 ¼ 00TAA00, �3 ¼ 00A00, �4 ¼ 00A00, and
�5 ¼ 00GG00 can be calculated as

�logð1Þ � logð0:3Þ � logð1Þ � logð0:7Þ � logð1Þ ¼ � logð0:21Þ:

On the other hand, the score of � ¼ 00CTGATAAAAGG00 is
1 as �1 ¼ 00CTGA00=2P1. The scores of these strings
represent the negative log likelihood of these strings being
binding sites of P . A string with smaller score is more likely
to be a binding site of P .

Based on the SPSP representation, we can define the
Motif Discovering (MD) Problem as follows:

MD Problem. Given t length-n DNA sequences T , we
want to find a motif M in SPSP representation (P and score
fsi;jg satisfying certain properties) to maximize/minimize
some target function calculated based on the scores of the
binding sites of M in T .

The following will show that SPSP representation is a
generalization of the string and matrix representations. By
applying different target functions, we can discover motifs
with different properties under a certain score scheme fsi;jg.
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1. Restricting c ¼ l (that means li ¼ 1, 1 � i � c ¼ l), the
SPSP representation P is equivalent to a PWM or
PSSM [1], [15], [16], [19]. Using the following
probability matrix for transcription factor CSRE with
threshold 0.04 as an example.

A
C
G
T

0 0 0 1:0 0 0:3 0:7 1:0 0:7 0 0

1:0 0 0 0 0:3 0 0 0 0 0 0

0 1:0 1:0 0 0 0:7 0:3 0 0 1:0 1:0

0 0 0 0 0:7 0 0 0 0:3 0 0

0
BB@

1
CCA:

It is equivalent to the following SPSP represen-

tation:

P ¼ ðCÞðGÞðGÞðAÞ
C

T

� �
A

G

� �
A

G

� �

ðAÞ
A

T

� �
ðGÞðGÞ and

n
si;j

o
¼ ð0Þð0Þð0Þð0Þ

� logð0:3Þ
� logð0:7Þ

� � � logð0:3Þ
� logð0:7Þ

� �
� logð0:7Þ
� logð0:3Þ

� �
ð0Þ

� logð0:7Þ
� logð0:3Þ

� �
ð0Þð0Þ;

with threshold � ¼ � logð0:04Þ. Note that

� logð1:0Þ ¼ 0:

In order to find a set of binding sites with the

minimum negative log likelihood, the MD problem is

to find P and fsi;jg such that for 1 � i � c ¼ l, si;j ¼
� logðpi;jÞwith

P
j pi;j ¼ 1 so as to minimize the target

function
P

�½scoreð�; P Þ þ l logð0:25Þ� for all binding

site � (i.e., with scoreð�; P Þ � �ðthresholdÞ).
2. Restricting c ¼ l, si;j ¼ 0 or 1,

P
j si;j ¼ 3, and � ¼ d,

the SPSP representation P is equivalent to a string
representation [4], [8], [22], [23], [27] for the planted
ðl; dÞ-motif problem. For example, the HAP2 motif
“CCAATTA” for the planted ð7; dÞ-motif problem is
equivalent to the following SPSP representation:

P ¼

A

C

G

T

0
BBB@

1
CCCA

A

C

G

T

0
BBB@

1
CCCA

A

C

G

T

0
BBB@

1
CCCA

A

C

G

T

0
BBB@

1
CCCA

A

C

G

T

0
BBB@

1
CCCA

A

C

G

T

0
BBB@

1
CCCA

A

C

G

T

0
BBB@

1
CCCA

and

n
si;j

o
¼

1

0

1

1

0
BBB@

1
CCCA

1

0

1

1

0
BBB@

1
CCCA

0

1

1

1

0
BBB@

1
CCCA

0

1

1

1

0
BBB@

1
CCCA

1

1

1

0

0
BBB@

1
CCCA

1

1

1

0

0
BBB@

1
CCCA

0

1

1

1

0
BBB@

1
CCCA;

with threshold � ¼ d.
In order to find the maximum number of binding

sites with at most d substitutions from a string motif,

the MD problem is to find fsi;jg such that for

1 � i � c ¼ l, si;j ¼ 0 for a particular j, and ¼ 1 for all

other j, so as to maximize the number of binding

sites as its target function. Note that the SPSP

representation P is already fixed, as shown above.
3. Restricting c ¼ l, si;j ¼ 0, and � ¼ 0, the SPSP

