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1. INTRODUCTION

Hypercube multiprocessor machines are commercially available today [8]. One of the key
features of the hypercube is a rich interconnection structure which permits many important network
topologies, such as grids, to be efficiently simulated. A binary hypercube of dimension n or binary
n-cube can be thought of as an undirected graph of 2" nodes labeled 0 to 2”1 in binary; two nodes
are connected by an edge if and only if their labelings differ in exactly one bit position. A number of
important algorithms run well on two-dimensional grids of processors [D, ESS]. To simulate a grid
on the hypercube, nodes of the grid must be mapped to hypercube nodes [BMS, C1, C2, C3, CC, G,
LS]. In this paper, we are interested in the efficient simulation of any two-dimensional grid by irs
optimal hypercube, the smallest hypercube with at least as many nodes as the grid.

Chan [C3] has given a method of mapping the nodes of any two-dimensional grid to the nodes
of its optimal hypercube, so that the mapping is one-to-one and the dilation (the worst case distance
between grid-neighbors in the hypercube) is minimal (at most 2). Unfortunately, Chan’s method is
deficient in two aspects: (1) the algorithm is sequential in nawre, thus not all processors in the
hypercube participate in the computation of the embedding, and (2) the algorithm fails to consider
how grid-neighbors can communicate in the hypercube and ad hoc communication may lead to heavy
congestion in the hypercube.

In this paper, we parallelize the embedding algorithm in [C3] for mapping any two-dimensional
grid to its optimal hypercube. Initially, the size of the grid to be simulated is broadcasted to each
node in the hypercube. With our parallel algorithm, each hypercube node, when given the size of the
grid, can then determine in constant time which node of the grid it will simulate. Moreover, the
hypercube node can also determine the communication paths it will take to reach the hypercube nodes
which simulate its grid-neighbors. When a pair of grid-neighbors are distanced by two edges in the
hypercube, communication must go through an intermediate node in the hypercube. Our paraliel
algorithm will ensure that intermediate nodes are chosen in such a way that each hypercube node will
act as an intermediate node for at most two pairs of grid-neighbors, thus curbing the congestion at
each hypercube node and across each hypercube edge.

The paper is organized in the following manner. Section 2 reviews Chan's embedding strategy
and outlines useful properties. Section 3 describes how each hypercube node independently
determines which grid node it will simulate in constant time. Section 4 addresses the determination
of the communication path between hypercube nodes which simulate grid-neighbors. Section 5
concludes.

2. REVIEW OF THE EMBEDDING STRATEGY

Over 61% of all iwo-dimensional grids can be embedded into their optimal hypercubes with a
dilation of 1 (i.e. all grid-neighbors are also neighbors in the hypercube) by using binary-reflected
Gray codes [SS]. For the other over 38% of all two-dimensional grids, which require at least dilation
2 [BS], Chan’s method [C3] can be applied to give the best possible dilation of 2. In this section, we
briefly review Chan’s method.

Suppose we are given an a X 3 grid G. Let G = sbessal yng f= P



The binary-reflected Gray code strategy of [SS] already embeds G into its optimal hypercube
with dilation 1 when off > 26§}, or =6 or B=§ (i.e.  or B is a power of two). For this reason,
we are only interested in the case where off <260, = @ and B f. Thus, it can be assumed,
without loss of generality, that a < 3&/2. (Either a0 < 36/2 or B < 3f/2; for otherwise, off > 96f/4 >
266,

With of €26, the objective is to label each node of the grid with a unigue
{Llogyolr Liog,f+1)-bit binary number, which effectively names the node in the optimal
( Llogaa b Log,Br1)-cube to which it is mapped. Since dilation 2 is needed, the labels for grid-
neighbors are allowed to differ in at most 2 bit positions. We will use the 11 x 11 grid, whose
optimal hypercube is the 7-cube, as a running example throughout the rest of this section.

We first show how a dilation4 embedding can be achieved. With a shift of labels, we amrive at
a dilation-3 embedding. Finally, the last bit of each label is reassigned in order to arrive at a
dilation-2 embedding.

2.1. Dilation-4 Embedding

To achieve a dilation4 embedding, the label for each node of the grid is determined in two
stages: (1) the initial I_logzod bits of the label for each node, and then (2) the final Llog,B}+1 bits of
the label. To arrive at the first l_logza,l bits, the nodes of the grid are systematically partitioned into &
groups, which are called "chains”, of at most 28 nodes each. The partitioning will be done so that
grid-neighbors will be assigned to either the same or adjacent chains. Thus, in the case of a 11 x 11
grid (Figure 2.1), we will partition the grid into 8 groups, chains 1 through 8, of £ 16 nodes each, and
if a node is assigned to, say, chain 3, then its grid-neighbors can only belong to chains 2, 3 or 4,
Nodes belonging to the same chain will be given the same bits as the first Llogzod bits of its label.
We shall show in the later part of this section that, by the use of binary-reflected Gray code, the first
Llog,a] bits given to nodes of chain i will differ from the first Llogzet) bits given to nodes of chain

11111111111
12122122121
22223223222
33333333333
4434444444373
454454554354
555555565535
66666666666
77677677776
78778778787
L 888888888828

Figure 2.1 An example of CHAIN assignment for an 11 x 11 grid



i+1 or i~1 by exactly one bit. Hence, the first Llogoal bits of the labels assigned to grid-neighbors
will differ in at most one bit position.

