
Statistica Sinica 17(2007), 945-964

A FAST EM ALGORITHM FOR QUADRATIC

OPTIMIZATION SUBJECT TO CONVEX CONSTRAINTS

Ming Tan1, Guo-Liang Tian1, Hong-Bin Fang1 and Kai Wang Ng2

1University of Maryland Greenebaum Cancer Center

and 2The University of Hong Kong

Abstract: Convex constraints (CCs) such as box constraints and linear inequal-

ity constraints appear frequently in statistical inference and in applications. The

problems of quadratic optimization (QO) subject to CCs occur in isotonic regres-

sion, shape-restricted non-parametric regression, variable selection (via the lasso

algorithm and bridge regression), limited dependent variables models, image recon-

struction, and so on. Existing packages for QO are not generally applicable to CCs.

Although EM-type algorithms may be applied to such problems (Tian, Ng and Tan

(2005)), the convergence rate/speed of these algorithms is painfully slow, especially

for high-dimensional data. This paper develops a fast EM algorithm for QO with

CCs. We construct a class of data augmentation schemes indexed by a ‘work-

ing parameter’ r (r ∈ R), and then optimize r over R under several convergence

criteria. In addition, we use Cholesky decomposition to reduce both the number

of latent variables and the dimension, leading to further acceleration of the EM.

Standard errors of the restricted estimators are calculated using a non-parametric

bootstrapping procedure. Simulation and comparison are performed and a complex

multinomial dataset is analyzed to illustrate the proposed methods.

Key words and phrases: Bootstrap, Cholesky decomposition, constrained optimiza-

tion, convergence rate, data augmentation, EM algorithm, latent variables, working

parameter.

1. Introduction

Constrained optimization problems occur in many fields including operation

research, econometrics and statistics. For instance, to construct a likelihood ratio

statistic for testing nested hypotheses, it is necessary to find maximum likelihood

estimates (MLEs) of parameters with linear equality constraints (LECs). Specif-

ically, consider H0 : Aθ = b against H1 : Aθ 6= b, where A and b are known, and

θ is the parameter of interest. To compare the null to the full model, a common

procedure is to use the likelihood ratio statistic s = −2{ℓ(θ̂N |Yobs) − ℓ(θ̂F |Yobs)},

where ℓ(θ|Yobs) denotes the log-likelihood and θ̂N (θ̂F ) is the MLE under the null

(full) model. Under H0, s follows an asymptotic χ2 distribution whose degree of

freedom is the number of additional parameters in the full model relative to the

null model. Thus the key is to find the restricted MLE θ̂N .
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By using Lagrangian multipliers, the Newton-Raphson method can be used

for optimization with LECs, through reformulating the problem into one of a

penalized optimization. Utilizing this idea, Nyquist (1991) proposed iteratively

reweighted least squares to estimate parameters subject to LECs in generalized

linear models. For the Gaussian, Lange (1999, pp.184-185) obtained a closed-

form solution for quadratic optimization (QO) with LECs. Kim and Taylor

(1995) developed a so-called restricted EM incorporating the LECs on model

parameters. They noted that maximizing Q(θ|θ(t)) (the conditional expecta-

tion of the complete-data log-likelihood given the observed data and the current

parameter estimate) subject to LECs is much easier than maximizing ℓ(θ|Yobs)

subject to the same LECs. Lange (1999, pp.187-188) presented a method to

calculate the asymptotic covariance matrix of an estimated parameter vector in

the presence of LECs for the general log-likelihood ℓ(θ|Yobs). On the other hand,

Green (1990) and Silverman, Jones, Nychka and Wilson (1990) directly solved

the penalized optimization in the EM framework for a more complicated penalty

than that induced by LECs.

Linear inequality constraints (LICs) of the form {a ≤ Aθ ≤ b} and convex

constraints (CCs) also appear frequently in statistical applications. For exam-

ple, proportions in logistic regression must be confined to the unit interval, cell

probabilities in multinomial models are non-negative and sum to one. In addi-

tion, ellipsoid and quadratic constraints such as {(θ1, θ2)
⊤ ∈ IR2 : θ1 ≥ 0, θ2 ≥

θ2
1 − 8} are typical examples of CCs. Optimization problems with LICs and/or

CCs occur frequently in isotonic regressions (Robertson, Wright and Dykstra

(1988)), shape-restricted non-parametric regressions (Fraser and Massam (1989)

and Meyer (1999)), variable selection via the non-negative garrote (Breiman

(1995)) and the lasso (Tibshirani (1996)), growth curve models in biology, lim-

ited dependent variables models in econometrics (Hajivassiliou and McFadden

(1998)), image reconstruction (Titterington (1985)), and so on. Constrained QO

involves minimizing a multivariate quadratic function subject to LECs and LICs.

Several algorithms including Hildreth’s (1954) procedure and Wolfe’s (1959) sim-

plex method have been proposed to deal with the QO problems. The optimiza-

tion toolbox in MATLAB includes subroutines for constrained QO based on three

methods: trust-region (Coleman and Li (1996)), preconditioned conjugate gra-

dient, and active set (Gill, Murray and Wright (1981)). SPLUS includes nlminb

(non-linear minimization subject to box constraints), nlregb (non-linear least

squares subject to box constraints) and nnls.fit (non-negative least squares).

However, none of these methods and packages is applicable to QO with arbitrary

CCs. In addition, even for LICs, the existing algorithms such as Hildreth’s pro-

cedure or its generalization (Dykstra (1983)) are computationally cumbersome

(see Sec. 6.2 below for more details).
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Alternatively, the EM is a powerful and easy-to-implement algorithm for so-

lving optimization problems with LICs and/or CCs. For instance, Vardi and Lee

(1993) proposed an EM for solving linear inverse problems with positivity restric-

tions. Liu (2000) developed EM algorithms for finding MLEs in discrete distri-

butions with a class of simplex constraints. Tan, Tian and Fang (2003) studied

restricted MLEs in univariate normal distribution using EM-type algorithms,

but they only considered the case of box constraints. In addition, EM algorithms

were developed for estimating the mean vector in multivariate normal models

with known/unknown covariance matrix subject to LICs (Shi, Zheng and Guo

(2005) and box constraints or arbitrary CCs (Tian et al. (2005)).

