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ABSTRACT

The problem of protecting statistical databases from compromise while
satisfying arbitrary on—-line aggregate requests is approached afresh.
New perspective is gained through the introduction of the concept of
query complexity for information release. Compatible with complexity
a new distortive plan 1is proposed that provides effective protection
against compromise, easy implementation, and viable statistics, and

is very competitive with existent policies. Experimental results on
simulated databases support the proposal.

1. INTRODUCTION

Privacy considerations are of prime importance in the dissemination
of statistics for databases which contain confidential facts about
individuals. With the advent of modern database management systems
accommodating users with on~line aggregates for arbitrary
subpopulations, the problem takes added dimensions. While this
flexibility renders the statistical database an invaluable tool for
research and planning, the powers of the malicious snooper are
magnified. It is well-noted that given such querying freedom, even
with the suppression of implicating attributes such as name, address
and social security number, identification of an individual and

disclosure of his information are often possible [11].



In the interest of statistical database security, past research
prescribes either & curtailment of querying freedom through
restrictions or a sacrifice of statistical exactness through
distortions. Investigated protection mechanisms include, the
restrictions of query set size restriction [2], partitioning [16],
statistical database design [3] and threat monitoring [11, 14] and
the distortions of roundings [1, 4, 9, 12], random sampling [B] and
data swapping [5, 15]. Unfortunately, with few exceptions the
specific proposals meet with little success. Misfortunes encompass
costly implementations, gross i1nflexibilities or inaccuracies, and
susceptibility to attacks of rephrasing epitomized by trackers [6, 7,

13] and attacks of inconsistency exploitation {10].

With this bleak view of the state of the art of statistical inference
control, we seek to remedy the situation through a new framework for
information release that offers effective protection against

compromise, easy implementation, and reasonable statistics.

We approach the statistical database dilemma afresh with the
rudimentary question o¢f query intention as the point of departure.
Much of past literature dwells on the concept of query set size as
the foremost indicator of intention. The belief seems to be that
interrogations of large populations signify truly statistical intent
while swall signify malicious intent. Indeed there is eagerness to
produce distortive devices that effect error inversely proportionate
to query set size and restrictive counterparts that preclude the
small-cardinality request from being answered. However, pure
reliance on query set cardinality has elicited too few viable
safeguards, for slthough small-size queries invite privacy invasion
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or compromise, large do mnot guarantee bona fide intentions. That

cardinality is misleading is demonstrated by trackers.

All statistical database security measures embody an interpretation
of query intention on which basis they restrict and distort. The
success and direction of a strategy depends upon this iInterpretation.
So in search of truer perspective, we augment the cardinality
concept. In particular, we propose a factor of query complexity inm
intention  analysis. If we describe query populations by
characteristic formulas [6], query complexity 1is essentially the
complication of the characteristic formula. We stand by the
principle that the request that isolates a single individual,
reguardless of it wording, incorporates a more complicated query set
description than the singere statistical appeal. Thus, query
interpretation which emphasizes  complexity translates to the
following :
1) low-complexity, large-size inquiries are deemed innocuous;
(i1) low-complexity, small-size inquiries are thought to intend
no harm but happen to assist compromise;
(111) high-complexity, large-size inquiries are thought to result
from rephrasing attempts; and
(1v)  high-complexity, small-size inquiries are deemed malicious.

We adopt this viewpoint for statistical database security.

In Section 2 we shall elaborate further on our perception of the
statistical query and its complexity. In Section 3 a procedure for
information release based upon complexity-emphasized query
interpretation will be outlined. Section 4 evaluates the procedure
in terms of noncompromisadbility, lmplementation ease, accuracy and
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flexibility. Section 5 concludes. Some simulation results are

presented in the appendix.

2. THE STATISTICAL QUERY AND ITS COMPLEXITY

Our perception of the statistical query begins with the notion of a
characteristic formula which in turn rests on the characteristic. A
characteristic <A, v> 1is simply an association of a value v to an
attribute A. <SEX, male>, <AGE, 35>, <PROFESSION, lawyer> are
examples. A characteristic formula is a logical expression with
operators of AND, OR, NOT and characteristics as terms.
Characteristic formulas descride query populalons. Hence, <SEX,
male> AND (NOT <AGE, 35>) alludes to the set of all males who are not
35 years old. Parentheses are added for clarity. A statistical query
q(C) asks for the count, or average or percentile {percentiles
include minimum, maximum, median) for a particular attribute (such as

salary), of the populat’oa characterized by formula C.

