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Robust Recovery of Shapes with Unknown
Topology from the Dual Space
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Abstract—In this paper, we address the problem of reconstructing an object surface from silhouettes. Previous works by other authors
have shown that, based on the principle of duality, surface points can be recovered, theoretically, as the dual to the tangent plane space of
the object. In practice, however, the identification of tangent basis in the tangent plane space is not trivial given a set of discretely sampled
data. This problem is further complicated by the existence of bitangents to the object surface. The key contribution of this paper is the
introduction of epipolar parameterization in identifying a well-defined local tangent basis. This extends the applicability of existing dual
space reconstruction methods to fairly complicated shapes without making any explicit assumption on the object topology. We verify our
approach with both synthetic and real-world data and compare it both qualitatively and quantitatively with other popular reconstruction
algorithms. Experimental results demonstrate that our proposed approach produces more accurate estimation while maintaining

reasonable robustness toward shapes with complex topologies.

Index Terms—Reconstruction, duality principle, tangent envelope, epipolar parameterization, surface extraction.

1 INTRODUCTION

SILHOUETTES are the profiles of objects in the images. They
offer rich information about the shape of the objects and
can often be extracted reliably. Reconstruction algorithms
based on silhouette information are often capable of
producing relatively complete 3D models.

Each silhouette defines a family of planes tangent to the
object surface. Granted enough viewpoints with good
coverage around an object, the families of tangent planes
from all the images form a tangent plane space, which is a
dual representation of the object surface. Previous works
such as [1] and [2] have demonstrated theoretically how
points on the primal surface can be recovered from such a
dual space sampled from the silhouettes. However, due to
the existence of singularities and irregularities in the dual
space of complicated shapes, the major difficulty involved
in reconstruction from dual space is how to obtain a reliable
tangent basis in the dual space.

In this paper, we contribute to the literature by utilizing
the epipolar parameterization in identifying a reliable tangent
basis on the dual surface. It allows us to overcome the
aforementioned difficulties and arrive at a closed-form
solution without the need of searching in the dual space.
We focus on more complicated and generic shapes that
challenge previous dual space approaches. We also analyze
common extreme cases of shapes in detail, such as creases
and self-occlusions, and the ways to handle them. As shown
in the experiments, our method is generic and practical for
robustly reconstructing rather complicated objects.
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This paper is organized as follows: In Section 2, previous
related works are assorted and reviewed. In Section 3, we
briefly cover the background of the dual space theory and
epipolar parameterization. In particular, we show the
reason for introducing the latter, and how in theory it
strengthens the current dual space approach. Section 4 deals
with the recovery of contour generators in practice. Extreme
cases encountered in a variety of shapes are analyzed in
detail. In Section 5, we introduce an algorithm to extract the
surface from the recovered contour generators, which also
preserves the topology observed from the silhouettes.
Results of both qualitative and quantitative experiments
are shown in Section 6, as well as comparisons with existing
approaches for reconstruction from silhouettes. Finally,
Section 7 concludes this paper with discussions.

2 PRevious WORKS

Volumetric representations are simple yet robust and have
been extensively used in reconstruction from silhouettes.
The concept of volumetric description was first seen in [3],
where Martin and Aggarwal rasterized the space into
parallelogram structure. This was later developed into
representing the object by volumetric intersection of the
viewing cones. OcTrees (Oct-Trees) [4] is one of the most
popular representations utilized for this procedure. In [5],
Potmesil reconstructed OcTrees from arbitrary viewpoints
under perspective projection. Subsequent variations of the
OcTree [6], [7], [8] allow faster yet more accurate approx-
imation to the object surface. The major advantage of
volumetric approaches is their robustness, especially when
no assumption is made on the topology of the object.
However, a common problem shared by these volumetric
methods concerns with their accuracy. The tradeoff for
achieving a better reconstruction precision is to decrease the
size of spatial partition, resulting in a tremendous increase
in complexity of the reconstructed 3D models.

The intersection of the viewing cones can also be
implemented as a polygonal intersection instead of volume
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intersection, which results in one or more polyhedra formally
known as the visual hull [9]. An early attempt of direct
polygonal intersection was made in [10]. In [11], the polygonal
visual hull was used to initialize a triangular spline surface
which was subject to further refinement. However, direct
intersection of generalized viewing cones is neither efficient
nor numerically stable. In [12], Lazebnik et al. derived a
topological description of the contour generators for weakly
calibrated cameras. This description has facilitated the
computation of the visual hull polyhedron. Unfortunately,
such an approach does not extend to objects with nonzero
genus. This method was later extended in [13] to more
complicated objects. Matusik et al. [14] proposed an efficient
algorithm for computing the polyhedral visual hull directly
from silhouettes. Their algorithm is capable of generating the
visual hull mesh in real time in the case of a few cameras.
However, it may still suffer from numerical instability if more
cameras are introduced. The authorsin [15] and [16] turned to
sampling visual rays instead of polygons from silhouettes.
These visual rays were pruned by the viewing cones to form
viewing edges, which were subsequently joined together to
form the visual hull mesh. In a separate attempt, Cheung et al.
[17] adopted color information to pinpoint the tangent points
to the surface along each viewing edge. Most of the
aforementioned approaches, which approximate the visual
hull with polyhedrons, outperform the volumetric ap-
proaches in terms of accuracy and computation complexity,
yet many of them maintain comparable robustness regarding
objects with complex topologies.

