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Abstract

Both subsequence problems, finding longest common subsequence of two
strings of length m and n, and one-dimemsional pattern matching of n input
elements, have sequential dynamic programming algorithms which take O(mn)
and O(n) time, respectively. In this paper, we show that the former problem
takes O(log mlogn) time using nm*/(logmlogn) processors, where ¢ is the ex-
ponent of matrix multiplication in semiring, while the latter problem, as well
as some similar ones, can be solved optimally in O(logn) time using n/logn
processors, both on parallel random access machines (PRAM).

Keywords: Parallel Algorithm, PRAM, Dynamic Programming, Subsequence
Problems.

1 Introduction

Dynamic Programming (DP) [Bel,Tho] is one of several problem-solving tech-
niques which are widely used in Computer Science and Operations Research. As
parallel computation [KaRa,Coo,Wyl,TsLaCh] becomes increasingly important in
Computer Science, much effort has been devoted in designing parallel algorithms
for those problems which can be solved with efficient sequential DP algorithms
[LiWa,EdWa,LiLo,Ryt].

One main feature underlying DP is that the computation is performed in stages
where operations of a stage make use of the results of previous stages. An optimal
solution is found when the last stage is reached. Since this process is sequential in
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nature, a problem solved using DP may have to be expressed in a different form for
efficient parallel computation. In this paper, we illustrate how to design polylog-time
algorithms on parallel random access machines (PRAM) [FoWy] for solving some
subsequence problems with sequential DP algorithms, such as finding longest common
subsequence (LCS){Hir75], one-dimensional pattern matching (1DPM)[Ben], finding
longest nondecreasing (nonincreasing) subsequence (LNS) and maximum positive
subsequence (MPS).

The LCS problem, which takes two input strings of length m and n, can be solved
sequentially in O(mn) time using DP technique [Hir75]. In Section 2, we describe an
O(log mlogn) time algorithm using nm®/(logmlogn) processors on a concurrent-
read, exclusive-write parallel random-access machine (CREW PRAM), where ¢ is
the exponent of matrix multiplication in semiring, i.e., the product of two n x n
matrices can be cornputed using no more than O{n®) operations. In Section 3, we
show that the 1DPM problem is a special case of the sum-range-product problem.
These two problems which have to consider n(n — 1)/2 ranges of n elements, i.e.,
Z, % ...% 75 where 1 < 7 € k £ n, can be solved by the DP technique in O(n) time
sequentially. In this paper, we devise an algorithm to solve the sum-range-product
problem optimally in O(logn) time using n/logn processors on an exclusive-read,
exclusive-write parallel random-access machine (EREW PRAM). The LNS and MPS
problems can also be solved in the similar way. Some remarks on designing parallel
algorithms for problems with sequential DP algorithms are given in Section 4.

2 The Longest Common Subsequence Problem

Given a string X, a subsequence of X is a string which can be obtained by deleting
characters from X, e.g., “seen” is a subsequence of “sequence”. The longest com-
mon subsequence problem can be stated as follows: Given strings X = z,---z, and
Y = y1---ym over a finite alphabet, find a string 7 = 2 ---2, such that Z is a
common subsequence of X and Y with maximum length. A DP algorithm has been
designed to solve the LCS problem sequentially in O(mn) time [Hir75). [AhHiUl] has
proved a lower bound of }(mn) for the LCS problem over an alphabet of three or
more symbols if only equal-unequal comparisons are used. For some particular input
strings, algorithms that take less than O(mn) time have been designed [HuSz,Hir77].
This problem has attracted much research attention and has a number of applications
[WoCh,Ita,FiMa).

Parallel algorithms for the LCS problem have been studied in {ChRo, EdWa]. In
[EdWa], 2 parallel algorithm that runs in O(n + m) time using m -+ 1 processors on
a systolic-array-like machine is presented. In {ChRo], 2 constant time algorithm has
been developed on a model called bus automaton (BA), which can be viewed as a
cellular automaton with a locally switchable global communication network. Instead
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Figure 1: Decomposition of the LCS Problem.

of using a powerful parallel computation model such as BA, the following subsections
describe an O(log mlogn) algorithm which runs on a CREW PRAM.

2.1 Main idea

Our method uses a dynamic programming formulation different from [Hir75] to solve
the LCS problem in parallel. As shown in figure 1, an LCS of X and Y can be
formed by concatenating an LCS of 2y ---zz and yy -+ -y and that of 2341 ---z, and
Yet1*** Ym, for some value k, where 0 < k < m, such that the resulting LCS is the
longest possible. The subproblems so decomposed can be broken down recursively in
the same way until they are small enough to be solved directly.

Let L(r,s,i,7) be the length of an LCS of z,---z, and y: -+ y;. L{1,m,1,m) is
then the length of an LCS of X and Y. The following is the recurrence relation for

the L’s of the subproblems derived from the decompositon. Assume 1 <r <s< n,
1<i<j<m,

.. 1 if z, matches with one of y;,---,y;
sonid) = { § S o ®

. r+s, . r+s .
Lir,s,i,g) = max {L(r,[——|.0k) + L~ [+ Lsk+1.0)}  (2)

The above recurrence assumes that n is a power of 2 and L(r,s,%,7}) = 0if 1 > j.