However, a key hindrance to the application of EM-type algorithms is their

slow convergence, especially in high-dimensional data such as image reconstruc-

tion. Recognizing that minimizing a quadratic function subject to CCs is the

core computation in non-linear programming, we develop a fast EM algorithm

to find least squares estimate (LSE) of θ in the following QO problems:

θ̂ = arg min
θ∈S(θ)

‖y − Xθ‖2, (1.1)

where ym×1 and Xm×q are known, and θq×1 is restricted to some arbitrary convex

region S(θ), here S(θ) can include the box/rectangle [a, b] =
∏q

j=1[aj , bj ], and

LICs of the form {θ : a ≤ Aθ ≤ b} as special cases. Notice that (1.1) can be

viewed as finding the MLE of θ in the model

y ∼ Nm(Xθ, I) subject to θ ∈ S(θ). (1.2)

To derive a fast EM, we first construct a class of data augmentation (DA) schemes

indexed by a working parameter r, (r ∈ R), and then find the optimal rc
opt by

searching r over R under some convergence criterion c. In addition, we show

further acceleration of the EM can be achieved using Cholesky decomposition to

reduce latent variables and dimension.

The rest of this paper is organized as follows. Section 2 introduces a general

framework of the EM for constrained parameter problems, and briefly summa-

rizes existing EM algorithms. In Section 3, we construct a class of DA schemes,

obtain an optimal EM using ‘working parameter’, and present theoretical results.

In Section 4, we use Cholesky decomposition to further accelerate the optimal

EM. Section 5 presents a non-parametric bootstrap approach to calculate stan-

dard errors. In Section 6, we apply the proposed methods to shape-restricted

non-parametric regression with and without penalty, and then compare the pro-

posed methods with existing algorithms via simulation. The proposed method is

illustrated with an example in Section 7. All computations are performed on a

Pentium IV workstation. We conclude with a discussion in Section 8.
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2. EM Algorithms for Constrained Parameter Problems

Let Yobs denote the observed data, θ the parameters, and ℓ(θ|Yobs) the log-

likelihood. Suppose that θ is restricted to a convex region S(θ) ⊆ IRq, and that

our aim is to maximize ℓ(θ|Yobs) subject to θ ∈ S(θ). Usually, directly solving

θ̂ = arg max
θ∈S(θ)

ℓ(θ|Yobs) (2.1)

is extremely difficult. If we augment the observed data Yobs with missing data

Ymis, we have the complete data Ycom = (Yobs, Ymis). Then ℓ(θ|Yobs) = Q(θ|θ(t)) −

H(θ|θ(t)), where Q(θ|θ(t)) = E{log f(Ycom|θ)|Yobs, θ
(t)} and H(θ|θ(t)) = E{log

f(Ymis|Yobs, θ)|Yobs, θ
(t)}. By Jensen’s inequality (Dempster, Laird and Rubin

(1977)), ℓ(θ|Yobs)−Q(θ|θ(t)) = −H(θ|θ(t)) ≥ −H(θ(t)|θ(t)) = ℓ(θ(t)|Yobs)−Q(θ(t)|

θ(t)), ∀θ, θ(t) ∈ S(θ). That is, ℓ(θ|Yobs) − Q(θ|θ(t)) attains its minimum at θ =

θ(t) ∈ S(θ). Thus, the EM algorithm has the ascent property that increasing

Q(θ|θ(t)) forces an increase in ℓ(θ|Yobs). This ascent property implies that solving

(2.1) is equivalent to iteratively solving

θ(t+1) = arg max θ∈S(θ)Q(θ|θ(t)). (2.2)

In many cases maximizing Q(θ|θ(t)) under constraints is much simpler than

maximizing ℓ(θ|Yobs) under the same constraints. Generally, it is more common

that a closed-form solution to (2.2) exists. If such a closed-form solution does not

exist, the M-step may be split into several conditional M-steps so that the ECM

algorithm (Meng and Rubin (1993)) can be applied. In principle, a straightfor-

ward EM algorithm for finding the LSE (1.1) exists (Tian et al. (2005)). Given

Yobs = {yi}
m
i=1, they augmented Yobs with m(q − 1) independent latent variables

{Zij} to obtain the complete-data Ycom = {Zij : 1 ≤ i ≤ m, 1 ≤ j ≤ q}, where

Zij
ind
∼ N(xijθj,

1

q
) and Σq

j=1Zij = yi. (2.3)

When S(θ) =
∏q

j=1[aj , bj ], given θ(t) = (θ
(t)
1 , . . . , θ

(t)
q )⊤, the E-step calculates

T
(t)
j = θ

(t)
j + (q · x⊤j xj)

−1 · x⊤j [y − Xθ(t)], 1 ≤ j ≤ q, (2.4)

where xj denotes the jth column of X. The M-step updates

θ
(t+1)
j = min{max{aj , T

(t)
j }, bj}, 1 ≤ j ≤ q. (2.5)

They also showed that the LICs of the form {a ≤ Aθ ≤ b} can be reduced to the

case of box constraints via a linear transformation and considered CCs.
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3. Accelerating EM via Optimizing Working Parameter

Although the EM based on (2.4) and (2.5) (denoted EMTNT in the sequel)
is simple and easy to implement because of explicit expressions in both the E-
and M-steps, it may converge rather slowly in some applications, e.g., in image
reconstruction (Titterington (1985)) where X is a very large design matrix (m×
m, with m = 512 or more). Slow convergence is due to the introduction of
too many latent variables and unreasonable allocation of variances. We show
ways to speed up the EMTNT while maintaining its simplicity and stability (i.e.,
automatic monotone convergence in log-likelihood).

3.1. Criteria for accelerating EM

The acceleration of EM is closely related to the ‘working parameter’ idea of
Meng and van Dyk (1997). Let Ycom(r) = {Yobs, Ymis(r)} denote the complete (or
augmented) data and r the working parameter belonging to some set R. For
each r ∈ R, Ycom(r) is a legitimate DA, which induces an EM algorithm with the
theoretical matrix rate of convergence, denoted by M(r). As a function of the
working parameter r, the matrix rate of convergence is M(r) = Iq − I−1

com(r)Iobs,
where Iq is the identity matrix,

Icom(r) = E

[

−
∂2 log f(Ycom(r)|θ)

∂θ∂θ⊤

∣

∣

∣

∣

Yobs, θ

]∣

∣

∣

∣

θ=θ̂

(3.1)

is the expected complete-data information matrix, and Iobs = −∂2 log f(Yobs|θ)/
∂θ∂θ⊤|θ=θ̂ is the observed information matrix.