The parttioning can be described formally by a partitioning matrix A(o.B), or simply A, an
integer matrix comprised of 1's and 2's having @ rows and B columns, i.e. an & X § matrix. The idea
is that g;; (i.e. the clement in the ¢ row, j"‘ column of matrix A4) indicates how many nodes from
column j of grid G will belong to chain i. So, if 4;, =2, the i* chain "doubles up" at the j*
column. Because we wish to partition G into & chains, matrix A has & rows, and because there are §
columns in grid G, matrix 4 has B columns. Let us now define matrix A. Matrix A has as its first
column the vector

[a ] fowal
az) loval
as) l20v6]-Lovel
ag 17| BBwval-l2wel
a;‘, l:(d—l)de—L(d~2)0/d-|

Precisely, for all 1 Si < &, 4y = L(-Dovad - LG-2)ova], which is either 1 or 2. Hence, for the 11
% 11 grid, the first column vector is
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The entire matrix A is based on a cyclic shift of the first column, ie., for all 1€i <& and
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Thus, for the 11 X 11 grid; matrix A is the following 8 x 11 matrix:
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21211211212
12121121121
11212112112
21121211211
12112121121
11211212112
21121121211
12112112121 ]

The reader can easily verify that the row sum of each row in matrix A for the 11 x 11 grd is no
more than 16, i.e., there are € 16 nodes belonging to each of the § chains. Moreover, the column
surn of each column in matrix A for the 11 X 11 grid is 11, meaning each node within each column
of the grid is assigned to some chain. In general, there will be no more than 2{5 nodes in each chain
and each column sums t0 a. The formal proofs of these facts are given in [C3).

Let [x,y] denote the node in row x, column y of the grid G where l Sx Saand 1Sy <B. In
order to determine the first Llogyat] bits of each grid node (x.y]’s label, one has to find out 1o which
chain [x,y] belongs. Let CHAIN[x,y] denote the chain to which node [x,y] belongs. Figure 2.1 gives
the CHAIN values given to each node of the 11 x 11 grid. In general, CHAIN values can be derived
from the partition matrix 4 in the following manner:

CHAIN[x,yl =k iff COLSUM(y;k~1) < x S COLSUM(y;k) )

where COLSUM(jik) = f’i‘,a, g+ the partial column sum from row 1 10 row k of the j* column
=]

clements of A3, It can be proved [C3] that grid-neighbors are given CHAIN values that differ by at

most 1. This fact is obvious for vertical grid-neighbors. Based on propertes of partition mauix A,

the partial column sums from row 1 to row & of any two columns of elements in A should be almost

equal, ie., | COLSUM(j;k) — COLSUM(jk) | €1 forany 1 <) S8, 1<k S & Thus, the CHAIN

values of horizontal grid-neighbors also differ by at most 1.

Let GRAY(r,p) denote the ((p—1) mod 2' + 1) element of the f-bit binary-reglectcd Gray code
sequence (see [RND] for a definition of binary reflected Gray code). For example, GRAY(3,4) = 010
since 010 is the 4” element of {000,001,011,010,110,111,101,100). Let the first Llogzoc] bits of the
label given to node [x,y] of G be GRAY( Llog,c JCHAIN[x,y]). Thus, we have the following property.

Property 1. The first Llogyal bits of the labels given to grid-neighbors differ in at most 1 bit
position.

To determine the last Llog,B 11 bits, the following convention is adopted 1o join together nodes
belonging 10 the same chain: two nodes in the same column belonging to the same chain are joined

£

YCOLSUM can be readily

J using the following
L(amj+isa] - Lta-asal 1Sk <)
COLSUM:k)= {L(d-l)waj ~La-joal +fosal +Lik-pova) if 185 Sk



by a line segment, and the topmost node in column j belonging to chain { is joined to the bottommost
node in column j+1 belonging 1o the same chain i. The line segmenis of any chain can only be
between horizontal grid-neighbors (i.e. [x,y] and [x,y+11), be between vertical grid-neighbors (i.e. [x,y]
and [x+1,y]), or slope down at most one row from [z,y] to [x+ly+1]. The nodes of each chain are
then numbercd sequentially starting at 1 proceeding along the line segments. NUMBER(x,y] denotes
the number given o node [x)y]. Figurc 2.2(a) shows the line segments of each chain and the
NUMBER values given to each node of the 11 x 11 grid. In general, for each node [xy] of G,

NUMBER(x,y] = ROWSUM(CHAIN[x,yl;y-1) + 8x.y] 2)

k
where ROWSUM(i;k) = ¥.a;;, the partial row sum from column 1 to column & of the i* row

it
elements of A%,

2 if CHAIN[x+1,y] = CHAIN[x,y]

and 8(xy1 = 11 omherwise.
(Note that 1 < NUMBER[xy] < 2.)

Since the partition matrix has the property that the partial row sum from column 1 to column & of
any two rows in A are almost equal, ie., | ROWSUM(i:k) - ROWSUM( k) |1 for 1544 <6,
1Sk <P, the NUMBER values of grid-neighbors differ by at most 3. Replacing NUMBER values
by comesponding binary-reflected Gray code values, ie. GRAY( Lloggﬁhl.NUMBER[x.y]), the last
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FIGURE 2.2 Bxample of NUMBER and MARK values for an 11 x 11 grid

*Let k = pat+g where p,g arc integers and 0 S g < & ROWSUM can be readidy computed using the following
pa+ Li-Nwe] - Li-1-qoal
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Llog,B}+1 bits of grid-neighbors will differ in at most 3 bit positions. Together with Propenty 1, we
have a dilation4 embedding.

2.2. Dilation-3 Embedding

Close study of Figure 2.2(a) reveals that the difference of 3 in NUMBER values occurs when
grid-neighbors are on different chains. For example, nodes {5,3] and [S,4] are grid-neighbors which
belong to adjacent chains whose NUMBER values differ by at most 3. In Figure 2.2(a), notice that
by subtracting one from each of the NUMBER values associated with nodes of chain 4, chain 4 can
be "synchronized" with chain 3 in the sense that if node [x+1,y] belonged to chain 4 and node [x.y]
(the node above [x+1,y]) belonged to chain 3, they would then have the same NUMBER value. This
synchronization allows the NUMBER values of grid-neighbors to differ by at most 2. With
synchronization, nodes [5,3] and [5,4] will have NUMBER values that no longer differ by 3 but rather
by 2. Essentially, synchronization can be achieved by adding an appropriate offset 1o each node’s
NUMBER value to result in a2 new MARK value, ie.