Query complexity is a function of the characteristic formula C in a
statistical query q(C). In accordance with intuition for query
complexity is the following recommendation. Let

ey =N/ T wix),
x & X(C)

where N is the number of individuals represented in the database,
X(C) 1is the set of attributes referenced in formula C, and w(x) is
the number of values attribute x may assume. Siance q(C) hints an
apportionment of individuals into TT w(x) partitions, under the

assumption that individuals take on values for attributes with equal
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chance, Q(C) iz a lower bound for the expected number of persons
which C may address. Thus, with low Q correlating high~ complexity
and high Q correlating low-complexity, we find satisfaction in having
high-complexity queries likely to refer to smaller populations than
low-complexity and satisfaction in having the property that

(1 Q(C) = Q(NoT ©),

(11) Q(C) > Q(C AND D), and

(111) Q(C) 2> Q(C OR D)

for all characteristic formulas C and D. Also, a query applied to a
bigger database appears less malicious through Q(C)'s dependence on
N, and a query which say asks for the population of all males usually
arouses more suspicion than a query which asks for the population of
all 35 year-old persons through Q(C)'s dependence on attribute
sensitivity w(x). Furthermore, it 1s ensured that rephrasing a
request originally in its simplest, least—complicated form ultimately
involves a query of similar or worse complexity. To see this
consider q(C) and its rephrasing taken to involve queries q(C OR T)
and q(T) where T 1s a characteristic formula. We readily have the
required complexity query in q{(C OR T). However, it may be the case
that a less—complicated~than-q(C) query exists and serves the same
purpose as ¢{C OR T); then q(T) can be argued to be of similar
complication to q(C). This reasoning expressly applies to tracker
rephrasings (T becomes a tracker). As for others, analogous lines of

thought apply.

Granted that our final objective were to rank a query by quality of
complexity onto a scale of 1, ..., m, it would be necessary to map
real-valued Q(C), 0 < Q(€C) <N, to integer L(C), 1 < L(C) < m,
remembering to relate low Q(C) to high L(C). Since this mapping of
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Q(C) is more of an implementation issue, we postpone a recommendation

for it until the next section.

3. DISTORTIVE INFORMATION RELEASE

Having explained our idea of query complexity, let us illustrate its
application as part of a distortive procedure for information
relcase. Compatible with m levels of complexity, we prescribe an
error dinnoculation system involving m  levels of pseudorandom
roundings of data. Each successive level reveals a potentially more
distorted version of the statistical database. The procedure 1s as
follows :

(1) Decide on integers m, k > 1, with m being the number of levels
of complexity and distortion and k as a Q(C)-mapping-to-L(C)
parameter that 1is somewhat analogous to query set size
restriction's wminimum size for allowable queries.

(2) For each statistical attribute A, an attribute for which
averages or percentiles wmay be sought, compute the standard
deviation of its values SD(A). Let r(A) = SD(A) / m. =x(A) i is
the rounding base for the ith level, i = 1, «.o, me

(3) For each individual I associate mhl perturbations

P (I): ceey P (1) and p(I)
1 m

where each perturbation is pseudorandomly generated as -1, 0, or

1 with equal probability.



(4) In regards to each query q(C), let
m-1
1 1f Q(C) >k 2 ,
L(C) =
m-i
nax {16{1,...,111 }: QC) <k 2  Jotherwise.

(a) For q(C) which asks for the average or percentile of
attribute A, if individual I satisfies formula C and has
characteristic <A, v>, use

L{C)
v(L(C)) = v + x(a) T p (D)

i=1 1
instead of v to compute the statistic. Error in response
is acknowledged as i'r(A) L(C) in the worst case with error
for large-size, average queries likely to be much less.

(b) For q{(C) that asks for the count, if individual I satisfies
C, use 1 + p(I) instead of a contribution of 1 iu the
enumeration. Percentage error is acknowledged to likely
decrease with increasing query set size.

Note that participation of an individual is based on true values

rather than distorted; in other words, the actual response set

is considered whereby special properties may be preserved.

4, EVALUATIOR OF PROPOSAL

Firstly, we see that the proposal of Section 3 is indeed harmonious
with our query complexity and cardinality interpretation of query
intention :
(1) Precise averages and percentiles with likely accurate

counts accompany low-complexity, large—size requests.
(14) Precise averages and percentiles with possibly inaccurate
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counts accompany low-complexity, small-size requests.
(1i1) Imprecise averages and percentiles with likely accurate
counts accompany high-complexity, large-size requests.
(iv) Imprecise averages and percentiles with possibly inaccurate
counts accompany high-complexity, small-size requests.
Direct compromise 1s resisted through the workings of (ii) and (iv)
wherein small counts may be grossly distorted. Additionally in (iv),
a case where a snooper may venture to decide the count value by

preknowledge, we use extremely imprecise data values for statistics.

Insofar as indirect compromise strategies of rephrasing and
inconsistency exploitation are concerned, there is also a display of
resistance. Rephrasings of count queries do mnot induce the
inconsistency necessary to arrive at better responses. m levels of
direct data distortion manage the same effect for averages and
percentiles. The distortion essentially amounts to a generalization
of traditional {(one-level) data distortion, with reduced tendency for
small perturbations to facilitate compromise and for large to
undermine wutility, while keeping with its immunity to rephrasing and
inconsistency exploitation within each level. Consistency is also
established across levels. At level 1, for {1 = 1, ..., ml, a
perturbed value for characteristic <A, v> is acknowledged as v'(i) +
r{A) 4. Its value at level i+l is reported as v'{i+l) + r(a) (1 +
1). Since the range of values [v'(i+1) - r(A) (4 + 1), v'(i+l) +
r(A) (4 + 1)] 18 guaranteed to include [v'(1) - r(a) 1, v'(1) + r(a)
i], the response of v!(i+l1) is entirely consistent with v'(i). Also,
to guard against inconsistency derived from comparing averages and
counts to totals, we heve deliberately disallowed explicit requests
for totals. Lacking the zero-bias trait, where responses are
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unbiased estimators of true answers, averaging ploys lose strength.