Meng (1994) defined the matrix speed of convergence for an EM algorithm by
S(r) = Iq −M(r) = I−1

com(r)Iobs. The goal is to optimize r over R by maximizing
S(r). Since Iobs does not depend on r, it suffices to optimize r by minimizing
Icom(r). Let c{Icom(r)} denote a criterion for measuring the size of the positive
semidefinite matrix Icom(r), so

rc
opt = arg min

r∈R
c{Icom(r)}. (3.2)

The commonly used criteria are the largest eigenvalue, determinant, or trace.
Different critera c will result in different rc

opt. The largest eigenvalue ρ{M(r)}
of M(r) is known as the global rate of convergence of the EM. The smallest
eigenvalue s{S(r)} = 1 − ρ{M(r)} of S(r) is called the global speed of the
algorithm. As shown in Meng and van Dyk (1997), if Icom(r) ≥ Icom(r′), then
s{S(r)} ≤ s{S(r′)}.

3.2. A class of DA schemes

To accelerate the EMTNT, we first erect a class of DA schemes to find the
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LSE (1.1). Since Xm×q = (xij) is known, we define two index sets

Ji ≡ {j : xij 6= 0}, 1 ≤ i ≤ m, and Ij ≡ {i : xij 6= 0}, 1 ≤ j ≤ q. (3.3)

Further for a fixed i, we define weights

λij ≡
|xij |

r

Σj′∈Ji
|xij′ |r

, j ∈ Ji, r ∈ IR+ = {r : r ≥ 0}. (3.4)

Obviously, λij > 0 and
∑

j∈Ji
λij = 1. In particular, when r = 0, λij = 1/ni,

where ni = #{Ji} denotes the number of elements in Ji. When r = +∞, from

(3.4), we have

λij =

(

|xij |

[Σj′∈Ji
|xij′ |r]1/r

)r

= lim
r→∞

(

|xij |

maxj′∈Ji
|xij′ |

)r

=

{

1, if j = j0,

0, otherwise,

where j0 ∈ Ji is such that |xij0 | = maxj′∈Ji
|xij′ |.

We augment the observed data Yobs = {yi}
m
i=1 with independent latent data

{Zij(r)} to obtain a class of complete (or augmented) data Ycom(r) = {Zij(r) :

1 ≤ i ≤ m, j ∈ Ji} indexed by a working parameter r, where

Zij(r)
ind
∼ N(xijθj, λij) and Σj∈Ji

Zij(r) = yi. (3.5)

Thus, the multiple DA schemes {Ycom(r)}r∈IR+
induce a class of EM algorithms

when the working parameter r varies in IR+.

Several crucial differences exist between the single (or fixed) DA scheme in

(2.3) and the multiple (or flexible) DA schemes in (3.5). Firstly, the former in-

troduces a total of m(q− 1) latent variables while the latter adds only m(ni − 1)

latent variables with ni = #{Ji} ≤ q. The fewer the number of latent variables,

the faster the induced EM converges. Secondly, in (3.5), λij controls the variance

of Zij(r), and is more flexible than setting the variance of Zij in (2.3) to a con-

stant. When all ni = q and r = 0, the latter reduces to the former. Therefore, we

can identify an optimal ropt so that the optimal EM has the fastest convergence

among the whole EM class. Thirdly, note that in (2.3), when xij = 0, Zij (with

mean zero and variance 1/q) does not contribute to estimating θj . For such sit-

uations, we should set Zij = 0, which amounts to introducing Zij ∼ N(0, λij)

with λij = 0. Thus, λij ∝ |xij |
r is a natural choice, leading intuitively to (3.4).

3.3. A class of EM algorithms

In (3.5), for a fixed r in IR+, the complete-data log-likelihood function is

given by

log f(Ycom(r)|θ) = −0.5Σq
j=1Σi∈Ij

(Zij(r) − xijθj)
2(λij)

−1, (3.6)
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and the surrogate function is Q(θ|θ(t)) = −0.5Σq
j=1Σi∈Ij

E{(Zij(r)− xijθj)
2|Yobs,

θ(t)}/λij . Define uj(r) ≡ v2
j (r) · Σi∈Ij

xijZij(r)/λij , where

v2
j (r) ≡

{

Σi∈Ij

(x2
ij

λij

)}−1
, 1 ≤ j ≤ q. (3.7)

From (3.6), the sufficient statistic for θj is uj(r). To calculate the conditional ex-

pectation of uj(r), we first compute E[Zij(r)|Yobs, θ
(t)] = xijθ

(t)
j +[yi−x⊤(i)θ

(t)]λij,

where x⊤(i) denotes the ith row of matrix X. Let X = (x1, . . . , xq), then the E-step

of the EM is to compute T
(t)
j (r) = E[uj(r)|Yobs, θ

(t)] = θ
(t)
j + v2

j (r) · x
⊤
j [y −Xθ(t)]

or, equivalently in vector form,

T (t)(r) = θ(t) + diag(v2
1(r), . . . , v

2
q (r)) · X

⊤[y − Xθ(t)]. (3.8)

The M-step updates (for 1 ≤ j ≤ q),

θ
(t+1)
j = T

(t)
j (r), if S(θ) = IRq, (3.9)

θ
(t+1)
j = min{max{aj , T

(t)
j (r)}, bj}, if S(θ) = [a, b], (3.10)

θ
(t+1)
j = min{max{Lj(θ

(t)
−j), T

(t)
j (r)}, Uj(θ

(t)
−j)}, if S(θ) is a convex set. (3.11)

In (3.11), we assume that S(θ) is available with one-dimensional slices, in the

sense that Sj(θj |θ−j) = {θj : θ ∈ S(θ)} can be represented as intervals [Lj(θ−j),

Uj(θ−j)], where θ−j denotes the (q − 1)-dimensional subvector of θ by deleting

the jth component θj.

When rank(Xm×q) = q ≤ m, the EM based on (3.8) and (3.9) is a novel
fast iterative method for calculating the unconstrained LSE requiring no matrix

inversion. More importantly, for instance in image reconstruction, the matrix X

is often ill-conditioned and results in an unstable LSE, while our EM provides

a stable solution. Furthermore, the EM converges to the unique solution (1.1).

In practice, the initial values θ(0) can be taken as the unconstrained LSE, or an

arbitrary point in the box [a, b] or S(θ).