representation P is equivalent to a length-l string

with wildcard symbols [20], [31]. For example, the
BAS2 [37] motif “TAATRA” in string representation
with wildcard symbols is equivalent to the following
SPSP representation:

P ¼ ðTÞðAÞðAÞðTÞ
A

G

� �
ðAÞ and

n
si;j

o
¼ ð0Þð0Þð0Þð0Þ

0

0

� �
ð0Þ;

with threshold � ¼ 0.
In order to find a set of binding sites with a

minimum z-score [31] or p-value [20], the MD
problem is to find the SPSP representation P such
that for all i, j, si;j ¼ 0, so as to minimize the z-score
or p-value of the binding sites as its target function.
Note that the z-score or p-value decreases with the
inverse of the number of binding sites and the
number of conserved symbols.

2.2 Restricted Motif Discovering Problem

In the real biological situation, transcription factors bind to
binding sites by some components called DNA-binding
domains (for example, zinc finger). Each domain of the
transcription factor usually binds to 3-4 bp consecutive
regions of the binding sites [24], [35]. Therefore, we may
assume the length li of each pattern Pi;j is not larger than 4.
Besides, the background occurrence probability of each
length-l pattern in the input sequence is not the same. This
uneven probability can be estimated by an order 0 to
3 HMM [36].

Instead of solving the general MD Problem described in
Section 2.1, this paper tackles a “restricted” version of the
motif problem based on the assumption that li is small, that
is, li � lmax for a predefined value lmax. Besides, the overall
binding site patterns should be similar, that is, the score si;j
of each length-li pattern Pi;j must be equal to its Hamming
distance with some representative length-li string Ri:

Pi ¼

ACG
ACT
AGT
CCG

0
BB@

1
CCA and Sij ¼

1
0
1
2

0
BB@

1
CCA;

if Ri ¼ 00ACT00. Similar if Ri ¼ 00ACG00, then

Sij ¼

0
1
2
1

0
BB@

1
CCA:

A length-l string � is a binding site of M if and only if
scoreð�; P Þ � d, that is, � should be within Hamming
distance d from a particular motif pattern.

Intuitively, the RMD Problem is finding an SPSP
representation P such that the number of possible string
patterns for binding sites

Q
i jPij ¼ w is minimized, and at

the same time, P can cover the maximum number of
binding sites b.

For example, assume the occurrence probability of each
length-l pattern is the same. Given the following binding
sites fsig and motif P1 and P2:

112 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 5, NO. 1, JANUARY-MARCH 2008

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 2, 2009 at 21:45 from IEEE Xplore.  Restrictions apply.



s1 G T A T T A A
s2 G T A T T A G
s3 G T A T A A C
s4 G T A T A A G
s5 G T A T G A G
s6 G T A T C A G
s7 C T A T G A C
s8 C T A T C A G
s9 C T A T A A G
s10 C T A T G A C

P1¼ðGTATÞ

A

C

G

T

0
BBB@

1
CCCAðAÞ

A

C

G

0
B@

1
CA;

n
si;j

o
1

¼ð0Þ

0

1

1

1

0
BBB@
1
CCCAð0Þ

1

0

1

0
B@
1
CA;

P2¼
G

C

� �
ðTATÞ

A

C

G

0
B@

1
CAðAÞ C

G

� �
;

n
si;j

o
2

¼
0

1

� �
ð0Þ

0

1

1

0
B@
1
CAð0Þ 0

1

� �
:

Score fsi;jg are defined such that scoreð�; P Þ ¼ Hamming
distance between � and “GTATAAC.” Since the number of
possible patterns of binding sites for P1 and P2 are the same,
that is, w ¼ 4� 3 and 2� 3� 2, respectively, P2 is more
likely to be a correct motif than P1 as P2 covers more
binding sites (s3 to s10) than P1 (s1 to s6).