As for objects with smooth surface, a more precise
estimation of surface points can be achieved by a differential
analysis on the deformation of the apparent contours. In [18],
Cipolla and Blake demonstrated that the curvature and depth
of the contour generator points can be recovered, provided
that the camera motion is known. Vaillant and Faugeras [19]
showed that the contour generator corresponding to a view
can be computed from a triplet of views. Later, Boyer and
Berger [20] gave a closed-form solution for the depth along a
visual ray by fitting an osculating quadratic to its two epipolar
correspondences. With sufficient (and well-distributed)
viewpoints, these approaches, which estimate the differential
structure, can give high quality estimation of the surface
points, especially for smooth objects. However, few of these
approaches share similar robustness as the volumetric
approaches regarding objects with complicated topologies.

Some early attempts to recover the shape of an object from
its tangent envelope can be found in [21] and [22]. Both
algorithms are limited to orthogonal projection only. In [1],
the authors introduced the concept of recovering object
surface from its dual space. This work has led to a new insight
into the duality theory and its applicability to the reconstruc-
tion problem. The proposed approach fits an algebraic surface
patch to a local tangent space resulting from space partition-
ing. These fitted patches are then resampled for higher order
surface fitting. Such an approach requires rather careful
tuning of several interrelated parameters, which becomes
increasingly difficult as the complexity of the object surface
increases. Recently, Brand etal. [2] generalized the dual space
reconstruction problem into tangent estimation on the dual
surface. Under this framework, a point on the object surface
could be independently estimated from its dual space
neighbors linearly. However, the ambiguity of matching
points between successive contour generators still poses an
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Fig. 1. The back-projection of a tangent line on the silhouette is a plane r*
passing through the camera center O and tangents to the object surface.
The locus of the tangent points is the contour generator for viewpoint O.

issue for tangent basis estimation; hence, their method could
be affected by singularities and ill distribution of the dual
space points.

In this paper, we extend the dual theory for surface
reconstruction and present a complete and practical frame-
work for recovering object surface from silhouettes. Parti-
cularly, our framework aims at robustly recovering more
complex surfaces without explicit knowledge of their
topologies.

3 THEORETICAL FRAMEWORK

We denote a scalar value using an italic font r, a vector or
vector-valued function using bold font as r or r(s,t),
respectively. The homogeneous form of a vector is denoted
as T. The derivative of a function is denoted by subscription
ry(s,t). The dual counterpart (defined later) of a vector or
vector-valued function is denoted by asterisk r*.

3.1 Existing Dual Space Theory and Possible

Problems

The dual theory introduced in [1] and [2] tackles the
problem of reconstructing the original surface r from the
tangent plane space sampled from silhouettes with known
projection matrices P. An example illustrating the sampling
of tangent planes from silhouettes is given in Fig. 1. Each
silhouette defines a family of tangent planes, and the locus
of the tangent points corresponds to the contour generator
for that particular viewpoint. A collection of viewpoints
gives rise to a space of tangent planes in IR* of which the
envelope is the original object surface. Based on the
principle of duality, these tangent planes are equivalent to
points on the dual surface r*.

In [2], the authors showed that the unknown surface r
can be recovered by estimating the tangent planes on the
dual surface r*, which is formally put as

T(s,1) o [Fi (s, 1), 7 (s, 1), 7 (s, )], (1)

where 1'(s,t) is a point on the original surface, T*(s, ) is the
tangent plane at (s,t), which is also a point on the dual
surface, T (s, t) and r; (s, ¢) form a tangent basis on the dual
surface at (s, ¢). For the mathematical proof of this theory,
please refer to [2] and [23]. Note that this theory is based on
assuming r and r* to be regular. The nonregular cases
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Fig. 2. Surface and its dual. (a) Original object. (b) Points on the dual
surface. (c) Pedal surface [24]. The discretely sampled tangent planes
correspond to an unorganized point cloud in the dual space and it is
nearly impossible to directly recover a local parametric form of the dual
surface.

involving singularities and discontinuities will be discussed
later in Section 4 of this paper.

The key challenge of applying this theory in practice is how
to reliably obtain the tangent basis vectors r (s, t) and r; (s, t).
This originates from the fact that the dual surface is sampled
from a discrete set of viewpoints and no well-defined local
parametric form is available. Among the two tangent basis
vectors to be estimated, rl(s,t) is, as also shown in [2],
intuitively computed from successively sampled tangent
planes along the same silhouette. Unfortunately, it is not
trivial to compute T;(s,t) because, unlike r(s,t), the
pointwise connectivity across contour generators of different
views is not as apparent.