3.4. Optimal and uniformly optimal working parameters

3.4.1. Largest eigenvalue, determinant and trace criteria

The speed of convergence of the sequences {T (t)(r)}∞t=0 in (3.8) depends

on the working parameter r. For a given criterion c, we need to determine
the optimal rc

opt in (3.2). From (3.1), (3.7) and (3.2), we obtain Icom(r) =

diag(1/v2
1(r), . . . , 1/v2

q (r)),

rρ
opt = arg min

r∈IR+

ρ{Icom(r)} = arg min
r∈IR+

max
1≤j≤q

{Σi∈Ij

x2
ij

λij
}, (3.12)



952 MING TAN, GUO-LIANG TIAN, HONG-BIN FANG AND KAI WANG NG

rdet
opt = arg min

r∈IR+

det{Icom(r)} = arg min
r∈IR+

Σq
j=1 log[Σi∈Ij

x2
ij

λij
], (3.13)

rtr
opt = arg min

r∈IR+

tr{Icom(r)} = arg min
r∈IR+

Σm
i=1Σj∈Ji

x2
ij

λij
. (3.14)

In practice, a single ropt is often prefered. We suggest selecting one so that
the target function ||y − Xθ||2 decreases (against the EM iteration) the fastest.
Since (3.12), (3.13) and (3.14) depend on X, it is generally difficult to obtain a
uniformly optimal working parameter for an arbitrary design matrix X. However,
this may sometimes be achieved as shown in the following three simple examples.

Example 1. Let X2×2 = (x1, x2) with x1 = (−1, 0)⊤ and x2 = (2,−6)⊤. Then
(3.12), (3.13) and (3.14) yield rρ

opt = 5.285, rdet
opt = 0 and rtr

opt = 1, respectively.

Example 2. Let X3×2 = (x1, x2) with x1 = (0, 0, 3)⊤ and x2 = (−2, 1, 6)⊤. Then
rρ
opt = 2.155, rdet

opt = 0 and rtr
opt = 1.

Example 3. Let X4×5 = (x1, . . . , x5) with x1 = (1, 2, 3, 4)⊤ , x2 = (5, 6, 7, 8)⊤ ,
x3 = (9, 10, 11, 12)⊤ , x4 = (13, 14, 15, 16)⊤ and x5 = (17, 18, 19, 20)⊤ . Then
rρ
opt = 2, rdet

opt = 0.069 and rtr
opt = 1.

3.4.2. Uniformly optimal working parameter for the trace criterion

In the three examples above, rtr
opt = 1. This leads us to believe some uni-

formly optimal result might exist for the trace criterion. We first prove the
following inequality.

Lemma 1. Let {λij} be given by (3.4), then Σj∈Ji
(x2

ij/λij) ≥ (Σj∈Ji
|xij |)

2 for

any {xij} and any r ∈ IR+, 1 ≤ i ≤ m, and equality holds if and only if r = 1.

Proof. By the Cauchy-Schwartz inequality, for any two non-zero vectors ξ and
η, ξ⊤ξ · η⊤η ≥ (ξ⊤η)2, and equality holds if and only if there exists some non-zero
constant scalar c such that ξ = cη. Now let ξj = |xij|

r/2 and ηj = |xij |
1−r/2, to

get
∑

j∈Ji
|xij |

r ·
∑

j∈Ji
|xij |

2−r ≥ (
∑

j∈Ji
|xij |)

2.

Now we consider the trace of Icom(r). By combining (3.14) with Lemma
1, we obtain tr{Icom(r)} ≥

∑m
i=1(

∑

j∈Ji
|xij |)

2 = tr{Icom(1)}, namely rtr
opt = 1.

Hence, we have

Theorem 1. For the trace criterion, rtr
opt = 1 for any covariate matrix X.

This theorem shows that the trace criterion is invariant for any linear trans-
formation of X. However, neither the largest eigenvalue nor the determinant
criterion has this kind of property. The following example illustrates this asser-
tion.

Example 4. Let X = (x1, x2, x3) with x1 = (79, 0, 18)⊤ , x2 = (90, 100, 6)⊤

and x3 = (0, 3, 86)⊤ , then rρ
opt = 1.06 and rdet

opt = 1.06. The singular value
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decomposition yields X⊤ = UDV⊤, where V = (v1, v2, v3) is orthogonal with v1 =

(−0.436,−0.895,−0.098)⊤ , v2 = (0.165,−0.186, 0.969)⊤ and v3 = (0.885,−0.406,

−0.228)⊤. Thus we have ||y − Xθ||2 = ||y − V µ||2 with µ = DU⊤θ. Replacing

X by the linear transformation V = X(DU⊤)−1, we obtain rρ
opt = 0.992 and

rdet
opt = 0.996.

3.4.3. A special class of covariate matrices

Consider a special class of covariate matrices where all absolute values of

non-zero elements in each row are equal and there is at least one non-zero el-

ement in each row and each column. We denote it by Mm×q. For example,

let X⊤ = (x(1), . . . , x(4)), where x(1) = (0, 2,−2, 0)⊤, x(2) = (−1, 0,−1, 1)⊤,

x(3) = (3, 3,−3, 3)⊤ and x(4) = (4, 0,−4, 0)⊤ , then X ∈ M4×4. We have the

following result.

Theorem 2. If X ∈ Mm×q, then any non-negative real number can serve as

a uniformly optimal working parameter for all three criteria, i.e., rρ
opt = rdet

opt =

rtr
opt = r.

Proof. From the definition of Mm×q, we have Ji 6= ∅, Ij 6= ∅ and ni = #{Ji} ≥
1. In addition, (3.4) and (3.7) yield λij = 1/ni for any j ∈ Ji and 1/v2

j (r) =
∑

i∈Ij
ni x

∗2
i , where x∗

i denotes the non-zero element at the ith row of X. Since

1/v2
j (r) does not depend on r, Icom(r) does not depend on r.

3.4.4. A sub-optimal working parameter for all three criteria

For any given X, when r = 0, (3.4) yields λij = 1/ni with ni = #{Ji}. It

follows from (3.7) that 1/v2
j (0) = x⊤j Nxj with N ≡ diag(n1, . . . , nm). Therefore

(3.8) becomes

T
(t)
j (0) = θ

(t)
j + x⊤j [y − Xθ(t)]/x⊤j Nxj, j = 1, . . . , q. (3.15)

We denote the EM algorithms based on (3.8) and (3.10) by EMc(r). By compar-

ing (2.4) with (3.15), since q ·x⊤j xj ≥ x⊤j Nxj , we have |T
(t)
j −θ

(t)
j | ≤ |T

(t)
j (0)−θ

(t)
j |.

This implies the convergence speed of EMc(0) is faster than that of EMTNT.

Based on this fact, we call r = 0 the sub-optimal working parameter for all three

criteria. We summarize these results in the following theorem.

Theorem 3. By the criteria of largest eigenvalue, determinant and trace, Speed

of EM c(0) ≥ Speed of EMTNT.