MARK[x,y] = CHAIN[x,y] — COLSUM(1;CHAIN[x,y]) + NUMBER([xy]. 3

Figure 2.2(b) gives the MARK values for the 11 x 11 grid. The reader can easily verify that, for the
11 X 11 grid, horizontal grid-neighbors have MARK values which differ by at most 2, while vertical
grid-neighbors have MARK values which differ by at most 1. In general, we can show that this is
wue for any grid. So, by replacing CHAIN values and MARK values by coresponding binary-
reflected Gray code, we can ensure that the first Llogyer] bits of the labels assigned to grid-neighbors
will differ in at most one bit position, and the last LlogoBl+1 bits of the labels assigned to horizontal
grid-neighbors will differ in at most two bit positions and to vertical grid-neighbors will differ in at
most one bit posidon. Because binary-reflected Gray code is used, if the last Uog&}i—l bits of the
labels for two (horizontal) grid-neighbors differ by two bit positions, they must differ in the last bit
position. Thus, omitting the last bit, we have the following.

Property 2. The first Llogao b LlogoB) bits of the labels assigned to horizontal grid-neighbors will
differ in at most two bit positions (one from the first Llogyo] bits of the label and the other from the
next Llogzﬁ_f bits of the label), whereas vertical grid-neighbors will differ in at most one bit position.

In view of this observation, to achieve a dilation-2 embedding, the strategy is to modify the last bit.

2.3. Dilation-2 Embedding
The last bit of each node is modified so that
(@ two nodes with the same first Llogyah Liog,B ] bits will differ in their last bit, and

() two (horizontal) grid-neighbors with first Llogyal+ LiogaBJ bits which differ in exacty two bit
positions will have the same last bit.

By design, this strategy forces a dilation of at most two. As it turns out, this kind of assignment of

the last bit can always be accomplished. To this end, a dependency graph G’ = (V,E) is constructed

which has as its nodes the nodes of G, i.e. V(G) = {[x.y] 1sxso1sys B}. There is an edge

between two nodes in G iff either they have the same first Llogza_h- Ulog,p bits, or they are grid-



neighbors whose first LlogoaeJ+ Llog,BJ bits differ in exactly two bit positions. In the former case, the
edge is said to be a twin edge, while in the latter case, the edge is said to be a cruical edge. An edge
between nodes [x.y] and [u,v] indicates that the last bit assigned to [x,y] will affect the last bit
assigned to [u,v], and vice versa, based on the idea that distinct labels are assigned to different nodes
and grid-neighbors are within dilation 2 of each other. Cemainly, if G" is acyclic, then the
appropriate assignment of the last bit can be made. Traverse G* by using either a breadth-first or
depth-first tree traversal scheme. When each node T is visited for the first time, its last bit is
determined. Suppose T's parent in the breadth-first or depth-first tree is §. If there is a twin edge
between S and- T, then make 7 's last bit different from S's. If, on the other hand, there is a critical
edge between S and T, then make Ts last bit the same as §’s. It has been indeed shown that G’
will always be acyclic (C3]. Figure 2.3 shows G’ for the 11 x 11 grid.

Definitions: An edge between nodes [x,y] and [x,y+1] is said to be horizontal. An edge between
nodes {x,y] and [x+1,y] is said to be vertical. An edge between nodes [x,y] and [x+1,y+1] is said to
slope down. An edge between nodes [x,y} and [x',y’] where y =1 and ¥ = B is said to wrap around.
o

Property 3: Critical edges in G” are horizontal.

Property 4: Twin edges in G’ either slope down, wrap around, are vertical or are horizontal.

Let us now look at the overall sequential time complexity for the dilation-2 embedding strategy.
Computing the & x § matrix A(ce,p) takes O(GB) time since each element of A can be computed in
constant time. Determining the first Liogoal bits of the labels for all nodes [xy], 1$x S« and
15y <P, takes O(of) time since CHAIN[x,y] for all nodes [x,y] can be computed in O(ap) time.

N,
<11I§

.

e b
twin edge e —
cirtical edge e ”—‘] H\

= ]
1N

R B BN

FIGURE 2.3 Dependency graph G’ for an 11 x 11 grid



Determining the last LlogoBt+! bits of the labels for all nodes [xy] also takes O(ap) time since
MARK([xy] for all nodes [x,y] can be computed in O(of) time, and modifying the last bit for all
nodes (x,y] takes O(cfl) time since the construction and traversal of G°, which has off nodes and
O(0f) edges, take O(af) time. Thus, we have the following.

Fact: Any two-dimensional o x [} grid can be embedded into its optimal hypercube with a dilaton
of at most 2 in O(af) time.

2.4. Column Splicing

Throughout the rest of this paper, we assume that § is odd. If B were even, we can easily
construct a dilation-2 embedding for an o x B grid by splicing 2* copies of a dilation-2 embedding an
o x P grid, where B’ is odd and 2*B" = f in the following manner.

The P columns of the o X 3 grid are partitioned into 8’ blocks with 2% columns each. The i**
block of the 2% columns will have the same last [log,cB’] bits as the i* column of nodes in e
o x f grid. The j* column of nodes in each block, say the i block, will have either GRAY(k,j) or
GRAY(k2%+1~)) as its first & bits depending on whether i is odd or even.

Example: B=12=2%3, ie. k=2 and B’ =3. Assume that the labels of the o x B’ grid for a
particular row are (a.b,¢). Thus the node labels for the same row of the axf grd are
(002,014,114,104,105,115,015,005,00¢,01¢,11¢,10¢) ©

Since the first k¥ bits of the labels are the same for any two vertical grid neighbors in the  x §
grid, any two vertical grid neighbors in the o x § grid are distanced from each other by the same
amount (i.e. dilation £2) as in the & x [}’ grid. As far as horizontal grid neighbors in the a x B grid
are concerned, if the two horizontal grid neighbors are from the same block, their labels only differ in
the first k& bits by one position (dilation =1 from the binary-reflected Gray code property); if the two
horizontal grid neighbors are from two different blocks, they. should have the same first k bits in their
labels and are distanced from each other by the same amount as the a x B’ grid (i.e. dilation < 2).
Thus, the dilation for the o % P grid remains < 2 after column splicing of the labels.