Spatial proximity in the dual space was exploited in [2]
to qualify neighbor points required for estimating T (s, t).
They also sought nearby dual space points only among
those sampled from successive views to reduce the risk of
picking bad neighbors. However, the reliance on spatial
proximity makes it difficult to extend the dual space
approach to more complicated shapes in practice. One
major reason is that points sharing the same tangent plane
(bitangent points), as often seen in complicated shapes, are
mapped to a single point in the dual space, and the dual
surface crosses itself at these singularities. Furthermore,
despite the fact that they originate from tangents uniformly
sampled from silhouettes (see the example given in Fig. 2),
dual space points usually have a rather evil distribution,
which is also perturbed by varying a few user-specified
parameters such as the chosen origin of the original surface,
the sampling density, and so forth. All these phenomena
would make dual space methods solely based on spatial
proximity error-prone in practice.

On the other hand, if we consider the regular case of a
locally smooth parametric surface, the mapping from the
original space to the dual space is simply the tangent
operation. This implies that we can infer the neighborhood
information in the dual space from that of the original space.
Although we have no prior knowledge about the actual
3D structure of the original surface, it is still possible to define
a local parameterization of the original surface. Epipolar
parameterization is such a tool tailored for this purpose.

3.2 Epipolar Parameterization

Epipolar parameterization is naturally defined for an object
observed by a moving camera. It is a local parameterization
and requires no prior knowledge of the 3D structure of the
object surface. Let us consider the same setting as that
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Fig. 3. Epipolar correspondences for a point on the image planes of the
neighboring cameras.

defined in Section 3.1. As the camera moves, the contour
generator sweeps over the visible surface of the object.
Assume the object surface is C? continuous, the object
surface can be locally represented as

r(s,t) = O(t) + (s, t)p(s, ). (2)

Although the geometric interpretation of the spatial curve
T(s, ty) is the contour generator curve observed at time ¢y, the
interpretation of the spatial curve r(so,t) is not uniquely
defined. Epipolar parameterization [18] gives a natural
definition to the spatial curve T(s, t) by defining the tangent
vector of this curve to be in the direction of the visual ray

ri(s,t) x p(s,t) = 0. (3)

This definition is particularly useful when ¢ takes discrete
values, that is, there is only a finite number of cameras/
viewpoints. For a point lying on a contour generator, its
neighboring points along the t-parameter are defined as the
“epipolar correspondences” of this point (for the sake of
simplicity, we abuse the term “epipolar correspondences” by
referring the correspondent point of a contour generator
point found on the neighboring contour generator as in
“epipolar correspondence,” whereas their projections on the
images are the actual epipolar correspondence to each other).
They are given by the intersection between the neighboring
contour generators and the epipolar planes. An example is
given in Fig. 3. 7, is the epipolar plane defined by O(t),
O(ty + At), and the point r(s,ty). The epipolar correspon-
dence r(sy, t) + At) is the intersection between the plane 7.
and the contour generator r(s,ty) + At), that is, they satisfy

P(s0:t0) X P(s0,t0 + 6t) - (O(to + At) — O(tp)) =0,  (4)
where

p(so0,to) x r(sg,to) — O(tp), and
p(so, t + At) o< v(sg, to + At) — O(ty + At).

The epipolar correspondences can be identified purely on the
image planes without knowing the 3D structure of the
original surface. We do this by locating the projections of
the matching points as intersections between the silhouettes
and the epipolar lines. In the above example, the projection of
r(so,to + At) on the silhouette w(s, ty + At)is the intersection

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 8, 2009 at 23:46 from IEEE Xplore. Restrictions apply.



2208

between the epipolar line and the silhouette. Similar argu-
ment applies to m_, r(sg, tg — At), and w(sp, ty — At).

4 RECOVERY OF THE SURFACE POINTS

We extract the silhouettes from images using active B-splines
[18]. Each silhouette consists of one or multiple closed cubic
B-Splines

w(s) =) Bis)xi, (5)
where B(s) are the cubic B-spline basis functions, and x;

are the control points. The tangent lines along each B-spline
can be easily computed as

1(s) = ((Z Ti(S)Xz) y— Z Ti(s)x; - Z Bi(S)Xi)

where

T

) (6)

T(s) = 220 [? 51}

There are several advantages of using B-spline representa-
tion as well. Most importantly, it grants a closed-form
solution for intersecting epipolar lines with silhouettes. For
the cubic B-Spline we used, this is equivalent to solving
order 3 polynomial equations. In this way, we do not need to
sample every silhouette before estimating surface points, but
rather, each surface point is estimated independently. This
has also decoupled the accuracy of estimation from the
predefined sampling density and simultaneously guaranteed
the estimation accuracy for whatever sampling density set.
Last but not least, we can achieve subpixel accuracy with
B-spline representation, which further boosts the estimation
accuracy.

