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Abstract – We propose a new mass sensor based on thickness-twist edge modes in a piezoelectric
plate of 6mm crystals. By performing a theoretical analysis, a simple expression of sensitivity is
obtained. The proposed sensor has an important advantage in the sense that it can be mounted
away from the edge of the plate where the motion is insignificant and, thus, the operation of the
device is unaffected.
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Edge modes in plates and wedges are often used for
resonators and acoustic wave sensors [1–5]. Compared to
resonators based on bulk acoustic waves operating with
infinite plate thickness-shear and thickness-stretch modes
which have edge effects due to the finite sizes of real
devices, edge modes are exact at the edge. An important
advantage of edge modes is that away from the edge there
is little motion, where mounting of the device can be
achieved without affecting the device performance. The
traditionally known edge modes are plate flexural [1,2]
and thickness-stretch modes [3]. Recently edge thickness-
twist modes in a piezoelectric plate of 6mm crystals have
been shown to exist [6]. The availability of these new edge
modes suggests the possibility of producing new acoustic
wave sensors with advantages. The objective of the present
study is to show that new mass sensors can be made based
on thickness-twist edge modes. In the study of acoustic
wave mass sensors, researchers have been exploring various
structures and modes to make different sensors. Some
recent examples are the torsional and shear modes of
shells [7,8].
Thickness-twist vibration modes of crystal plates are

often used as the operating modes for resonators [9,10].
In addition to quartz plates which have been used for
a long time, recently AlN and ZnO plates are of grow-
ing interest [11,12]. They are crystals of 6mm symmetry.
Plates with normal and in-plane six-fold axes are both
being developed. Polarized ceramics like PZT are trans-
versely isotropic and the material matrices for their linear

behavior have the same structures as those of 6mm crys-
tals. Our analysis below is valid for both 6mm crystals
and polarized ceramics.
Consider the semi-infinite piezoelectric plate in fig. 1.

The six-fold axis (or the poling direction of ceramics) is
along x3. The two major surfaces at x2 =±h are traction-
free and are unelectroded. Thickness-twist motions of the
plate are governed by

u1 = u2 = 0,

u3 = u(x1, x2, t), φ= φ(x1, x2, t), (1)

where u is the displacement vector and φ is the electric
potential. A function ψ can be introduced through [10,13]

φ=ψ+
e

ε
u, (2)

where e= e15 and ε= ε11 are the relevant piezoelectric and
dielectric constants. The governing equations for u and ψ
are [10,13]

c̄∇2u = ρü,

∇2ψ = 0, (3)

where ∇2 is the two-dimensional Laplacian, ρ is the mass
density, c̄= c+ e2/ε, and c= c44 is the relevant elastic
constant. The nonzero stress and electric displacement
components are [10,13]

T23 = c̄u,2+ eψ,2, T31 = c̄u,1+ eψ,1,

D1 = −εψ,1, D2 =−εψ,2, (4)
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Fig. 1: A semi-infinite piezoelectric plate with an end electrode
and an end mass layer.

where an index after a comma denotes partial differenti-
ation with respect to the coordinate associated with the
index. At the plate major surfaces, for traction-free and
unelectroded boundary conditions we have

T23 = 0, x2 =±h,
D2 = 0, x2 =±h, (5)

or, equivalently, in terms of u and ψ,

u,2 = 0, ψ,2 = 0, x2 =±h. (6)

At the left edge at x1 = 0, we consider a thin mass layer
of density ρ′ and thickness 2h′, as shown by the shaded
area in fig. 1. Between the mass layer and the plate there is
a very thin and grounded electrode with negligible mass,
as shown by the thick line in fig. 1. The electrode merely
provides a constraint on the electric potential. Mechan-
ically the shear stress at the left edge carries the mass layer
and is responsible for the acceleration of the mass
layer according to Newton’s law. Therefore, at the left
edge, we have [14]

T13 = ρ
′h′ü, x1 = 0,

φ= 0, x1 = 0.
(7)