2.2 Computation of the L values

The following describes how L(1,n,1,m) is computed in parallel. Contrast to the
top-down decomposition of the LCS problems suggested by the recurrence, the com-
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putation is performed stage by stage in 2 bottom-up manner.

A set-up is needed before the beginning of the first stage. For all 1 < r <
n, 1 < j < m, L(r,r,7,7) is set to 1 if z, matches y,, otherwise 0. This step
can be completed in O(1) time with mn processors. The next step is to compute
Q(r,7) = Ticag, L(r,,k, k) which gives the number of occurrences of z, in y; ---y;,
and Q(r,j) ~ Q(r,i — 1) is the number of occurrences of z, in y;«--y;. Since z,
can match with at most one character in y;---y,, the length of an LCS of z, and
% ...Y; is at most 1. With the assumption that Q(r,0) = 0, we have L(r,r,i,5) =
min{l,Q{r,7) ~ Q(r,i — 1)} for 1<r<nand1<i<j<m.

For a fixed r, the computation of @(r,7) for 1 £ j £ m is a prefix sum problem
which takes O{logm) time using m/log m processors {LaFi]. Thus, for 1 < r < n,
1< 7 € m, Q(r,5) can be computed in O(logm) time using nm/ log m processors.
Afterward, all the L{r,7,%,5)’s are computed in O(1) time using nm? processors.
Therefore, this set-up procedure can be completed in O(logm) time.

All the other L’s are computed according to Eq(2) stage by stage. In particular,
L(2r—1,2r,7,5)%, for 1 <r < 2, are computed in the first stage; L(4r — 3,4r,1,7)s,
for 1 <r < %, in the second, etc. In general, L(2”(r — 1)+ 1, 2°r,{, 5)’s are computed
in the pth stage for 1 < r < n/2°. Finally, L(1,n,1,7)’s, in particular L(1,n,1,m),
are computed in the (log n)th stage.

To simplify the notion, let u = 2°(r ~ 1) + 1, v = 2°r and w = v — 2?"1. For
1< <7< m, L(u,v,1,5)’s are computed from L{u,w,?,2)’s and L{w + 1,2,%,7)’s,
which are results of the (p — 1)st stage. From Eq(2),

L(w,v,%,5) = max {L(u,w,i,k)+Llw + 1,0,k +1,5)} (@)

For fixed values of v and v, the computation of L{x,v,4,f) for 1 S ¢ < j<m
is similar to matrix multiplication and can be performed in O(logm) time using
m®/ log m processors, where e is an exponent of matrix multiplication in a semiring.
As there are n/2° u-v pairs and the corresponding L(u,v,1,7)’ are computed in
parallel in the pth stage, the total number of processors required is nm*/(2° log m).
Since there are log n stages, the time complexity of the entire process is O(log m log n).

According to the above analysis, the first stage requires nm*/2logm processors.
From the second stage onward, the number of processors required in each stage is half
of that in the previous stage. This requirement is similar to a number of situations
[ChLaCh,LaFi] and the same trick for processor scheduling can be applied to reduced
the number of processors without a drawback in asymptotic time complexity. Thus,
the L’s can be computed in O(log mlogn) time using nm*/(log m log n) processors.



2.3 Backward tracing

A 3-D array, D[1---2n,1-+-m,1---m], is needed to keep track of the k values of
Eq(2) so as to produce the LCS after L(1,n,1,m) is found. In order to store up
the additional information during the intermediate stages of computation, the first
n values of the first index of D are reserved for information of the set-up procedure,
the second % values are for the first stage, the next £ values for the second stage, etc.
The second and third indices in D correspond to the third and fourth indices of L.

At the completion of the set-up, D{r,1, 5] stores the index k, such that y; matches
z, for i < k < jif L(r,7,1,7) = 1. At the completion of the pth stage, D[2n —n/2° +
r,1,J] stores the index k of Eq(3) which maximizes the value of L(2”(r—1)+1, 2°r,1, 7).

Upon the completion of computing L(1,n,1,m), a backward process is started
to find an LCS of X and Y. Let k = D[2n,1,m|, we know that an LCS of X and
Y can be formed by concatenating an LCS of z;-+-zs and y;-+-yx and an LCS of
Tl Tn and Yie1 * -+ Ym. By applying this strategy recursively, we can track down
each component of the LCS of X and Y. With proper scheduling of processors, the
backward process can be completed in O(logn) time.

Theorem 1 The LCS problem can be solved in O(logmlogn) time using
nm*/(logmlogn) processors on a CREW PRAM, where e is the exponent of the
matrix multiplication in semiring.

3 The 1-D Pattern Matching and Sum-Range-
Product Problem

Given n real numbers, ©y,%s,...,Z,, the 1-D pattern matching problem [Ben] is to
find the maximum sum in any contiguous subsequence of the input, i.e.,

lsz?sai(s”:c, + o T
Let us consider the sample sequence given in [Ben|, (31, -41, 59, 26, -53, 58, 97, -93,
-23, 84), the answer of the 1DPM is 187 which is the sum of 59,...,97. This 1-D

pattern matching problem is indeed a special case of the 2-dimensional one which
provides the maximum likelihood estimator of a certain pattern in a digitized picture.