4.1 Identify Tangent Basis via Epipolar

Parameterization
In Section 3.1, we mentioned that surface point estimation can
be converted to tangent basis estimation in the dual space.
The key challenge involved is the estimation of T} (s, ) and
this is where the epipolar parameterization serves its
purpose.

Let r(sp,ty) be the point we want to estimate. The
projection of this point on the silhouette is w(s,t)). The
tangent line at w(so, t) back projects to r*(so, tp). To obtain
the neighbors of T*(sy, ty), first, we need to locate their duals
in the original space, namely, the neighbors of r(sy,%)). At
this stage, we have no knowledge about the depth of
T(sp,ty) and its neighbors, however, by using epipolar
parameterization (see Section 3.2), we can identify the
projections of these neighbors on the silhouettes in the
neighboring images. Along the s-parameter curve, the
projections of T(sy £ As, ty) are simply w(sy £ As, t;). Along
the t-parameter curve, the projections of r(sy,t £ Aty) are
found along the silhouettes on the neighboring images.
They can be computed as the intersections between the
epipolar lines of w(sy,%) at time ¢y, + At with the silhou-
ettes at time ¢y = At, respectively. Knowing w(sy & As, t))
and w(sg, tp + At), we can back project the tangent lines at
these points to obtain T*(sy £ As,ty) and (s, ty + At),
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which can be used to approximate r(sg,%) and r;(so, o),
and finally, r(so,?)) can be estimated using (1).

Note for the case when 17(sy, y) vanishes, which is often
characterized by inflections or line segments on the silhou-
ettes, we can incorporate the direction of the visual ray at this
point as an additional linear constraint. This is because the
visual ray is conjugate to the contour generator [25]. Since
similar constraint has also been exploited in [2], this will not
be discussed in details here. In fact, this constraint is always
incorporated in the actual implementation, as it imposes
minimal additional computational cost upon our tangent
estimation kernel, which is also linear in its nature.

The above epipolar parameterization-based approach
naturally extends to more complicated situations such as
when a silhouette consists of multiple curves or nonconvex
curves. These situations are typical for objects with complex
shape and topology. In these situations, there are usually
multiple intersections between the epipolar line and the
silhouettes. A few simple strategies can be adopted to
pinpoint the actual epipolar match, including similarity
of the normal between ¥ (s, t) and T (s, t + At)" and ordering
constraint [26]. Once the correct epipolar match is secured,
we can proceed the rest of the steps to obtain T(s,¢) in the
same way as described earlier. In the worse case, no proper
epipolar match can be found on the silhouette, and most of
the time, this is due to self-occlusions. The way to handle
such a case will be discussed in Section 4.2.4.

The merit of the above approach over direct search in the
dual space is the geometric interpretation it offers for
T*(s,t + At)—they correspond to surface points r(s,t £ At)
in the original space that are actually close to r(s,t). With
this guarantee, the choosing of T*(s, ¢ + At) is robust to not
only singularities in the dual space but also shape variation
of consecutive silhouettes (such as change of topology),
which is often observed in more complicated objects. We
will see quantitatively in Section 4.1 that the deficiency of
directly searching in the dual space becomes quite evident
as the complexity of the object to be recovered increases.

4.2 Extreme Cases

Although epipolar parameterization gives a sufficiently
good tangent basis most of the time, the parameterization
itself does have several known extreme cases such as those
studied in [27]. Although these cases usually affect only a
small portion of the surface points to be estimated, we
introduce some special techniques to handle them to further
increase the robustness of our algorithm.

The extreme cases are most likely encountered when
recovering complicated objects, include creases, frontier
points, cusps, T-junctions, and self-occlusions. Some of these
cases such as creases and frontier points can be handled by
minor tweaking of our epipolar parameterization-based
algorithm, whereas others might need more sophisticated
schemes or incorporating additional information.

4.2.1 Creases (Sharp Edges)

A crease on the surface causes discontinuity of the local
tangents (Fig. 4a). This case often happens when the
observed object has sharp edges such as polygonal objects.
The silhouette curve produced by a crease over time is
equivalent to the projection of a stationary spatial curve.

1. The normal similarity constraint is also adopted in [2] in the process of
estimating the tangent basis vectors.
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frontier point /°

(a)

O(t+At) O(t+At)

projection of the
frontier point /°

projection of the
frontier point /'

(d

Image of time ¢t Image of time t + At

Fig. 4. (a) An example of a crease on object surface. (b) An example of
frontier points. (c) At time ¢, a point w near the frontier point is to be
matched to a point on silhouette of time ¢ + At. (d) The ambiguity of
choosing either w; or w, as the correct epipolar match for w can be
resolved by enforcing the ordering constraint.