Usually, it might not be so obvious which motif is more
likely to be correct, for example, when w1 < w2 and b1 < b2.
In such case, we compare two motifs by the occurrence
probabilities ðp-valuesÞ of their corresponding binding sites
in T with the assumption that T is a set of random
sequences generated according to a Markov model. Given a
motif with

Q
i jPij ¼ w (the w possible binding sites patterns

are fBk; k ¼ 1; . . . ; wg) and having b binding sites in T , the
occurrence probability of � b binding sites in a set of
random sequences can be calculated as

p� value ¼ 1�
Xb�1

i¼0

tðn� lþ 1Þ
i

� � Xw
k¼1

P ðBkÞ
 !i

1�
Xw
k¼1

P ðBkÞ
 !tðn�lþ1Þ�i

;

where P ðBkÞ is the probability that Bk occurs at a particular
position given that the sequence is generated according to
the Markov model. A motif with low p-value means that it is
likely to be an answer. Note that p-value increases as w and
P ðBkÞ, the number and the occurrence probabilities of the
possible binding site patterns Bk, increases and decreases as
b, the number of binding sites increases. Thus, we define the
RMD Problem formally as follows:

RMD Problem. Given the Markov model for the back-
ground sequences, t length-n DNA sequences T , the
threshold value d, and lmax, we want to find a length-l
motif P and a set of score fsi;jg such that si;j is equal to the
Hamming distance between Pi;j and some representative
length-li string Ri and having the minimum p-value of the
corresponding binding sites.

Although we have imposed restriction to the MD
problem, this restricted SPSP representation is still more
descriptive than the string representation in the sense that
all string representations are the special cases of this
restricted representation. This restricted representation

takes into account the dependence of the occurrence of
the nucleotides in a binding site, and some nucleotides in
binding sites are conserved. Under the RMD problem, all
possible binding sites have equal occurrence probability
given that they are generated according to the motif. Note
that it is not the same as the occurrence probabilities of the
binding sites generated according to the Markov model
(background). Thus, we cannot determine whether this
restricted representation is more descriptive than the matrix
representation. Besides, as we assume that the transcription
factor binds to the binding sites by DNA-binding domains
at short consecutive regions, the RMD problem does not
model binding sites with dependency over a long region,
for example, GAL4, functioned as a homodimer with
binding pattern CGGN11CCG (the prefix CGG is a reverse
complement of the suffix CCG), dependency over a long
region.

We shall show in Section 3 that there is an efficient
heuristic to solve the RMD problem with which we can
successfully find motifs in some cases for which popular
motif-finding software fail.

3 ALGORITHM SPSP FINDER

In this section, we describe a heuristic algorithm, SPSP
Finder, to solve the RMD Problem. This algorithm starts
with a set of “good” string patterns and, based on local
search, finds some local optimal SPSP representations and
their corresponding binding sites. This algorithm has two
main steps. The first step, served as seed searching, is to
find a set of length-l string motifs with many binding sites in
the input sequences. In the second step, we start with each
length-l string R as a seed SPSP representation and merge
some positions of R’s binding sites to form another SPSP
representation with smaller p-value. This merging step is
repeated until the p-value cannot be further reduced.
Definitely, this algorithm cannot guarantee the finding
optimal motif in SPSP representation. However, when more
seed sequences are considered, the longer is the running
time, the better will be the solution.