Let * and + be two associative and commutative operations on a domain D which
follows distributive laws, Le.,a* (b+¢) =a*b+axcand (b+c)ra=bxa+c*a.
Given n elements, ), - ¥n, in D, the sum-range-product problem is to evaluate

An)= 3 ¥ Il w
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Let D be the set of real numbers, y, = z, for 1 < ¢ < n, + be the maximum
operation and * be the real number addition. The 1DPM problem is then a special

case of the sum range-product problem.

3.1 An optimal solution for the sum-range-product problem

In [Ben], Bentley described several approaches, such as preprocessing, divide-and-
conquer and dynamic programming, for solving the 1-D pattern matching problem.
In fact, there are O{n?) ranges of input numbers needed to be considered and a brute
force method requires O(n®) time. Bentley finally gave a DP algorithm which solves
the problem optimally in O(n) time. Using a similar approach, we define 4(m) and
B(m} with the following recurrence,
0 fm=20

B(m)::{ Bm—1)%Ym+ym ifm>0

Alm) = 0 fm=0
T A(m-1)+B(m) ifm>0
Note that, form=1,---,n

Bm)= 3 I »

1$Sm gSism

A(m) = Z Z H Y
1LkSm 1S5k 1SSk
The following theorem shows how to solve the sum-range-product problem in
Oflog n} time with n/logn processors on an EREW PRAM using the method devel-
oped by [GrLaPaGa) for linear recurrence computation.

Theorem 2 Assume that every +, * operation takes unit time. The sum-range-
product problem can be solved in Of{logn) time using n/logn processors on an
EREW PRAM.

Proof:  The recurrence of B(m) can be expressed in terms of matrix product
B = Prm-y * ¥ where §,, = {[B(m) 1] and
_|ym O
wn=[t 9]
Thus fm = B * 91 * ... * Y, where fp = [0 1].

Since A(m) can also be expressed as B(0) + B(1) + ...+ B(m), the computation
of B(m) and A(m) for m = 1,-- ,n 1s then reduced to two prefix-sum-like problems
which can be solved in O(logn) time using n/ log n processors on an EREW PRAM.
Note that A(n) is the solution of the sum-range-product problem. 0O
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Corollary 3 The 1DPM problem can be solved in O(logn) time using n/ log n pro-
cessors on an EREW PRAM.

Proof: The 1DPM problem is a special case of the sum-range-product problem.
O

Corollary 4 The range of the contiguous subsequence that produces the solution
for the 1DPM problems can be obtained in O(logn)} time using n/logn processors
on an EREW PRAM.

Proof: Let z,,---,xz; be the solution. Since A(k) = A(k+1) = ... = A(n),
k can be found easily given A(m)}, for m = 1,--.,n, in a way similar to computing
prefix sum. When k is known, 7 can be determined by finding the prefix sum of
Zi, Ti-1,° - -, %1 Such that the prefix sum corresponding to z, is equal to A(n). O

3.2 Some other subsequence problems

With the result for the sum-range-product problem, we show that optimal parallel
algorithms also exist for some sumilar subsequence problems. For example,

1. Longest Nondecreasing (Nonsncreasing) Subsequence (LNS):
To find the maximum length of any nondecreasing (nonincreasing) contiguous

subsequence.
K
2. Mazimum Positive Subsequence (MPS):
To find the maximum sum {product) of any contiguous subsequence of positive
numbers.

1$rjn£azc£ﬂ{z,+...+z,,[:c,,---,zk > 0}

Theorem 5 The LNS and MPS problems can be solved in O(logn) time using
n/logn processors on an EREW PRAM.

Proof:  These two problems is reducible to the sum-range-product problem.
The reductions involved can also be done in O(log n) time using n/ logn processors
on an EREW PRAM.

1. LNS:
Let D be the set of integers, + be the maximum operation, * be the integer

addition. yy = 1 and, for 1 <: < n, y, = 1 if 7, € x,, otherwise ~oo.



2. MPS:
Let D be the set of real numbers, + be the maximum operation, * be the
addition, for 1 €1 < n, % = z, if z, > 0, otherwise —oco.

(To find the maximum product of any contiguous subsequence, set y; = 0 if
z, £0.)

]

4 Conclusions

Dynamic Programming is a powerful tool for solving problems efficiently. In this
paper, we have successfully shown by examples that problems with DP formulations
may be in NC [Coo] even though DP is implicitly sequential in nature. Two different
approaches are used in designing parallel algorithms for this type of problems. The
first one expresses the problem in a new DP formulation which can be computed in
O(log n) stages. The second models the problem with a set of recurrence which can
be evaluated efficiently in parallel due to the associativity of the operations involved.
We intend to study more problems having sequential DP algorithms. The ultimate
goal is to devise general principles for designing efficient parallel algorithms for this
type of problems.
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