One advantage of the epipolar parameterization is that it
unifies the treatment of the silhouette produced by a rigid
spatial curve and by smooth surface [28]. Intuitively, a point
on the crease can be treated as having infinite curvature
along the direction of the visual ray. The surface normal at
this point is similarly chosen to be perpendicular to the
direction of the visual ray as in the smooth surface case. In
this way, the dual space points produced at different time
corresponding to this point do not degenerate, and the
3D position of this point can hence be estimated. Experi-
ments of surface with creases can be found in Section 6.2.

4.2.2 Frontier Points

The epipolar parameterization breaks down at frontier
points [29], which leads to degenerate tangent basis.
Although the frontier points themselves can be recovered
by a direct triangulation instead (Fig. 4b), the epipolar
match may be ambiguous for points in the proximity of the
frontier points. In practice, the projection of the frontier
points on the silhouette can be located by locating tangent
point of the epipolar line to the silhouette [30], and the
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ambiguity of the epipolar match can be resolved by
applying the ordering constraint (with respect to the
projection of frontier points). This is similar to what have
been done in [31]. In the example given by Fig. 4, the bottom
figures show a portion of the silhouettes at time ¢ and
t + At. At time t + At, the normal at w; and w; are very
similar, and they both qualify as the potential epipolar
match for the point w(s,t) (on silhouette at time t)
corresponding to the lower epipolar line. However, since
we know on which side of the frontier point w(s, ) is, the
correct epipolar match at time t + At should be the one
(either w; or wj) on the same side of point f as at time ¢.
In the actual implementation, the order of points near the
frontier points can be inferred easily from their parametric
values along the B-Splines. It can be achieved by enforcing a
consistent parametric direction in each image, say, the
outmost B-spline is defined clockwise, and inner B-splines,
which represent holes, are defined counterclockwise.

4.2.3 Cusps and T-Junctions

Cusps and T-junctions are both characterized by abrupt
ending of the apparent contours. A cusp occurs on the
apparent contour when the viewing ray direction coincides
with the tangent vector of the contour generator (Fig. 5a).
Except for the occluded branch (dotted line in the figure),
we usually have no problem to recover the surface points
near the cusp in the regular case. T-junctions, on the other
hand, are caused by occlusion (Fig. 5b). The dotted line on
the surface does not project onto the silhouette so that their
positions cannot be recovered. What is worse is that the
contour generator points projecting onto the proximity of
the T-junction (the thin line in Fig. 5c) are not always
recoverable too. This is because their correct epipolar
matches may dwell on the “invisible” part of the apparent
contour or are completely occluded. To mitigate this
problem, we can approximate their positions from the
nearby recovered contour generator points (the bold line in
Fig. 5¢). Take Fig. 5c) for example, we first computed the
weighted average of the contour generator points corre-
sponding to A and B. Then, we pick the point along the
visual ray of C that is closest to the weighted average as the
approximated position we wanted.

4.2.4 Self-Occlusions

Major occlusion can happen when the surface topology
becomes more complicated. The configuration shown in
Fig. 6 represents a typical situation. The image of a surface

occluded branch

"invisible

part"-not 3
on the \
silihouette

recoverable
under regular
case

A

in need of
interpolation

T—junction/\/:"

supposed
projection
of r(s, t+At),
but not
"visible"

recoverable
under regular
case

(a) (b)

©

Fig. 5. (a) An example of a cusp. (b) An example of a T-junction. (c) The proper epipolar match for points in the proximity of a T-junction may not be
visible on the silhouettes of neighboring cameras and this leads to low quality or even wrong estimation.
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Fig. 6. Self-occlusion on the surface leads to incorrect epipolar correspondence. (a) Surface point A and B lie on the same epipolar plane spanned
by camera O(t) and O(t + At). (b) The epipolar match for point B is visible on the silhouette at time ¢, which is different from the image of A—this
information is later used when evaluating the symmetry of epipolar matching. (c) A potential good epipolar correspondence of A is occluded on the
silhouette at time ¢ + At; thus, B may be mistakenly qualified as the epipolar match of A due to their similar normals. This type of wrong matching

can be identified by considering symmetry of epipolar matching.

point A can be seen on the silhouette at time ¢. However, its
true epipolar correspondence on the surface at time ¢ + At
is occluded or lies on the internal contour [25] if the object is
transparent. Hence, we cannot find its correspondence on
the silhouette at time ¢ 4+ At. In practice, we have to decide
the true epipolar match among the intersections between
epipolar lines and silhouettes. Since we have no assumption
on the topology of the object observed, it is very difficult to
tell whether the best choice among these intersections
represents the true epipolar correspondence or not. In the
example shown in Fig. 6, it may well be mistaken that the
image of point B on the silhouette at ¢t + At is the true
epipolar correspondence.