3. NODE-TO-NODE MAPPING

In this section, we shall give an algorithm by which each hypercube node can determine the grid
node, if any, it will simulate according to the dilation-2 embedding strategy described in Section 2.
Parallelizing the dilation-3 strategy is relaiively straightforward. The difference between the
dilation-3 and dilation-2 strategy lies in the determination of the last bit of each node’s label, and
herein lies the difficulty in parallelizing the dilation-2 strategy. Recall that the last biis can be
determined via the traversal of the grid’s dependency graph and the traversal is sequential in nature.
So, we shall first parallelize the dilation-3 strategy, and then introduce some simple rules for
determining the last bit for the dilation-2 strategy which avoids traversing the dependency graph in a
sequential manner and makes possible the parallelization of the dilation-2 strategy.

We first introduce two useful functions g and k& related to the dilation-3 embedding strategy.
Function g is such that g<CM> = [xy] if the node with mark value M in chain C is node {xy] of
the grid, and function A is such that Alx,y] = <CM> if node [x,y] of the grid is the node with mark

9



value M in chain C. Both functions can be computed using constant time; see Figures 3.1 and 3.2.
The derivations of functions g and k come directly from Equations (1), (2) and (3) of Section 2.

Example 3.1: Suppose we wanted 10 know which node of the 11 x 11 grid has mark value 8 and is
in chain 5. Applying the g function, we could conclude that the number value N for this node is
M - C + COLSUM(L;5) = 8-5+7 = 10. Since ROWSUM(5;7)=10, y is 7. With as7=2 and
N =10 2 ROWSUM(5;7), 8 = 1 and x = COLSUM(7:4) + A = 5+1 = 6. Thus, the node with mark
value § in chain § is [x.,y] = [6,7] (as can be verified in Figure 2.2(b)). @

Example 3.2: Suppose we wanted to know what chain and mark value is assigned to node [8,4] of
the 11 x 11 grid. Using function A as defined in Figure 3.2, the chain C is 6, A=1,
N = ROWSUM(63)+A = 4+]1 = 5 and M = C-COLSUM(1;6)+N = 6-8+5 = 3. Thus, node [8,4] is
given a mark value of 3 and is in chain 6 (as can be verified in Figure 2.2(b)). @

function g <CM>:
(1) compute N =(M — C + COLSUM(1;C) - 1) mod 2§ + 1
2) ifnot(1<C <G ornot(l <N <ROWSUM(C;P)) then retum undefined

(3) lety be such that ROWSUM(C;y-1) < N < ROWSUM(C.y)
note: y is either LV &/ or [V el

@) letx = COLSUM(y,C-1}+ A

2 if acy =2 and N < ROWSUM(C:y)

where A = { 1 otherwise

(5) rerum [x,y}

Figure 3.1 Function to find grid position from chain number and mark value

function Afx.yk:
(1) ifnot (1 Sx Soyornot(l Sy <P)then rewrn undefined

(2) let C be such that COLSUM(y;C~1) < x S €OLSUM(y;C)
note: € is either Lxaec] or [x avcx}

(3) compute N = ROWSUM(C;y-1) + A
2 if agcy =2 and x < COLSUM®:C)
where A=1 | Giherwise
@ letM =C - COLSUM(LO) + N

(5) rewmmn <CM>

Figure 3.2 Function to find chain number and mark value from grid position

10



With the help of function g, we actually have a scheme for parallelizing the dilauon-3
embedding strategy. For example, if we wish to know which node in the 11 x 11 grid the hypercube
node 0010011 simulates based on the dilanon-3 embedding strategy, we need only evaluate g<2,3>,
since the first three bits of the label, 001, encode the chain value of 2 and the last four bits, G011,
encodes the mark value of 3. (Recall GRAY(3,2)=001 and GRAY(4,3)=0011.) Since
£<2,3> =[3,3], node 0010011 simulates the node in the 3 row, 3’4 column in the grid.

Notice there are cases where function g retumns undefined. For example, if we consider
hypercube node 0011001, £<2,15> would need to be computed (since GRAY(3,2)=001 and
GRAY(4,15) = 1001); undefined would be rctumed, and thus, hypercube node 0011001 would not
simulate any grid node.

Function & is used to identify critical edges and twin edges. Figure 3.3 gives the functions
Critical and Twin which, using k, determines whether or not an edge is, respectively, critical and
twin.

The difference between the dilation-3 and dilation-2 strategy is the step which modifies the last
bit. This step can be carried out by a traversal of the acyclic dependency graph G'. To efficienty
parallelize this step, we avoid such a traversal by introducing a set of simple rules for determining the
last bit of some nodes in accordance with G'. Rule El defines the last bit for nodes that are
endpoints of critical edges. For twin edges with the last bit of one endpoint defined, Rule E2 will
define the last bit of the other endpoint. A node whose last bit is not redefined by Rules E1 and E2
will retain the last bit given to it by the dilation-3 strategy.

Rule E1: If {[xyl.[x,y+1]] is a critical edge (Property 3 in Section 2) and either
(a) {[xyllx-1,y]} is a twin edge, or

function Twin([x.y],(uv]):
(1) if either h(x,y] or A[u,v] is undefined then return false
(2)  let <Cyy Myy> = Alxy] and <C, My, > = hlu,v}

(3) if Cyy = C,y and [My,121=[M,, /2], then retum rrue
¢lse return false

function Critical({x.y).[u,v]):
(1) if either A{x,y] or Alu,v] is undefined then retumn false
@) let <Cpy My > = hix,y) and <C,, M, > = h{uv]

(3) if Cry # Cy and [My121# [ M, /2], then retum true
else retumn false

Figure 3.3 Functions to determine whether an edge is critical or twin

1



() {[xy+1l[x+1y+1]} is a twin edge, or
(© [{[xy+1}[x+1,y+2]} is a twin edge,

then the last bit for both [x,y] and [x,y+1] is y mod 2, otherwise the last bit for both [x,y] and [x,y+1)
is (y+1) mod 2.