3.1 Seed Searching

Voting Algorithm [9], [17] is applied to discover length-l
string motifs. Voting is used for solving the planted
ðl; dÞ-motif problem where a motif is represented by a
length-l string S, and the binding sites are d-variants of S
(d-variant of S is a length-l string derivable from S with at
most d symbol substitutions). This algorithm is based on the
idea that if each length-l substring in the input sequences T
gives a vote to each of its d-variants, a string S with
b d-variants in T will get exactly b votes. Finding the number
of d-variants in T of each length-l string S takes Oðntð3lÞdÞ
time [9], [17].

Since the occurrence probability of each length-l string in
T is different, we modify the Voting Algorithm such that
each string � gives 1=P ð�Þ vote to each of its d-variants,
where P ð�Þ is �’s occurrence probability based on the
background modeled by HMM. A string � with low
occurrence probability in the background will contribute a
higher score to its d-variants. As the string S with relatively
more d-variants of low occurrence probabilities is more
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likely to be one of the motif patterns, we refine each length-l
string one by one (Section 3.2) in decreasing order of the
sum of (weighted) votes received.

3.2 Refining the SPSP Representation

Given representative string S (motif candidate), we can
find all length-l d-variants of S (potential binding sites) in
the t length-n DNA sequences T . By aligning these
length-l d-variants, we can construct a restricted SPSP
representation P for these d-variants by considering the
consensus substrings as the representative strings Ri.
However, as some of these d-variants might not be binding
sites, the value of

P
k P ðkÞ, as well as the p-value may be

very large. In order to reduce the value of
P

k P ðkÞ, we
shall construct restricted SPSP representation for subsets of
the d-variants. Since finding the optimal subset of
d-variants (the subset with the lowest p-value) is NP-
complete (see Appendix), heuristic approach is being
considered. We begin with the set of all d-variants. At
each iteration, we remove the d-variant whose removal
decreases the p-value most. Note that the restricted SPSP
representation will change if the set of d-variants is
different. If we find a motif candidate M with smaller
p-value than the best motif M� found so far, we update M�

by M. We repeat this step until the p-value of a new motif
candidate M cannot be lowered.

After considering (or refining) one string, we shall
consider (or refine) the next candidate string having the
largest weighted votes. When the number of d-variants of
the remaining candidates (as the candidates have been
sorted in decreasing order of weighted votes) is too small to
be refined to a better motif than M�, we stop the process
and report M� as the answer.

4 EXPERIMENTAL RESULTS

Based on the ideas in Section 3, we have implemented SPSP
Finder in C++. SPSP Finder was used to find motifs in both
simulated and real biological data. All experiments were
performed on a 2.4-GHz P4 CPU with 1 Gbyte of memory.
The performance of SPSP Finder was compared with
various existing motif-finding algorithms.

4.1 Simulated Data

The simulated data were generated in the following manner.
Twenty length-600 sequences were generated with each
nucleotide having the same occurrence probability 0.25.
Then, a length-lmotifM in SPSP representation with lmax ¼ 4
was picked randomly according to the following steps:

1. A set of c numbers l1 . . . lc such that c � l andP
i li ¼ l, corresponding to the parameters of an

SPSP representation, was generated randomly.
2. For i ¼ 1; . . . ; c, an integer ri was randomly picked

from 1 to 4 with equal probability. ri length-li
random strings were generated independently with
each nucleotide having the same occurrence prob-
ability 0.25.

A binding site of M was randomly picked with equal
probability and planted at a random position of each
sequence in T . The Weeder [25], MEME [16], AlignACE
[12], and SPSP Finder were used to discover this hidden

motif M. SPSP Finder calculated the score of a predicted
motif using an order-0 Markov model with the same
occurrence probability for each nucleotide. The accuracy
for each motif predicted by the above algorithms is
defined as

accuracy ¼ predicted sites \ planted sitesj j
predicted sites [ planted sitesj j :

A planted binding site is correctly predicted if that binding
site overlaps with at least one predicted binding site. An
algorithm is said to have predicted the hidden motif
correctly if the accuracy � 0.5. For each set of parameters,
that is, length l and threshold (Hamming distance) �, we
ran 50 test cases. Table 1 shows the success rate of the
algorithms in discovering the motif.