Incorrect epipolar match leads to low quality estimation.
In the worse case, the point will fly out of the true surface.
To identify wrong epipolar correspondence caused by
occlusions, we can consider the symmetry of epipolar
matching, similar to the criterion adopted in classic stereo
matching: if the true epipolar correspondence of a surface
point A is B, then the converse is also true. We illustrate
symmetry of epipolar matching also by the example in
Fig. 6: Suppose A is the surface point we want to estimate
(on the contour generator of time t), we follow the steps
under the normal circumstance by projecting it into the
epipolar line at time ¢+ At and choose the best suited
epipolar match r(s,t + At) (B in above example) using the
criteria described earlier. As an additional step, we also
intersect the epipolar line for T(s, ¢t + At) with the silhouette
at time ¢ and choose the best suited epipolar match. If the
best epipolar match for B is A reciprocally, B can be
qualified as the proper epipolar match; if it is not the case,
just as in the above example, we can conclude that no
proper epipolar match exists.

With insufficient information for determining the epipo-
lar match at time ¢ + At, ¥(s,¢) cannot be estimated by the
dual space approach directly. There are several possible
fallbacks. One possible choice would be applying the
method introduced in [15]: The position of r(s,t) along its
visual ray can be localized to a smaller range, which is
consistent with all silhouettes. In our implementation, we
simply skipped the points failing the symmetric matching
test. Doing this has little impact on the shape of the
reconstructed model if there are abundant viewpoints with
good observation coverage, which is usually the case if we
tend to reconstruct more complicated objects.

4.3 Summary

A brief outline of our algorithm, together with the proposed
counteracts performed for extreme cases, is given in
Algorithm 1.

Algorithm 1. Recovery of the surface points
1: Initialize point array r(s,t)
2: for ith silhouette w(s, ;) do

3:  for jth point w(s;, ;) on the silhouette do

4: Determine the epipolar match w(s;,ti+1)

5 if the symmetric epipolar match for w(s;,t;+1) is

W(Sj, t7)
then

6: Back project to get the tangent planes 1}, at and in
the vicinity of w(s;,t;) and w(s;, tix1)

7: Compute the weighted tangent (r**(s;,¢;)) of T},
satisfying the visual ray (w(s;,t;)) constraint as
well

8: if T (s, ;) projects inside all silhouettes then

9: F(Sj,ti) HF**(S]',ti)

10: else

11: ¥(sj,t;) —* PENDING"

12: end if

13: else

14: F(Sj, ti) —* NULL*

15: end if

16: end for

17: for each point 1(s;, t;) equals *PENDING" do

18: Interpolate T(s;, t;) using T(sj_m, ), T(Sjin,t;), and
the visual ray constraint, where m and n are
bounded minimum possible integers that both
T(8j_m,t;) and T(s;,y, t;) have already been estimated

19: end for

20: end for

5 EXTRACTION OF THE SURFACE

The result of the earlier estimation is a set of points lying on
the contour generators, and each point is coupled with the
tangent plane at that point. This means that the surface
normal at each point is known. Unfortunately, these points
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Fig. 7. Forming topologically correct 2D polygons. (a) Resampled points
on a slice—the shaded area is the cross section of the visual hull on the
slice, which is unknown. (b) Initial single polygon—the red dotted edges
are those violating the projection test. The black dash line represents the
first decision plane to separate the points into two groups, each forms a
subpolygon. (c) The subpolygon on the left-hand side, which still
contains edges violating the projection test, is further separated into two
subpolygons. (d) The final result after topology correction.

Fig. 8. Two-dimensional polygons on the slicing planes generated from
the David turntable sequence.

are not distributed uniformly. This is due to the fact that the
sampling density along each contour generator can be set
arbitrarily high, whereas the density across the contour
generators is limited by the number of distinct viewpoints.
Direct triangulation, in this case, results in ill-formed
triangles. On the other hand, unlike the case of unorganized
point cloud, we do know the connectivity of points along
the same contour generator, as well as the spatial order of
the contour generators. We therefore propose a simple but
robust method for extracting the surface using the
connectivity and ordering information available.

5.1 Slicing the Contour Generators

The proposed way for surface extraction is built on a slice-
based resampling method, and it targets at producing more
evenly distributed mesh grids. The earlier computed
contour generators are now resampled by parallel slicing
planes. Each slicing plane contains the intersections
between the contour generators and that plane. The normal
of each resampled point is interpolated from the normals of
the adjacent points along the same contour generator. For a
better visual effect, these slices are made parallel to the
plane maximally spanning all the camera centers.