4. Further Acceleration via Cholesky Decomposition

Let rank(Xm×q) = q ≤ m and suppose both q and m are large. By the

Cholesky decomposition, there exists a unique upper triangular matrix Bq×q
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with positive diagonal elements such that X⊤X = B⊤B. Thus, on the one hand,

(1.1) is equivalent to

θ̂ = arg minθ∈S(θ)||ξ − Bθ||2, (4.1)

where ξq×1 = (B⊤)−1X⊤y and there are at least q(q− 1)/2 zero entries in B. On

the other hand, the constrained quadratic optimization with high-dimensional

design matrix (m observations, q variables) is already reduced to an equivalent

optimization but with lower-dimensional design matrix (q observations, q vari-

ables). In addition, Theorem 1 shows that both (1.1) and (4.1) have the same

optimal working parameter (rtr
opt = 1) under the criterion of trace.

Example 5. High-dimensional simulations and comparisons. We simulated

several large sets of data to compare the convergence rates of the three EMs. The

εi and xij were i.i.d. N(0, 1), the θj were i.i.d. U [−2, 2], and yi = x⊤(i)θ + εi for

i = 1, . . . ,m and j = 1, . . . , q. We minimized ||y−Xθ||2 subject to θ ≥ 0 by using

three algorithms: EMTNT
X based on (2.4) and (2.5) and design matrix X, EMtr

X(1)

based on (3.8) and (3.10) and X with rtr
opt = 1, and EMtr

B(1) based on B in (4.1).

For instance, the second row of Table 1 shows that 545 (318) iterations are needed

for EMTNT
X (EMtr

X(1)) to have the same precision as EMtr
B(1), which converged

at 100th iteration in 0.65 second. We obtained results for 100 replicates. For

m = 1, 000 and q = 500, Table 1 shows that EMtr
B(1) is about 7 (or 5) times

faster than EMTNT
X (or EMtr

X(1)).

Table 1. Convergence speed for different EM algorithms for large simulated data.

# Obs # Variables # Iteration # Iteration # Iteration and time # Replicate
m q for EMTNT

X
for EMtr

X
(1) for EMtr

B
(1) for simulation

100 50 545 318 100 ( 0.65 sec) 100

500 100 922 468 100 ( 1.14 sec) 100

1,000 500 3,457 2,586 500 (41.1 sec) 100

2,000 1,000 7,480 5,662 1,000 ( 8.12 min) 50

3,000 1,500 12,426 10,485 1,500 (32.5 min) 20

5. Standard Errors

Utilizing the fast EM algorithm, the standard errors of θ̂ defined in (1.1)

can be obtained with a non-parametric bootstrap approach. Let yi = x⊤(i)θ + εi,

i = 1, . . . ,m, where x⊤(i) denotes the ith row of the covariate matrix Xm×q, and

the error terms {εi} are assumed to be a random sample from an unknown distri-

bution F having expectation zero. Since θ̂ is available, e.g., via some EMc(rc
opt),

we can calculate ε̂i = yi − x⊤(i)θ̂ for each i. The obvious estimate of F is the

empirical distribution of {ε̂i}, denoted by F̂ . Thus we can generate a random

sample of bootstrap error terms, denoted by {ε∗i }
m
i=1, where each ε∗i equals any
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one of the m values ε̂i with probability 1/m. Then the bootstrap responses are

generated by

y∗i = x⊤(i)θ̂ + ε∗i , i = 1, . . . ,m, or equivalently, y∗ = Xθ̂ + ε∗, (5.1)

where y∗ = (y∗1, . . . , y
∗
m)⊤ and ε∗ = (ε∗1, . . . , ε

∗
m)⊤. Notice that the covariate

matrix X is the same for the bootstrap data as for the actual data, and θ̂ is a fixed

quantity in (5.1). Having obtained y∗ the bootstrap replication is given by θ̂∗ =

arg minθ∈S(θ) ||y
∗ − Xθ||2. Independently repeating the above process G times,

we obtain G bootstrap replications {θ̂∗(g)}G
g=1 with θ̂∗(g) = (θ̂∗1(g), . . . , θ̂∗q(g))⊤

and the standard error se (θ̂j) of θ̂j can be estimated by the sample standard

deviation of the G replications.

6. Application, Simulation and Comparison

We apply the proposed methods to shape-restricted non-parametric regres-

sion with and without penalty and compare them with the existing EM algorithm

and Dykstra’s (1983) algorithm via simulation.

6.1. Shape-restricted non-parametric regression

Given z0 < z1 < · · · < zm < zm+1 and the observed data Yobs = {ξi}
m
i=1, we

consider the non-parametric regression model

ξi = f(zi) + ei, i = 1, . . . ,m, (6.1)

where {ei}
m
i=1 are random errors with mean zero. The goal is to estimate f sub-

ject to shape constraints (e.g., monotonicity, convexity or concavity). These con-

straints can be expressed as a set of LICs and written in the form Aµ ≥ 0, where

Ap×m is a matrix depending on zi and µ = (µ1, . . . , µm)⊤ = (f(z1), . . . , f(zm))⊤.

Therefore, the problem is reduced to minimizing Σm
i=1wi(yi − µi)

2 with known

weights {wi} subject to LICs, i.e.,

µ̂ = arg min
Aµ≥0

(ξ − µ)⊤W (ξ − µ), (6.2)

where ξ = (ξ1, . . . , ξm)⊤ and W = diag(w1, . . . , wm).

We consider three cases and make the following linear transformations

µ=















A−1θ with θp×1 ∈ IRp
+, if p = m and A−1 exists,

(A⊤A)−1A⊤θ with θp×1 ∈ IRp
+, if rank(A) = m < p,

(A∗)−1θ with θm×1 ∈ IRp
+ × IRm−p, if rank(A) = p < m,

(6.3)
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where A∗ =

(

A1 A2

O Im−p

)

, A = (A1, A2) with A1 : p × p and A2 : p × (m − p).

Thus (6.3) can be treated as µ = Bm×qθq×1 with θ ∈ [a, b], in a unified manner.

Finding µ̂ in (6.2) is equivalent to computing

θ̂ = arg min
θ∈[a,b]

||y − Xθ||2, (6.4)

where y = W 1/2ξ and X = W 1/2B.

Usually, the shape-restricted regression function estimated via (6.2) is not

very smooth. This difficulty can be overcome by adding a roughness penalty, and

the goal is to find

µ̂ = arg min
Aµ≥0

{

(ξ − µ)⊤W (ξ − µ) + γ

∫ zm+1

z0

f ′′(z)2 d z

}

, (6.5)

where γ > 0 is a smoothing parameter. When the LICs are absent, (6.5) is the

natural cubic smoothing spline (Lange (1999, Chap.9)). Suppose that f is a

natural cubic spline, i.e., f ′′(z) is piecewise linear and continuous on [z0, zm+1],

and f ′′ = 0 on [z0, z1] and [zm, zm+1]. Meyer (1999) showed that the integral

term in (6.5) can be written as µ⊤Pµ, where P ≥ 0. Therefore, (6.5) becomes

µ̂ = arg minAµ≥0 (Q−1Wξ − µ)⊤Q(Q−1Wξ − µ) with Q = W + γP , which is of

the form (6.2).