For the right end of the plate at infinity, we require
decaying behavior for edge modes to occur.
It can be verified by separation of variables or direct

substitution that thickness-twist modes satisfying eqs. (3)
and (6) can be classified into waves symmetric or anti-
symmetric in x2, and they are given by [6]

u= cos ξ2x2A exp(−ξ1x1) exp(iωt),
ψ= cos ξ2x2B exp(−ξ2x1) exp(iωt),
ξ2 =

mπ

2h
, m= 0, 2, 4, · · · ,

and

u3 = sin ξ2x2A exp(−ξ1x1) exp(iωt),
ψ= sin ξ2x2B exp(−ξ2x1) exp(iωt),
ξ2 =

mπ

2h
, m= 1, 3, 5, · · · ,

(8)

respectively, where

ξ1 =

√
ξ22 −

ρω2

c̄
=

√
ρ

c̄

√(mπ
2h

)2
−ω2 c̄

ρ

=
1

vT

√
ω2m−ω2,

vT =

√
c̄

ρ
, ω2m =

(mπ
2h

)2 c̄
ρ
. (9)

A and B are undetermined constants. In particular, m= 0
is called a face-shear mode. We will not consider this
mode because from eq. (9) this mode cannot be an edge
mode. The modes decay exponentially from the free edge
at x1 = 0 and therefore are called edge modes.
Equation (8) still needs to satisfy the boundary condi-

tions on the minor surface at x1 = 0. For time-harmonic
motions, the mechanical boundary condition in eq. (7)
takes the following form

T13 =−ω2ρ′h′u. (10)

Substituting the modes in eq. (8) into eq. (10) and the
electrical boundary condition at x1 = 0 in eq. (7), we
obtain

c̄(−ξ1)A+ e(−ξ2)B =−ω2ρ′2h′A,
e

ε
A+B = 0.

(11)

For nontrivial solutions we must require that∣∣∣∣ c̄ξ1−ω
2ρ′2h′ eξ2
e/ε 1

∣∣∣∣= c̄ξ1−ω2ρ′2h′− e2

ε
ξ2 = 0, (12)

which can be written as

1

vT

√
ω2m−ω2 = k̄215ξ2+

ω2ρ′2h′

c̄
, (13)

where

k̄215 =
e2

c̄ε
(14)

is a piezoelectric coupling coefficient. Equation (13) deter-
mines the frequencies of the edge modes. For small ρ′ and
h′, the root of eq. (13) is approximately given by

ω2 ∼= v2T ξ22(1− k̄415)
(
1− k̄215mπ

ρ′2h′

ρh

)
,

m= 1, 2, 3, · · · .
(15)

Equation (15) is true when the second term in the
parentheses of the extreme right-hand side is much smaller
than one. Therefore, eq. (15) is not valid for higher-order
modes with a large m. This is fine because in applications
usually lower-order modes with a small m is used. Results
for a large m can be exactly determined from eq. (13) if
necessary. If we denote the unperturbed frequencies when
the mass layer is not present by

ω̂2 = ω2m− v2T k̄415ξ22 = v2T ξ22(1− k̄415) = (1− k̄415)
c̄

ρ

(mπ
2h

)2
,

(16)
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from eq. (15) we can obtain the frequency shift as

ω− ω̂
ω̂
∼=−k̄215mπ

ρ′h′

ρh
. (17)

We make the following observations from eq. (17):

i) The frequency shift is linear in the layer mass and is
ideal for mass sensing;

ii) The inertial effect of the mass layer lowers the
frequencies as expected;

iii) Higher-order modes imply higher sensitivity (this is
true within a certain range of m);

iv) The mass-frequency effect shown in eq. (15) is propor-
tional to k̄215 and, therefore, can only be detected in a
piezoelectric plate, but not in an elastic plate. Higher
piezoelectric coupling implies higher sensitivity.

In summary, we have obtained the mass sensitivity
of certain exact edge modes in a piezoelectric plate of
6mm crystals. The results suggest new mass sensors with
advantages.
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