Once the resampled points on each slice are obtained, we
proceed to connect these points and form topologically
correct 2D polygons. To do this, these points are linked
together according to their spatial order. Of course, for
complex shapes, a single polygon may not reflect the real
topology of the original object. We correct the topology of this
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Fig. 9. The comparison between the epipolar approach and a naive
approach on the same set objects of various complexity. The vertical
axis shows the ratio of the number of points projected inside all the
silhouettes to the total number of points estimated. Higher percentage
means more valid estimations and less erroneous estimations.
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(a) (b) (©)

Fig. 10. Examples of known surfaces (upper row) and the reconstruction
results of our approach (lower low): (a) a SOR swept by a 2D B-spline, (b) a
unit cube, and (c) and a knot surface produced from known 3D B-spline.

single polygon by separating it into smaller polygons (see the
example given in Fig. 7). The first step involved is to conducta
projection test against all silhouettes for every polygonal
edge. An edge violating the projection test would partially
project outside at least one silhouette, say the ith silhouette.
We then choose an arbitrary point on this edge which projects
outside silhouette 7 and link it with the corresponding camera
center O; to create a separation plane. The plane divides the
points of the initial single polygon into two groups, each
resembles a new subpolygon that better complies with the
true topology suggested by the silhouettes. This process is
repeated until no more edge violates the projection test. The
final result is a set of subpolygons that fully conform to the
true topology observed.

We perform the topology correction for every slice. An
example of slices with their topology corrected is given in
Fig. 8.

gNo’te that if we link the contour generator points on each
slice directly, we result in a shape generally smaller than the
visual hull volume. This becomes apparent if fewer view-
points are available. To create a better visual effect, we can
fit a smooth second-order parametric curve on the slicing
plane replacing long edges of the polygons on each slice.
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Fig. 11. Average distance of the reconstructed points from the ground truth surface: (a) the SOR sequence, (b) the cube sequence, and (c) the knot

sequence.

5.2 Generating Final Surface
The final object surface is extracted from the polygons on
each slicing plane using some well-established method. We
borrow and modify a method described in [32]. The surface
normal at each vertex is simply the interpolated normal
from the previous slicing step (see Section 5.1).

The overall algorithm outline for extracting the surface
from the contour generator points is given in Algorithm 2.

Algorithm 2. Extracting object surface

1: for each contour generator I'; do

2:  for each connected segment along I'; do

3 if has intersection p with slicing plane 7, then

4 add p to 7, along with the interpolated normal
5 end if

6:  end for

7: end for

8: for each slicing plane 7, do

9 correct topology and do sorting for the points on 7
10:  fit smooth curve if user specified

11:  generate surface triangles with points on m;_;

12: end for

13: map texture for each triangle

6 EXPERIMENTS

6.1 Comparison with Naive Dual Space Approach

In the following set of experiments, we compare our approach
(epipolar approach) with a naive approach. The goal of the
comparison is to see quantitatively how much the epipolar
parameterization can stabilize the tangent basis estimation.
The two approaches are based on the same implementa-
tion except for one key aspect, that is, how the dual space
neighbors along the ¢ direction are located. For T (s, t), our
approach locates the dual space neighbors on two im-
mediate neighbor views using the criteria described in
Section 4.1, where as the naive approach searches for the
dual space neighbors in tangent space sampled from the
silhouettes on the same two views. Based on the idea
presented in [2] for estimating T (s,t), we pick those points
lying close to T*(s,t) in dual space as the neighbors. To be
fair, we feed exactly the same sets of silhouettes to both
implemented approaches and use the same sampling rate
on each silhouette. Both approaches estimate r’(s,t) by
taking finite difference using tangent planes at successively

sampled points on the same silhouette. With collected
neighbors, both approaches use the same weighted tangent
kernel to estimate the surface points. Finally, the estimated
points are projected onto every silhouette, and points falling
outside any silhouette are marked as invalid.

We have tested the algorithms over a set of sequences
ranging from simplest shapes to objects with richer details
and nonzero genus. The comparison result in the form of
valid estimation ratio is shown in Fig. 9. The first four
sequences (vase, cube, cylinder, and cat) are based on
synthetic models and the images are simply the duplica-
tions of OpenGL’s rendering buffer. The remaining se-
quences are real-world image sequences.

Both algorithms perform equally well for simple shapes
such as vase (Surface of Revolution), cube, and cylinder.
There is, however, a significant decline in the valid ratio for
the naive approach as the complexity of the object increases.
On the other hand, our approach performs reasonably well
even for rather complicated objects given sufficient number
of viewpoints.

6.2 Comparison with Other Approaches

We have also compared the result of our approach with a
typical volumetric approach [8] (denoted as OcTree later)
and a polygonal approach [16] (denoted as Exact Polyhedral
Visual Hulls (EPVH) later). The OcTree approach is a
variation of that in [6], which extracts silhouettes up to
subpixel accuracy by using B-spline Snake. The EPVH
approach has been implemented as a library available at
http:/ /www.inrialpes.fr/movi/people/Franco/EPVH/.
We compared the accuracy of reconstruction in terms of
average distance (error) from the reconstructed points to the

(3

(a) (b)

Fig. 12. Cat sequence: Our proposed algorithm works as long as an
ordered sequence with relative smooth camera path is provided. (a) The
viewpoints and the original object—a 3D cat model. (b) The recon-
structed cat model using our proposed algorithm.
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Fig. 13. Girl and Teddy sequence: (from left to right) surface generated by OcTree/Marching Cube (10,095 triangles), smoothed OcTree model
removed the bumpy effect, as well as some shape details, original silhouette, surface generated by our approach (9,982 triangles), more consistent

with the silhouette compared with the smoothed OcTree model.