6.2. Dykstra’s algorithm

By using the concept of duality and the Gauss-Seidel computational algo-

rithm, Hildreth (1954) studied QO with LICs like (6.2). His procedure rests on

the duality theorem (Kuhn and Tucker (1951, p.487, pp.491-492) and Hildreth

(1954, p.604)). Wolfe (1959) proposed a simplex method to solve the QO prob-

lem with LECs/LICs. Dykstra (1983) extended Hildreth’s procedure to find the

projection of a point onto a finite intersection of closed convex cones.

To solve (6.2), we define y = W 1/2ξ, θ = W 1/2µ and X⊤ = AW−1/2, then

µ̂ = W−1/2θ̂ with θ̂ = arg minX⊤θ≥0 ||y−θ||2. Following the notations of Dykstra

(1983), let Xm×p = (x1, . . . , xp), Cj = {θ ∈ IRm : x⊤j θ ≥ 0} (j = 1, . . . , p), and

C = ∩p
j=1Cj . Then

θ̂ = P (y|C) = arg min
θ∈C

||y − θ||2, (6.6)

where P (y|C) is called the projection of y onto C for any given y ∈ IRm. Let

P (y|Cj) denote the projection of y onto Cj, then P (y|Cj) = y if x⊤j y ≥ 0 and is

y − xj · (x
⊤
j y/x⊤j xj) otherwise. Dykstra (1983) proposed the following algorithm

to find (6.6), while Wollan and Dykstra (1987) gave its Fortran implementation.
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Dykstra’s algorithm:

1. Let y1,1 denote the projection of y onto C1 and let I1,1 = y1,1 − y be the

incremental change incurred by the projection so that y1,1 = y + I1,1.

2. Let y1,2 denote the projection of y + I1,1 onto C2. The incremental change is

I1,2 = y1,2 − (y + I1,1) so that y1,2 = y + I1,1 + I1,2.

3. Let y1,3 denote the projection of y+I1,1+I1,2 onto C3. The incremental change

is I1,3 = y1,3 − (y + I1,1 + I1,2) so that y1,3 = y + I1,1 + I1,2 + I1,3.

4. After y1,p and I1,p = y1,p − (y + I1,1 + · · · + I1,p−1) are found, let y2,1 denote

the projection of y + I1,2 + · · ·+ I1,p onto C1. Note that we have removed the

increment I1,1 before the projection. Our new increment is I2,1 = y2,1 − (y +

I1,2 + · · · + I1,p) so that y2,1 = y + I2,1 + I1,2 + · · · + I1,p.

5. Let yt,j is the projection onto the jth cone Cj during the tth cycle. Thus, in

general, yt,j is the projection of y + It,1 + · · · + It,j−1 + It−1,j+1 + · · · + It−1,p

onto Cj and It,j = yt,j − (y + It,1 + · · · + It,j−1 + It−1,j+1 + · · · + It−1,p).

6. Continuing the process until |yt−1,p − yt,p| < 10−ε0 for some positive number

ε0, we have P (y|C) = yt,p.

In general, Dykstra’s algorithm is computationally intensive, especially for

high-dimensional cases. For example, when p = 1, 000, each cycle in the algo-

rithm includes 1,000 iterations. Since the next iteration depends on the output

of the previous iteration, the convergence of the Dykstra’s algorithm is slow. In

contrary, the proposed fast EM algorithm (e.g., (3.8) and (3.10)) is simple and

easy to code (e.g., with a matrix language, such as SPLUS and MATLAB).

6.3. Simulation and comparison

In (6.1), let m = 41, z0 = −∞, zm+1 = +∞, zi = −2 + 0.1(i − 1) for

i = 1, . . . ,m, and

f(z) = 1 +
3

[1 + exp(3 + 4z)]0.65
, z ∈ IR. (6.7)

We generate {ei}
m
i=1 from N(0, 0.22) and obtain m observations {ξi}

m
i=1 via (6.1).

The simulated data are displayed in Table 2. Since f is monotone and decreasing,

we restrict µ by µ1 ≥ · · · ≥ µm, i.e., Aµ ≥ 0, where A = (aij) is an (m − 1) × m

matrix with aii = 1, ai,i+1 = −1 and aij = 0 otherwise. Noting that rank(A) =

m − 1, from the third transformation of (6.3) we have µ = Xθ, where θm×1 ∈
IRm−1

+ × IR and

Xm×m =











1 1 · · · 1

0 1 · · · 1
...

...
. . .

...

0 0 · · · 1











≡ ∆m. (6.8)
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Let W = Im, then (6.4) becomes θ̂ = arg min ||ξ−Xθ||2 subject to θ ∈ IRm−1
+ ×IR.

From Theorem 2, without loss of generality, let ropt = rρ
opt = rdet

opt = rtr
opt = 0.

Hence, the sub-optimal EMc(0) (i.e., the EM (3.15) and (3.10)) can be applied

to obtain θ̂ and µ̂ = Xθ̂. The EMc(0) converged at t = 200 iterations and the

CPU time was 0.67 seconds. The corresponding standard errors were obtained

by the non-parametric bootstrap with 500 replications (see Table 2). Figure 1(a)

shows that the curve with EMc(0) fits well.