Buhler and Tompa [4] proved that when � is large with

respect to l (for example, the (5,1), (7,2), (9,3), and (11,4)

problems), there are many random patterns having the

same number of �-variants as the motif; so, algorithms are

unlikely to be able to discover the motif without extra

information. Indeed, the Weeder, MEME, and AlignACE do

not perform well in these cases. MEME has a better

performance than the other two algorithms because it

allows different occurrence probabilities for nucleotides at

each position. Since SPSP Finder considers the dependence

of the nucleotides, it has better performance than Weeder,

MEME, and AlignACE.

4.2 Real Biological Data

SCPD [37] contains information of different transcription

factors for yeast. For each set of genes regulated by the same

transcription factor, we chose the 600 base pairs in the

upstream of these genes as the input sequences T . The

Weeder, MEME, AlignACE, and SPSP Finder were used to

discover the motifs. SPSP Finder used an order-0 Markov

model calculated based on the input sequence when

calculating score of each predicted motif. Table 2 showed

the experimental results of all transcription factors in SCPD

except those motifs, which cannot be discovered by any

algorithms. As shown in Table 2, SPSP Finder performs

better than other algorithms in most cases. There are six

motifs, ACE2, AP1, BAS2, CSRE, HAP2/3/4, and UASCAR,

and their binding sites could be discovered (accuracy � 0.5)

by SPSP Finder but not by the other algorithms. Refer to the

published binding sites in SCPD database where there are

nucleotide dependencies in these binding sites.
For example, the HAP2/3/4 complex is a CCAAT-

binding complex, which mainly binds to the sequence
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“CCAATCA” in yeast. Although it also binds to the
sequences “CCAATGA” and “CCAACCA,” it cannot bind
to sequences “CCAAACA” and “CCAAAGA” [30]. Since
the binding sites are short and there are two nonconserved
positions (positions 5 and 6), Weeder failed to discover the
published motif because there were many length-7 random
patterns whose 2-variants occurred more frequently than
the binding sites of “CCAATCA.” In this case, Weeder
cannot distinguish the published motif “CCAATCA” from
these random patterns. Similarly, MEME and AlignACE
failed because there were many PSSMs having higher scores
than the score of the published motif if the nucleotide
dependency in positions 5 and 6 were not considered. By
considering the nucleotide dependency in positions 5 and 6,
the SPSP Finder discovered the motif in the SPSP
representation:

ðCCAAÞ
TC
TG
CC

0
@

1
AðAÞ;

which had a lower p-value than “CCAAYSA” and other
random patterns.

CSRE is a transcription factor responsible for the

transcriptional activation of gluconeogenic structural genes.

There are five binding sites in the data set that can be

represented by the motif “CGGAYRRAWGG.” This motif

contains four wildcard symbols and represents 16 different

binding sequences instead of 5. Since this motif cannot

model the binding sites specifically, many length-11

random patterns had frequently occurring 4-variants and

could be mistaken as the hidden motif. Therefore, Weeder

could not discover the motif. Similarly, MEME and

AlignACE failed even using the more precise PSSM

representation. SPSP Finder discovered the following motif

in SPSP representation:

ðCGGAÞ
TGA
TAA
CGG

0
@

1
AðAÞ A

T

� �
ðGGÞ:

Although this motif in SPSP representation represented six

instead of five binding patterns, it could describe the

binding sites better than those motifs in string representa-

tion or PSSM. Therefore, SPSP Finder could discover the

published motif successfully, whereas Weeder, MEME, and

AlignACE failed.
For those cases that SPSP Finder and other algorithms

could discover the published binding sites, SPSP Finder had

an advantage that it can represent the binding sites better.

For example, the CCBF transcription factor can bind to

sequences “CNCGAAA,” where “N” represents any nu-

cleotides. Although both Weeder and SPSP Finder could

discover the published motif, Weeder represented the motif

as “CACGAAA” with at most 1 point substitution that will

wrongly consider “TACGAAA,” “CAAGAAA,” etc., as

binding sites. On the other hand, SPSP Finder represented

the motif in the following format:
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ðCÞ

A
C
G
T

0
BB@

1
CCAðCGAAÞðAÞ;

which can represent the motif better than Weeder.