Fig. 14. Roman Soldier sequence: (top) six images from the original sequence, (middle/bottom) reconstructed contour generator curves,
reconstructed surface mesh, and shaded reconstructed surface, respectively.

ground-truth surface. To achieve this, we rendered some
known parametric or implicit surfaces on the screen. Since we
knew viewpoints and the size of the rendering buffer, we
could form the intrinsic and extrinsic matrices easily. The
rendering results were captured as image sequences together
with the computed camera matrices. We show below the
reconstruction error for three categories of surfaces, namely,
smooth surfaces (a surface of revolution (SOR)), nonsmooth
surfaces (a unit cube), and surface with complex topology (a
knot surface) (see Fig. 10). For each surface, we performed the
reconstruction using the two earlier mentioned approaches
and our approach. We also adjusted the sampling density of
each algorithm in order to maintain a similar number of
reconstructed points. We gradually increased the number of

images used for reconstruction and compared its impact over
the three approaches.

Our algorithm performed significantly better than
OcTree and EPVH regarding the smooth surface (see
Fig. 11a). This result is readily foreseeable since OcTree
uses parallelepiped-shaped cells to approximate the object
surface, whereas EPVH conservatively approximates the
surface as the visual hull. In order to achieve higher
accuracy, both OcTree and EPVH requires more images.

Both our approach and EPVH performed reasonably
well for a nonsmooth surface (see Fig. 11b) given enough
images. Our approach performed significantly worse when
the number of image was too few (less than 10) due to the
fact that our approach is essentially a differential approach.
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Fig. 15. David sequence. (a) Eight images from the original sequence. (b) Reconstructed final surface. (c) Auxiliary data, including recovered points

on the contour generators and resampled slices.

As for a surface with very complex topology, when the
number of images is too few, our approach produced a
significant number of low quality estimations. This is largely
due to the fact that with many self-occlusions, too few images
leads to incorrect epipolar matching, which greatly affects the
quality of the estimation. This situation becomes lessened
when more images are adopted (see Fig. 11c).

6.3 Real-World Data
We acquired image sequences of real-world objects using an
electronic turntable and the cameras were calibrated using
the method described in [30]. The purpose of using
turntable sequence is solely for the sake of easy camera
calibration. In theory, the proposed algorithm should work
as long as an ordered image sequence is provided, and the
camera travels in a relative smooth path (see Fig. 12). This
condition is usually satisfied by video sequence captured by
digital video recorders.

The Roman Soldier sequence (Fig. 14) consists of 36 colored
images, each of size 800 x 600 and the results are shown from
novel viewpoints, including the reconstructed contour

generator curves, the extracted surface mesh, and the shaded
surface.

The Girl and Teddy sequence consists of 20 images and
has a fairly complex topology. The result of the OcTree
algorithm is visually compared with that of our approach
(Fig. 13). By adjusting sampling density, we made both
algorithms to produce a similar number of triangles (near
10,000). The reconstruction results were registered with one
of the silhouette and juxtaposed on each side of that
silhouette. The surface is extracted from the OcTree using
marching cube algorithm and is slightly smoothed in order
to remove the bumpy effect. Although maintaining the
similar number of triangles, the mesh vertices produced by
our approach lie more accurately on the true surface.
Consequently, the final mesh by our approach resembled
the original object perceivably better than that by the
volumetric approach.

The David sequence also consists of 20 images. The
results and auxiliary data such as the recovered points on
the contour generators and the resampled slices are shown
in (Fig. 15). The result of some more real-world sequences
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Fig. 16. More experiments on real-world data. (top) Images from the original sequence. (a) Tennis boy sequence. (b) Jefferson statuette sequence.

(c) Statuette of liberty sequence.

are shown in Fig. 16, including a Tennis Boy sequence, a
Jefferson statuette sequence and a Statuette of Liberty
sequence. All these sequences consist of 20 images captured
on an electronic turntable.

7 CONCLUSION

We have presented in this paper a novel approach for
recovering object surfaces from silhouettes. Our algorithm is
motivated by the principle of duality that makes use of the
symmetric relationship exhibited between the object surface
and its tangent plane space sampled from the silhouettes. A
crucial problem is how to identify reliable tangent basis in the
dual space in the presence of singularities and evil point
distributions, which is almost inevitable for fairly complex
shapes captured with finite viewpoints. We bring in the
epipolar parameterization to solve this problem, which
results in a significant increase in the robustness regarding
objects with complex topologies. For extreme cases that we
may possibly encounter, we have analyzed their nature in
detail and proposed counteracts. These have granted our
algorithm the ability to cope with fairly complex shapes.
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