Table 2. Simulated data and estimated results.

i zi ξi µ̂
†
i std† µ̂

‡
i std‡ i zi ξi µ̂

†
i std† µ̂

‡
i std‡

1 -2.0 3.994 3.989 0.663 3.994 0.543 21 0.0 1.102 1.330 0.305 1.222 0.312

2 -1.9 3.883 3.894 0.470 3.896 0.481 22 0.1 1.341 1.330 0.296 1.222 0.310

3 -1.8 3.910 3.894 0.419 3.896 0.412 23 0.2 0.952 1.184 0.266 1.166 0.265

4 -1.7 3.683 3.808 0.376 3.799 0.357 24 0.3 1.258 1.184 0.261 1.166 0.267

5 -1.6 3.428 3.808 0.354 3.799 0.345 25 0.4 1.129 1.184 0.262 1.166 0.258

6 -1.5 3.748 3.808 0.346 3.799 0.345 26 0.5 1.009 1.184 0.259 1.166 0.259

7 -1.4 4.082 3.808 0.340 3.799 0.341 27 0.6 1.311 1.184 0.255 1.166 0.263

8 -1.3 4.010 3.808 0.343 3.799 0.346 28 0.7 1.338 1.184 0.251 1.166 0.260

9 -1.2 3.845 3.778 0.344 3.799 0.354 29 0.8 0.908 1.038 0.250 1.089 0.254

10 -1.1 3.747 3.725 0.343 3.747 0.352 30 0.9 1.220 1.038 0.256 1.089 0.257

11 -1.0 3.411 3.428 0.358 3.411 0.351 31 1.0 1.139 1.038 0.255 1.089 0.251

12 -0.9 3.378 3.344 0.368 3.378 0.360 32 1.1 0.994 1.038 0.257 1.086 0.256

13 -0.8 3.066 3.051 0.382 3.066 0.360 33 1.2 1.179 1.038 0.255 1.086 0.254

14 -0.7 2.872 2.878 0.387 2.872 0.378 34 1.3 1.082 1.038 0.256 1.082 0.254

15 -0.6 2.799 2.793 0.387 2.799 0.376 35 1.4 1.051 1.038 0.255 1.077 0.251

16 -0.5 2.075 2.125 0.367 2.075 0.365 36 1.5 1.104 1.038 0.255 1.077 0.253

17 -0.4 1.752 1.896 0.356 1.917 0.367 37 1.6 1.039 1.034 0.259 1.039 0.258

18 -0.3 2.083 1.896 0.346 1.917 0.352 38 1.7 0.768 0.952 0.255 0.952 0.252

19 -0.2 1.629 1.565 0.332 1.629 0.341 38 1.8 1.028 0.952 0.255 0.952 0.249

20 -0.1 1.455 1.519 0.327 1.455 0.332 40 1.9 0.885 0.952 0.240 0.952 0.243

41 2.0 1.128 0.952 0.222 0.952 0.231

†µ̂i and its standard error calculated by the sub-optimal EMc(0) algorithm.
‡µ̂i and its standard error calculated by Dykstra’s algorithm.

To compare EMTNT (i.e., the EM (2.4) and (2.5)) with the sub-optimal

EMc(0), we plot the target function values ||ξ−Xθ(t)||2 against the EM iteration

t. Figure 2 shows that the former converges much more slowly than does the

latter, as is suggested by Theorem 3.

By applying Dykstra’s algorithm, we obtained µ̂ with a CPU time of 3.58

seconds, and the corresponding standard errors with 500 bootstrap replications

(see Table 2). Thus EMc(0) is at least 5 times as fast as Dykstra’s algorithm.

Figure 1(b) shows that the solutions with the sub-optimal EMc(0) and Dykstra’s

algorithm are quite close.
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Figure 1. (a) Comparison among the true values (denoted by “· · · · · · ”) of

f(zi) defined by (6.7) , the simulated values (denoted by “o”) of ξi based on

(6.1) with ei

i.i.d.
∼ N(0, 0.22), and the estimated values (denoted by “——”)

of µi subject to monotone and decreasing constraints via the sub-optimal

EMc(0) algorithm based on (3.15) and (3.10). (b) Comparison of the esti-
mated values (denoted by “——”) of µi via the sub-optimal EMc(0) algo-

rithm with the estimated values (denoted by “·–·–·–”) of µi via Dykstra’s

algorithm.



960 MING TAN, GUO-LIANG TIAN, HONG-BIN FANG AND KAI WANG NG

EM iteration tEM iteration t

EM iteration tEM iteration t

EMTNT
EMTNT

EMTNT

EMTNT

EMc(0)
EMc(0)

EMc(0)

EMc(0)

t
a
r
g
e
t

fu
n
c
t
io

n
:

‖
y
−

X
θ
(
t
)
‖
2

t
a
r
g
e
t

fu
n
c
t
io

n
:

‖
y
−

X
θ
(
t
)
‖
2

t
a
r
g
e
t

fu
n
c
t
io

n
:

‖
y
−

X
θ
(
t
)
‖
2

t
a
r
g
e
t

fu
n
c
t
io

n
:

‖
y
−

X
θ
(
t
)
‖
2

0
.5

0
.7

0
.8

0
.9

1
.0

1
.0

1
.1

1
.5

2
.0

0
.6

5
0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0

0

5 10 15

2
0

20 25 30 35 40

4
0

45 50

55 60

6
0

65 70 75

8
0

150 160 170 180 190 200

Figure 2. Comparison of the convergence speed between EMTNT and the

sub-optimal EMc(0) based on (3.15) and (3.10). The y-axis is the target

function ||ξ − Xθ(t)||2.

7. Example — Freshmen’s GPA Data

For illustrative purpose, we analyze the data of the first-year grade point

averages (GPA) of 2, 397 students at the University of Iowa in the fall of 1978

(Table 4 in Dykstra and Robertson (1982)). Let yik and wik denote the observed

value of GPA score and the number of students in the (i, k)-cell, where the row

index i (1 ≤ i ≤ m and m = 9) represents the group of student with high-school

ranks (HSR) 91–99, 81–90, 71–80, 61–70, 51–60, 41–50, 31–40, 21–30 and 1–20,

respectively, and the column index k (1 ≤ k ≤ n and n = 9) represents the group

of student with ACT scores 1–12, 13–15, 16–18, 19–21, 22–24, 25–27, 28–30, 31–

33 and 34–36, respectively. Let µik denote the average GPA score for category

(i, k) and µm×n = (µik). A natural restriction is that µ is non-decreasing in

rows and non-increasing in columns, that is, µ ∈ S(µ) = Srow(µ)∩Scol(µ), where

Srow(µ) = {µ ∈ IRmn : 0 ≤ µi1 ≤ · · · ≤ µin, 1 ≤ i ≤ m} and Scol(µ) = {µ ∈
IRmn : µ1k ≥ · · · ≥ µmk ≥ 0, 1 ≤ k ≤ n}. Dykstra (1983) proposed an algorithm

to compute µ̂ = arg minµ∈S(µ) Σm
i=1Σ

n
k=1wik(yik − µik)

2.