Similarily, SPSP Finder had better representations for the

CuRE, LEU, and MAT�2 motifs.
There were two cases that SPSP Finder failed while some

of the other algorithms were successful. The SPSP Finder
could not discover the motifs of MCM1 (SPSP Finder
discovered the published motif at rank 25), whereas Weeder
was successful because there were no strong bias at most
positions of this motif, and the information contained in the
input sequences was little. Weeder could discover the
motifs because it had extra information about different
background models for discovering motifs in different
species. Since SPSP Finder only constructed a Markov
model from the input sequences, it did not have any extra
information on the background model and thus failed to
discover the motif.

Similarly, the SPSP Finder could not discover the motifs
of MCM1 and SFF, whereas MEME were successful because
there were no strong bias at most positions of this motif. In
these cases, a matrix representation can model the motif
better than a string representation, and the restricted SPSP
representation used in RMD problem (because PSSM or
PWM is a more direct and efficient representations in these
cases). Excluding these two data sets, SPSP Finder had the
best performance among the algorithms.

We have also tested the performance of SPSP Finder on

the fruit-fly data from the TRANSFAC database [38].

Experimental results were shown in Table 3. SPSP Finder

also had the best performance among the four algorithms.

Among the 16 data sets, a total of six motifs, BEAF-32B,

Cad, D_MEF2, Eve, Su_Hw, and TBP, and their binding

sites could be discovered by SPSP Finder but not by the

other algorithms. Again, we did not list out those motifs

that could not be discovered by any of the algorithms.

5 CONCLUDING REMARKS

In this paper, we have proposed a new and better

representation based on SPSP to describe a motif and its

binding sites. With the proposed heuristic algorithm for the

RMD Problem, we can successfully find motifs and their

binding sites even in some situations in which existing

popular software fail. In the RMD problem, the possible

scores received by the binding sites are limited to a small set

of integers. In the real biological situation, each binding site

should have a different score. With this assumption, we

would expect an increase in the success rate of finding the

correct motif. However, finding the optimal motif for the

general MD Problem without restrictions is very difficult

and should be no easier than finding the optimal motif in

matrix representation. The difficulty lies not only with the

large solution space of the score fsi;jg, but also with the

exponential number of possible sets of patterns for a length-l
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motif. At this moment, no heuristic algorithm for the

general MD problem with reasonable performance is

known.

APPENDIX

RESTRICTED MOTIF DISCOVERING PROBLEM

IS NP-COMPLETE

In this section, we will show that the Restricted Motif
Discovering (RMD) Problem is NP-complete. In order to
answer whether the RMD problem is NP-complete, we
convert the RMD problem into a decision problem:

RMD Decision Problem. Given t length-n DNA sequences T

and we assume the occurrence probability of each length-l

pattern in the input sequences T is the same, whether there

exists a motif P ,
Q

i jPij � w (that is,
P
P ðBkÞ ¼ w=4l), that

has exactly b binding sites in T?

It is easy to see that the RMD decision problem is in NP
because given a motif P , we can verify whether P has
b binding sites in T and

Q
i jPij � w in polynomial time. In

order to show that the RMD decision problem is NP-
complete, we reduce the Clique Decision Problem (CDP) to it.

Clique Decision Problem (CDP). Given a graph G ¼ ðV ;EÞ
and an integer k > 0, the CDP is to determine whether G

contains a clique of size k.