Thus, indirect attacks are thwarted.

In terms of implementation costs, the scheme demands little effort.
Larger choices for the number of perturbation levels m increase cost
for implementation as the spectrum of possible data precisions widen
to include higher degrees of exactness. The second parameter k
correlates query complexity to the m levels of distortion. In fact,
k helps to draw the subtle 1line between low- and high-complexity.
With responses for levels 1, ..o, m (1 £ 1 < m) deemed imprecise, a
high~complexity inquiry q(C) is one whose

m~i
Q(c) <k 2 .

5. CONCLUSION

In summary, we have presented a distortion method that is effective
against compromise 1in the sense that answers given do not disclose
confidential facts and cannot be improved via applications of
indirect attacks. It is easy to implement and overhead i{s minimal.
Complete querying liberty from arbitrary on-line aggregates 1is
afforded. Reasonably accurate statistics are argued on the grounds
of a new and practical query interpretation idea that combines query

complexity and query set cardinality.

The scheme embeds a wore constructive barrier against trackers than
query set size restriction. The difficulty of choosing m and k does

not at all compare with the difficulty of choosing appropriate
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partitions in partitioning The implementation  hardships and
uncertainties of threat monitoring and data swapping are not
suffered. Unlike statistical database design, we do not require much
support from a database management system, and unlike random sampling
auxilliary protection devices against compromlise are unnecessary.
Because roundings of responses attempt to be unbiased estimators of
true answers, they are standardly circumvented by averaging
techniques. The best that can be done in these roundings is to make
circumvention costly. Hence, we perceive our protection scheme to be
competitive with past ideals, and £finally, the concept of query
complexity 1s seen with favor and promise for statistical database

security.
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KRPPENDIX.

The following table results from a simulation of the query complexity distortion
technique on two artificial student databases of size N = 200 and N= 500 for
various choices of m and k. Attributes of interest include sex, major, grade
point average, and SAT scores both math and verbal :

SEX : male, female

MAJOR ¢ Math, CS, Phys, Chem, Engl, Biol, Psych
GPA : 1.0-4.0

SATM : 40-80

SATV : 40-80
N=200 N=500
QUERY SET true Eﬂ% Eii true QQE Q;?
1. (SATM>60) level 3 1 2 4
count 107 104 104 | 255 247 247
avg SATM 69.7 70.2 69.8]70.1 70.3 70.8
SATV 60.9 6l1.4 61.0{59.9 60.1 60.5
GPA 2.35 2.39 2.37{2.42 2.44 2.47
max SATM 80 83 80 80 80 80
SATV 80 80 85 20 83 86
GPA 4.0 4.0 4.4 {4.0 3.8 4.0
2. (SATM>60) and (SATV?60) level 6 3 6 6
count 61 52 52 129 125 125
avg SATM 639.8 70.5 70.3170.3 70.2 70.2
SATV 70.5 71.2 71.0170.2 70.0 70.0
GPA 2.34 2.38 2.3812.44 2.43 2.43
max SATM 80 83 85 80 80 80
SATV 80 77 80 80 &9 89
GPA 4.0 4.0 3.2 |4.0 4.0 4.0
3. (SATM>60) and (SATV>60) level 6 3 6 6
and (GPA>3.0) count 15 13 13 41 40 40
avg SATM 69.1 69.9 67.5(69.9 69.3 69.3
SATV 68.3 69.1 66.6/69.1 68.5 68.5
GPA 3.58 3.63 3.45(3.57 3.53 3,53
max SATM 78 75 78 80 80 80
SATV 77 86 82 80 89 89
GPA 4.0 4.0 3.2 14.0 4.0 4.0
4. (SATM>60) and (SATV>60) level 6 3 6 6
and {(GPA>3.0) and count | 9 7 7 22 19 19
(SEX=female) avg SATM 69.4 70.8 70.6]70.3 70.5 70.5
SATV 70.2 71.6 71.3{71.1 71.2 71.2
GPA 3.63 3,72 3.7213.57 3.58 3.58
max SATM 78 75 78 79 67 67
SATV 77 86 82 80 89 89
GPA 4.0 3.8 4.0 |4.0 3.8 3.8
5. {(SATM>60) and (SATV>»60) level 6 3 6 6
and (GPA>3.0) and count 1 1 1 8 6 ]
(SEX=female) and avg SATM 73.0 67.0 58.0/71.0 68.0 68.0
(MAJOR=Math or Engl) SATV 77.0 71.0 62,0{72.3 69.3 69.3
GPA 3.80 3.40 2.60}3.44 3.24 3.24
max SATM 73 67 58 78 72 72
SATV 77 71 62 78 81 8l
GPA 3.8 3.4 2.6 {1.8 3.4 3.4
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