Rule E2: If {{xyLIx"y1} is a twin edge and [xy] is assigned a last bit by Rule El, assign 10 {x'y’]
a last bit different from [xy}.
Figure 3.4 summarizes Rule El pictorially. Figure 3.5 shows the last bit values for nodes

adjacent 10 critical edges in the 11 x 11 grid as determined by Rule E1, while Figure 3.6 shows the
last bit values for all of the nodes affected by Rule El and E2.

[x-1.41 Byl [xy+1] [xyl  [xy+1)
L] * ., ® .. ]
I..wf:h-’ ® I L] :\
xyl Py} [x+1.y+1] {x+1,y+2]
{a) (&) {c)

The last bit for both [x,y} and [x,y+1] of the above cases are y mod 2.

Figure 3.4 Summary of Rule E1

FIGURE 3.5 Last bit assignment according to Rule E1



] i t

TN

Q Q [+ 1

— 1= 1=\
N

SN

FIGURE 3.6 Last bit assignment according to Rules E1 and E2

Notice that no conflicts arise in applying Rule E1. For example, ({2,1],{2,2]} is a critical edge
and {[2,2).[3,2]} is a twin edge. Applying Rule El with respect to this critical edge (condition (b) is
satisfied) will yield 1 mod 2 = 1 as the last bit for both {2,1] and {2,2]. At the same time, notice that
{[2.2},(2,3]) is a critical edge. Applying Rule E1 with respect to this edge (none of the conditions
are satisfied) will yield (2+1) mod 2 =1 as the last bit for both {2,2] and {2,3]. In both cases, 1 is
assigned as the last bit of [2,2]. In general, there will be no conflicts in applying Rule E1.

Lemma 3.1: Suppose {[x,y~11.[xy]} and {{xy](x,y+1]} are two critical edges. Applying Rule E1
with respect to each of these critical edges will cause the same last bit 1o be assigned 1o node [x,y).

Proof of Lemma 3.1: See Appendix. @

Note also that {{2,3],(2,4]1} is a critical edge and {{2,31,{1,3}} is a twin edge. Thus, applying
Rule E1 with respect to {{2,3.{2,4]} (condition (a) is satisfied) yields 3 mod 2 = 1 assigned to both
[2,3] and {2,4]. At the same time, {[2,5],[2,6]] is a critical edge and applying Rule E1 with respect
to this edge (none of the conditions are satsfied) yields (5+1) mod 2 = O assigned to both [2,5] and
{2,6]. Thus, 1 is assigned as the last bit of {2,4] while 0 is assigned to [2,5], and ({2,4],(2,51} is a
twin edge. So, Rule E1 assignments do not conflict with Rule E2 which requires that the endpoints of
each twin edge be assigned different last bits. In general, we have the following.

Lemma 3.2: Suppose {[x.y~11[xy]} and {[x'y'LI¥.y'+1]} are critical edges and {[x,y}.[¥.y']] is a
twin edge. Then, Rule E1 will assign different last bits to [x,y] and [x"y"].

Proof of Lemma 3.2: See Appendix. ©

We are now ready to describe the algorithm by which each hypercpbe node can determine the
grid node, if any, it will simulate according to the dilation-2 strategy. Suppose we are given a
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hypercube node § whose label is uvw where u, v and w are bitstrings of length Llogoa ), LlogoBl and
1, respectively. Let Sy denote the hypercube node whose label is uv0 and 3, denote the hypercube
node whose label is uvl. First, we compute the grid nodes [xg.yo] and {x,,y;]} simulated by S; and
S, respectively, in the dilation-3 strategy using function g. S will simulate cither grid node [x¢.y¢]
or {x,.y;] according to the dilation-2 strategy, and {{xp.yollx1.y1]} is a twin edge. Next, we check if
one of these two grid nodes is adjacent 1o a cntical edge; if so, we can use Rule El and Rule E2 10
determine the last bits of their labels, and thus which grid node of the two S will simulate. If neither
of the two grid nodes is adjacent to a critical edge, then we assume Sy will simulate grid node {xq,y0}
and Sy will simulate {xy,y,}. Figure 3.7 gives the details of the algorithm.

Example 3.4: Suppose we wish to know which node in the 11 x 11 grid the hypercube node
0010011 simulates based on the dilation-2 strategy. We would first compute the grid nodes simulated.
by 0010010 and 0010011 in the dilation-3 strategy: 0010011 would simulate g<2,4> =([3,4) and
0010010 would simulate g<2,3>={33]. Twin edge ({{3,3},[3,4]) is adjacent to critical edge
{[3.41.[3.5]} (see Figure 3.6). Since {{3,51,[4,5]) is a twin edge, by Rule EI, nodes {3.4] and (3,5}
will be assigned 4 mod 2 = 0 as their last bits. Hence, 0010010 will simulate {3,4) and 0010011 will
simulate [3,3] in the dilation-2 strategy. ©

Theorem 3.1: Using Rules E1 and E2 to re-define the labels given by the dilation-3 strategy, we
can embed any any grid into its optimal hypercube with a dilation of at most 2.

Proof of Theorem 3.1: What we need to prove is that applying Rules E1 and E2 will ensure that
(a) different last bits are assigned to the endpoints of twin edges, and
(b) the same last bit is assigned endpoints of critical edges.

Lemmas 3.1 and 3.2 guarantee that by using Rules E1 and E2 1o redefine (the last bit of) labels
given by the dilation-3 strategy will result in each node being assigned a unique last bit, i.e. either 0
or 1 but not both. Rule E1, by definition, ensures that the endpoints of critical edges are assigned the
same last bit. Rule E2, by definition, ensures that the endpoints of twin edges, having one endpoint
assigned a last bit by Rule El, are assigned different last bits. The endpoints of all other twin edges,
i.e. those whose endpoints are not redefined by Rule El, were given different last bits by the
dilation-3 strategy. Thus, both (a) and (b) are satisfied. ©

Theorem 3.2: The dilation-2 embedding of any grid into its optimal hypercube can be accomplished
in constant parallel time.