Denote V ¼ fvi; 1 � i � ng and E ¼ fej; 1 � j � mg. Let
degðviÞ be the degree of vertex vi and D ¼ maxifdegðviÞg.
We construct 2n length-ðnD�mÞ DNA sequences as
follows: For each vertex vi, a length-ðnD�mÞ DNA
sequence �i representing a binding site is constructed such
that �i has all symbols “T” except D symbols of “A” or “C.”
The first m symbols of these n sequences (one for each
vertex) resemble the incidence matrix such that the
jth symbols of �i and �i0 are “A” and “C” corresponding
to the jth edge connecting vi and vi0 , respectively. Thus, �i
should have degð�iÞ symbols of “A” or “C” in its first
m symbols. If degð�iÞ < D, then D� degð�iÞ symbols of “A”
will be packed after the first m symbols such that no two
sequences have symbol “A” at the same position and each
�i has exactly D symbols of “A” or “C.” Precisely, we have

�i½j� ¼

0A 0 9�; fv�; vig ¼ ej; � > i
0C 0 9�; fv�; vig ¼ ej; � < i
0A 0 jEj þ

Pi�1
i0¼1ðD� degðvi0 ÞÞ < j � jEj

þ
Pi

i0¼1ðD� degðvi0 ÞÞ
0 T 0 otherwise:

8>>>><
>>>>:

Denote this set of n strings by T1.
In addition to these n length-ðnD�mÞ DNA sequences,

we have another n length-ðnD�mÞ DNA sequences with
symbol “T” only. Denote this set of strings by T2,
T ¼ T1 [ T2. We solve the RMD decision problem with
l ¼ � ¼ nD�m, lmax ¼ 1, and w ¼ 2kD�kðk�1Þ3kðk�1Þ=2. If
there exists a motif P ,

Q
i jPij � w having b ¼ nþ k binding

sites in T , the answer of CDP is “yes,” otherwise, the
answer is “no.” Fig. 1 shows an example of this reduction.
Theorem 1 proves the correctness of this reduction.

Theorem 1. There is a motif P with
Q

i jPij � 2kD�kðk�1Þ3kðk�1Þ=2

and having b ¼ nþ k binding sites in T if and only if there is a

clique of size k in G.

Proof. Without loss of generality, assume that fvi j 1 � i �
kg with fej j 1 � j � kðk� 1Þ=2g forms a clique of size k

in G, the set of binding sites should contain all the strings

in T2 and k strings (corresponding to the vertices of the

clique) in T1, that is, nþ k strings. The motif should have

its first kðk� 1Þ=2 positions having the symbols “A,”

“C,” and “T,” that is,

P1 ¼ P2 ¼ . . . ¼ Pkðk�1Þ=2 ¼
A
C
T

0
@

1
A

and exactly kD� kðk� 1Þ positions having the pair of

symbols “A,” “T” or “C,” “T.” Note that all the other

positions should be conserved and have the symbol “T.”

Thus, these nþ k strings can be represented in SPSP

representation with
Q

i jPij ¼ 2kD�kðk�1Þ3kðk�1Þ=2.
Assume there is a motif P in the SPSP representa-

tion with
Q

i jPij � 2kD�kðk�1Þ3kðk�1Þ=2 and having ex-
actly nþ k binding sites and y ðy � kÞ out of these
nþ k binding sites in set T1. Since each binding site in
T1 has exactly D symbols of “A” or “C” and each of
these yD symbols can be either represented by a
partition with two symbols or three symbols, we have

A
T

� �
or

C
T

� �
or

A
C
T

0
@

1
A:

The motif P has the smallest
Q

i jPij when it has the

largest possible number yðy� 1Þ=2 of partitions with

three symbols and the smallest value of y ðy ¼ kÞ.
We have

Q
i jPij � 2yD�yðy�1Þ3yðy�1Þ=2 � 2kD�kðk�1Þ3kðk�1Þ=2.

Therefore,
Q

i jPij ¼ 2kD�kðk�1Þ3kðk�1Þ=2, and y ¼ k. Since 2

and 3 are prime numbers, there are kðk� 1Þ=2 pattern

sets Pi with three symbols of “A,” “C,” and “T,” and the

corresponding vertices of the k sequences in T1 form a

clique of size k in G. tu
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