Instead of calculating this µ̂, we are interested in estimating the effects of

HSR and ACT. Specifically, the average GPA score µik can be decomposed into

two parts, one is from the effect of HSR at the ith level (denoted by αi) and

the other from the effect of ACT at the kth level (denoted by βk), i.e., µik =

αi + βk. We call {αi} the row effects and {βk} the column effects. Obviously,
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with α = (α1, . . . , αm)⊤, α1 ≥ · · · ≥ αm ≥ 0, and with β = (β1, . . . , βn)⊤,
0 ≤ β1 ≤ · · · ≤ βn. The constrained LSEs (α̂, β̂) are identical to their constrained
MLEs in the normal model

yik = αi + βk + eik, eik
ind
∼ N(0,

1

wik
), i = 1, . . . ,m, k = 1, . . . , n. (7.1)

Let Ym×n = (yik), Wm×n = (wik), α = ∆mθ(1) and β = ∆⊤
nθ(2), where ∆m is

defined in (6.8), θ(1) = (θ1, . . . , θm)⊤ ∈ IRm
+ and θ(2) = (θm+1, . . . , θm+n)⊤ ∈ IRn

+.
Then (7.1) becomes

→

Y = Xθ +
→

E, θ ∈ IRm+n
+ ,

→

E ∼ Nmn(0,Ω−1),

where Ω ≡ diag (
→

W ), X ≡ (1n ⊗ ∆m
... [In ⊗ 1m]∆⊤

n) and (A
... B) denotes the

column-merged matrix of A and B. Obviously, the constrained MLE of θ =
(θ1, . . . , θm+n)⊤ is

θ̂ = arg min
θ∈IRm+n

+

||Ω
1

2

→

Y −Ω
1

2 Xθ||2.

Notice that all non-zero elements at each row of Ω1/2X are equal, i.e.,
Ω1/2X ∈ Mmn×(m+n). Thus from Theorem 2, we have ropt = rρ

opt = rdet
opt =

rtr
opt = 0. Hence, the sub-optimal EMc(0) based on (3.15) and (3.10) can be

applied to obtain θ̂. Using the initial values θ(0) = (0.1, . . . , 0.1)⊤, the EMc(0)
become stable at t = 1, 000 iterations and the CPU time was 5.09 seconds. We list
α̂ = ∆mθ̂(1) and β̂ = ∆⊤

nθ̂(2) in the 4th and the 9th column of Table 3. The stan-
dard errors were obtained with 25.5 minutes of CPU time by the non-parametric
bootstrap with 500 replications.

Table 3. Estimations of the row and column effects for freshmen’s GPA data.

i HSR Level αi α̂i std k ACT Level βk β̂k std

1 91 ≤ HSR ≤ 99 α1 1.775 0.1029 1 1-12 β1 0.699 0.0603

2 81 ≤ HSR ≤ 90 α2 1.362 0.1026 2 13-15 β2 1.001 0.1054
3 71 ≤ HSR ≤ 80 α3 1.229 0.1024 3 16-18 β3 1.160 0.1065

4 61 ≤ HSR ≤ 70 α4 1.110 0.1109 4 19-21 β4 1.237 0.0984

5 51 ≤ HSR ≤ 60 α5 0.912 0.0975 5 22-24 β5 1.321 0.0959

6 41 ≤ HSR ≤ 50 α6 0.912 0.0984 6 25-27 β6 1.369 0.0996

7 31 ≤ HSR ≤ 40 α7 0.764 0.1084 7 28-30 β7 1.520 0.1099
8 21 ≤ HSR ≤ 30 α8 0.699 0.0982 8 31-33 β8 1.578 0.1279

9 HSR ≤ 20 α9 0.699 0.0603 9 34-36 β9 1.578 0.1856

8. Discussion

Box constraints and LICs are two special cases of the general convex con-
straints (CCs). Quadratic optimization with CCs, the core computation in non-
linear programming with CCs, is a fundamental and difficult problem. Existing
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packages are not applicable to optimization problems beyond the box constraints,

the LECs and the LICs. Although EM-type algorithms may be applicable, slow

convergence has hindered their applications, especially, to high-dimensional data.

The method we developed accelerates an EM for solving the QO problem with

CCs by utilizing the ‘working parameter’ scheme. The techniques of latent-

variable reduction and dimension reduction were proposed to further speed up

the EM. Theoretical and simulated results showed that the new algorithm out-

performs that of Tian et al. (2005) substantially. The proposed methods can be

applied to QO with CCs such as ellipsoid, simplex, or quadratic constraints. For

example, we used the EMtr(1) algorithm to re-analyze the bituminous concrete

data (Sec. 7.4 of Tian et al. (2005)) and obtain the same results, but with only

20 iterations as opposed to 30 iterations.

Meng and van Dyk’s acceleration scheme is basically an art, in which one

finds the optimal value for the working parameter before the EM starts, by min-

imizing the fraction of missing information. Another closely related acceleration

scheme is that of the Liu, Rubin and Wu (1998) parameter expansion method, in

which the expanded parameters are estimated during the EM process, together

with original parameters of interest. For example, instead of defining {λij} ex-

plicitly according to (3.4), if we treat {λij} in (3.5) as expanded parameters and

estimate them from the imputed data, subject to λij > 0 and Σj∈Ji
λij = 1, then

we can derive a PX-EM algorithm. Theoretically, if the M-step could be done

in closed form, then the PX-EM would outperform the optimal EM algorithm

(from Theorem 1, we have rtr
opt = 1). However, the explicit expressions for the

complete-data MLEs of {λij} are unavailable for the present situation. In fact,

let Θ = (θ, λ), where λ = {λij} denote the auxiliary parameters. Similar to

(3.6), the log-likelihood function of Θ for the complete-data is proportional to

−0.5Σm
i=1Σj∈Ji

log λij −0.5Σm
i=1Σj∈Ji

(Zij −xijθj)
2/λij . For ease of presentation,

we assume that Ji = {1, . . . , q − 1, q}. For given θ, the complete-data MLEs of

{λij} with constraints Σq
j=1λij = 1 are determined by the system of non-linear

equations:

λ−1
ij − δijλ

−2
ij = λ−1

iq − δiqλ
−2
iq , j = 1, . . . , q − 1, i = 1, . . . ,m,

where δij ≡ (Zij − xijθj)
2. Although explicit solution to the equations is not

available, it is worthwhile to explore to what extent the PX-EM can be best

utilized in the future.

In the context of working parameter, Meng (1994) and Meng and van Dyk

(1997) suggested using the largest eigenvalue as the criterion to speed up EM.

We found that the trace criterion works much better (at least in our examples

of both simulations and data). Therefore it is worthwhile to theoretically in-

vestigate this issue further in other models such as logistic regression for binary
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data and Poisson regression for counting data. Furthermore, the fast EM al-
gorithm designed for the QO with constraints may also improve the lasso-type
algorithms in variables selection and other EM-type algorithms in medical image
reconstruction. We plan to address these issues in a separate report.
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