Proof on Theorem 3.2: Consider function grid in Figure 3.7. Recall that functions g and h
(Figures 3.1 and 3.2) only take constant time, making functions Twin and Critical also computable in
constant time. Thus, function Assign (Figure 3.7), which incorporates Rule El, is computable in
constant time. Step (5) of function grid incorporates Rule E2. So, function grid, the algorithm for
embedding a grid into its optimal hypercube, can be carried out in constant parallel steps by each
hypercube node. o

14



function Assign((u,v].{u.v+1]):

if Twin({u,v],{u~1,v]) or Twin({u,v+1],[u+1,v+1}) or Twin((u,y+1}[u+1,v+2])
then return v mod 2
else retumn (v+1) mod 2

function grid(S):

/* Algorithm for hypercube node S to find [x,y], the node in the & X § grid mapped to S */

O

@

3)

@

(&)

let the label for S be wvw where u,y,w are bitstrings of length Llogza_l. !.logzﬁj. 1,

respectively.

let C, My and M, be such that GRAY(log,0l.C) = u, GRAYd_log;B}-t-l,M o = v0 and

GRAY(Uog,B +1.M ) = v1

if either g<C.Mp> or g<CM > is undefined then
if w =0 then retum g<CAM¢>
else retumn g<CM (>

compute [xqyql = §<C.Mo> and [x,,y,] = g<CM >

note: {[xq.yol[x.y1]] is a twin edge and either [xq.y¢] of {x,.y;] will map 10 S

if Critical([xo.yo~11.{x0.y0]) then
if Assign([xq.yo~1)[x0yol) =w then retumn [xg,y o)
else retumn {x,y,]

else if Critical([xq.yol.[x0.yq+11) then
if Assign({xq.yol[xqyot+1]) = w then remmn [xqy,]
else retum [xy,y,]

else if Critical([x,,y—1),{x,,y,]) then
if Assign([x 1,y 1~1LIx1,y1]) = w then reum [x4,y;]
else return [xg.y0]

else if Critical([x .y ].[x,,y+1]) then
if Assign({xy,y11.[x),y1+1)) = w then return [x,y,]

else retumn [xq,Y0l

else if w = 0 then remm [xq.yq) else return [xy,y,]

Figure 3.7 Function to determine the grid node to be simulated by an hypercube node §
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4. PATH BETWEEN GRID-NEIGHBORS

After each hypercube node idenuifies the grid node it will simulate, the next step is to set up
communicate paths to the hypercube nodes which simulate its grid neighbors. Function hAypercube(x.y]
will reurn the label of the hypercube node which simulates grid node ([xy]. Funcion
dilation([x,y}.[¥'.y'}) will return the dilation (which is either 1 or 2) of the grid edge {[xy].[x'y1}).
Details of the algorithms hypercube and dilazion are given in Figure 4.4.

Assume [x,y] and [¥',)'} are two grid neighbors and dilation([x.y).[x’.y’]) = 1, then there is a
hypercube edge connecting hypercube{x,y] and hypercube[x,y’], and the two grid neighbors [x,y] and
{x.y’} can communicate directly over the hypercube edge. However, if dilazion(Ix,y}.[X y']) =2, the
communication between these two grid neighbors [x,y] and [x,y’] has to go through an intermediate
node. In this section, we shall give simple rules by which each hypercube node can determine the
communication paths it will take 10 reach the hypercube nodes which simulate its grid neighbors.

First, some notation needs to be introduced. Let the label given to a grid node {x,y], using the
dilation-2 strategy, be divided into three parts <u,v,w> where the lengths of bitstrings u,v and w are,
respectively, Llogya) llog,f) and 1. Note that u = GRAY(log,o CHAINIxy]) and
v =GRAYd_log2ﬂJf MARK{x.y}/ﬂ). Let u_ and u, be respectively the bitstring before and the
bitstring after 1 in the binary-reflected Gray code sequence. For example, if u = 001, then u_ = 000
and u, = 011.

Lemma 4.1: If <u,v,w> and <u'v,w'> are the labels for two grid-neighbors [x,y]} and [x’)’), then
(a) u mayonlybeu_, u oru,,

(b) v may only be v_, v or v,, and

() w mayonlybew orw.

Proof of Lemma 4.1: Since u = GRAY(Llogya,CHAIN[x.y}), u’ = GRAY{log,0 . CHAIN[¥' y")) and
the CHAIN values of any pair of gnd-neighbors differ by at most one, ¥’ may only be u_, &4 or u,.
Since v = GRAY(Llog,fI MARK xy12 D, v = GRAY(log,BIMARK(X y1/2]) and the MARK values
of any pair of grid-neighbors differ by at most 2, v* may only be v_, v or v,. Since w and w are
two single bits, obviously w” may only be w orw. @

Definition: Let H(xy) be the Hamming distance between bitstrings x and y. <u'»,w> is an
intermediate of the edge between nodes <uy,vy,w(> and <ugvawe> where H(uyvwyuzvows) =2
iff H(uyvywi ' vw') = 1 and H(ugvwauv'w) = 1

We wish to consider all edges in the grid that suffer a dilation of 2. Let £ denote the set of all
such edges. For each edge in E, there are exactly two intermediates. For example, <001,001,0> and
<000,011,0> are the two intermediates of {<000,001,0>,<001,011,0>}. For each edge in E, we are
interested in choosing one of the two intermediates as the chosen intermediate. When grid-neighbors
Ny and Na, distanced by 2 in the hypercube, communicate in the hypercube, they will go through the
chosen intermediate for the edge {N N3} inE.
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Before we proceed any further about the determination of chosen intermediates for the dilation-2
edges, let us first consider how the assumption of odd § remains valid and how the communicauon
paths will be affected due to column splicing. As in Section 2.4, assume 2¢f'=f. Let the labels for
the two dilation-2 grid-neighbors in the o x § grid be pwr and yr which have the same first & bits, j,
and different last || log2a£ﬂ bits, r and ¢. Then, r and r will be the labels of dilation-2 grid-neighbors
in the oo x B grid. If the chosen intermediate for the path between r and ¢ is s, then s would be the
chosen intermediate for pr and pr. Thus, we can stll assume an odd B for the remainder of this

paper.

Lemma 4.2: Node <u,vy,w> can only be the intermediate of eight possible edges in E. These eight
edges are depicted in Figure 4.1:

g1 = (<uU_vw>,<u,v_w>} es = {<uyw>,<uy,w>}
ey = (<uVW>,<uv,Ww>} eg = (<UL vw><uy_w>)
e3 = {<uU_yW> <y, w>} e7 = {<u,vw>,<uy,w>)
g4 = {<uVW>,<uyv_ w>} eg = (<UL LYW <u v, w>)

Proof of Lemma 4.2: If <u,vw> is an intermediate for edge (N,.N,} in E, then both N, and N,
must be at Hamming distance 1 from <u,v,w>. There are five nodes at Hamming distance 1 from
<UYW>: U VWD, <ULYW>, <y _w>, <uyv,w> and <uyw>. The only edges among these
nodes respecting Lemma 4.1 are those depicted in Figure 4.1, @

Lemma 4.3:

(@) ey, ez and e4 cannot all co-exist in £

() e e3 and e5 cannot all co-exist in E;

(c) e4. €6 and e7 cannot all co-exist in £; and
(d) es, e7 and eg cannot &l co-exist in E.

<UVW>  <U_V,,W>

<Uv. w> W <UV R

<ULV W <ULV, W

FIGURE 4.1 Edges (solid lines) which can use <u,v,w> as chosen Intermediate
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Proof of Lemma 4.3: Recall that E, the set of dilation-2 edges, is a subset of the edges in the grid,
which does not contain a cycle of length 3. ©

Lemma 4.4:
(a) ey, e3, 4 and e5 cannot all co-exist in E; and
() e4 s, eg and eg cannot all co-exist in E.

Proof of Lemma 4.4: If a pair of nodes with labels <xy,z> and <x,,y".2’> are veriical neighbors
(i.e., vertical neighbors of different chains), then y =y (Property 2 in Section 2), i.e. their second
components will agree (remember that ventical neighbors belonging to different chains are
synchronized). If ey, e3, ¢4 and e were all to exist in £, then <u_v,w>, <uy,w>, <uy,w> and
<u,v_w> would be labels of four nodes of some square cycle in the grid. This means that either
<u.v,w> and <u,v,w>, or <u_v,w> and <uv_w> ought to be vertical neighbors, but they cannot
be since their second components do not agree i.e. they do not have the same MARK value. The
same argument applies for e4, €5, eg and eg. @

Lemma 4.5:
(a) ey and ez cannot both co-exist in £; and

(b) e3 and ey cannot both co-exist in £,

Proof of Lemma 4.5: To prove (a), suppose nodes R, S and T are labelled <u_vw>, <u,v_w>
and <u,,v,w>, respectively. Nodes R and S cannot be verical grid-neighbors, since, by looking at
their labels, we can see that they belong to different chains but they do not have the same MARK
value. Likewise, S and T cannot be vertical grid-neighbors. So, if ¢ and eg4 were to exist in £, R
and T should be horizontal grid-neighbors of S. Thus, the three nodes R, § and T, all on the same
row of the grid, belong to three different chains (chain u_, chain ¥ and chain u,). This is impossible
(see 16 of Appendix). Thus, e, and e cannot co-exist in £. The proof of (b) is similar. @

Corollary 4.1: At most four edges among ¢,e4. - - - ,€g Can co-exist in E.

Proof of Corollary 4.1: Follows from Lemmas 4.3, 44 and 4.5. ©

Determining chosen intermediates can be formulated as a bipartite graph maiching problem
instance for which there exists a complete maiching. The formulation is as follows, Let Vg and Vy
be two disjoint subsets of vertices of a bipartite graph where Vg comesponds 1o the set of dilation-2
edges and Vy corresponds to the set of hypercube nodes. There is an edge between a vertex S € Vg
and a vertex T e Vy iff T is an intermediate for the edge in E represented by S. Since each edge in
E has exactly two intermediates, the degree for each vertex in Vg of the bipanite graph is two. Since
each node of the hypercube can act as the intermediate of at most four edges in £ (by Corollary 4.1),
the degree of each vertex in Vy is at most 4. By splitting each veriex in Vy into two copies, we can
guarantee that each copy of any vertex in Vy is adjacent to at most 2 edges in the bipartite graph,
i.e., degree at most 2. The problem is to find a set of edges in the bipartite graph which covers every
vertex in Vg (maximum matching problem in biparite graph), i.e., to find a chosen intermediate for
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each dilation-2 edge. In the following, we shall show that this can always be done.

Let V be any subset of Vg and R(V) be the subset of Vi whose vertices are adjacent o the
vertices in V. With degree 2 for each vertex in Vg and degree < 2 for each copy of a vertex in Vy,
we have |[V] S {R(V)| and thus a complete maiching is ensured [L]. If edge (ST}, S € V¢ and
T € Vy, is in the matching of the bipartite graph, then T is selected as the chosen intermediate for
the edge in E represented by §. In consequence, since there are two copies of each venex in Vy,
each hypercube node will act as the chosen intermediate of at most two dilation-2 edges. Thus, we
have the following.

Theorem 4.1: There exists an assignment of chosen intermediates such that each hypercube node
can be chosen intermediate of at most two dilation-2 edges. ©

Parallelizing this step in determining the chosen intermediates reduces to the parallelization of
the complete matching problem. It is still an open problem whether there exists an efficient parallel
algorithm for the complete matching problem [P}, (KUW]. As it tums out, we can avoid doing
matching altogether and determine the chosen intermediates in constant steps by following the set of
rules described below for selecting chosen intermediates:

P-Rules:

(P1) Edge ey = {<u_v.w>,<uyv_w>} should use <u,v,w> as its chosen intermediate.

(P2) Edge ez = [<u_v.w> <uv,w>} should use <u,v,w> as its chosen intermediate.

(P3) Edge €4 = {<uv_w><u,v,w>} should use <uy,w> as its chosen intermediate.

(P4) Edge e4 = (<u,v_w>,<u,y,w>} should use <u,vw> as its chosen intermediate unless bath 3 =
(<u_vw><uyv,w>) and eg = [<u,y_w>,<u,v,w>) are edges in £, whereupon <uy_w> is

used as the chosen intermediate instead.
o

Example: Thus, <000,011,0> would be the chosen intermediate for («<000,001,0>,<001,011,0>} by
Rule (P3) with 4 =000, v =01l andw =0. ©

Lemma 4.6: Using the P-Rules, each edge in E is assigned exactly one chosen intermediate.

Proof of Lemma 4.6: From Lemma 4.1, for each edge {<u,vw>.<u’,v,w>} in E, exacly two of
the following pairs of bitstrings (u,&), (v») and (ww’) will be different. If (uu) and (v.v) are
different, exacly one intermediate will be chosen by either Rule (P1) or (P3). If (4,4 and (w.w) are
different, exactly one intermediate will be chosen by Rule (P2). If (v,v) and (w.w') are different,
exactly one intermediate will be chosen by Rule (P4). It is easy to see that under all cases, exactly
one intermediate will be chosen for each edge in E. @

Figure 4.2 shows the five edges, e;, 2, €4, €5 and eg, which might potentially use <u,v,w> as
the chosen intermediate in view of the P-Rules. es uses <u,vw> iff €9 = [<u_ VW >,<uv, w>}
and ;g = {<uv,W>,<u,v,.w>) are in E (Figure 4.1).
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<U. V,W>

<ULV W ~ H<uv W

<ULVW>

FIGURE 4.2 Edges which can use <u,vw> as chosen intermediate with
application of the P-rules

Lemma 4.7: At most two of the edges e), e3, eq and e uses <u,v,w> as their chosen intermediate,

Proof of Lemma 4.7: Follows from the fact that
(a) ey, e; and e4 cannot co-exist in £ (Lemma 4.3(a)),
(b) e, and ¢4 cannot both co-exist in £ (Lemma 4.5(a)), and

(c) e, e4 and eg4 cannot all use <u,vw> as their chosen intermediates since Rule (P4) prevents this,
a

Lemma 4.8: If es uses <u,v,w> as its chosen intermediate, then at most one of the edges ey, €2, 24
and eg uses <u,v,w> as their chosen intermediate.

Proof of Lemma 4.8: As observed before, es will use <w,v,w> iff eg= {<u_ v, > <uy, w>}
and ejp = (<uyW>,<u,v.w>) are in E. To induce such a scenario in E (the set of grid edges
which suffer a dilation of 2), the situation in the gnd must be like the one shown in Figure 4.3. If
node <u,vWw> is not located in column 1 of the grid, there are two possibilities for the posidon of
<u,y,w> because of the fact that {<u,v,w>,<u,v,w>} is a twin edge and Property 4 in Section 2, i.e.
{<uy,w>,<uv,w>} is either horizontal or sioping downward. These two possibilities give rise to the
situations depicted in Figure 4.3, In both of these cases and the case where node <u,v,@> is locared
in column 1 of the grid, <uv,w> cannot be adjacent 10 <u_vw> or <u,v_w:>, i.c. € and e4 are not
in E. Furthermore, since ¢; and e4 cannot co-exist in £ (Lemma 4.5(a)), at most one of the edges
€1, €7, e4 and eg will use <u,vw> as their chosen iniermediate. ©

Theorem 4.2: Using the P-Rules, each hypercube node will act as the chosen intermediate of at
most two edges in £ and each chosen intermediaie can be determined in constant parallel time.
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<U_ NV, W>

<u.V,W> <UL Vg W

<V, W> ”
<U_V,W> . Promememma®  <UV, W>
&5
el0 o
<UVW>  Gumemsmane . UV WD
<ULV, W
casel
<ULV > ey <U Yy W> <Hy Vg, W
<u v 7>
&9
<ULV, <V, W>
&
- <u_V,?>
UV W B, o ko Uy vy B
el0
<u_Vv,7> v <V N>
U Y W <ULV, W
case 2

<bVv,w> UV W

<ULV, 7> <V W

g, Yy, W

<V, 7>

FIGURE 4.3 Scenario for <u,v,w> as tha chosen intermediate for &

Proof: From Lemmas 4.7 and 4.8, each hypercube node can at most be chosen intermediates of at
most two edges in E. According to Lemma 4.6, by the way the P-Rules are defined, there will be
exactly one chosen intermediate assigned for each dilation-2 edge. Function path in Figure 4.4 gives
the implementation of the P-Rules. Function parh returns the hypercube node for forwarding a
message from grid node {x,y] to its grid neighbor, [xX'y’]. If the communication is over a dilation-2
edge, the chosen intermediate will be returned. Since functions hypercube and grid take constant
time, the algorithm for determining the chosen intermediate (function parh) will also take constant
time for each hypercube node. ©

5. CONCLUSION

Based on Chan’s embedding strategy [C3], we have derived an efficient parallel embedding
algorithm such that each hypercube node, when given the size of the grid, can determine in constant
time which node of the grid it will simulate. This algorithm is particularly useful since all hypercube
nodes participate in the computation of the embedding.
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function dilation({x,y}.{x".y'1)

/* Algorithm to determine the dilation of two neighbonng grid nodes, [x,y] and {x"y’], in the

dilation-2 mapping of an « x f§ grid into its optimal hypercube. */
If hypercube(x.y] and hypercubelx',y'] differs by two bits,
then retun 2 else retum 1.

function hypercubeix,y}

/* Algorithm to find the hypercube node to which the grid node [x,y] is mapped */
(D) let <Cyy My > = hlxy]

@ letu =GRAY(logyal.Cyy), v = GRAY(LlogsBIM,,)

(3) if grid(<u,v,0>) = [x,y] then return uv0
else return uvl

function parh({x.yLI¥y'D
/¥ Algorithm to determine the chosen intermediate for forwarding a message
from grid node [x.y] to grid node [x",y'] %/
) If dilation([x.yLIxX' y']) = 1 then remum hypercube(x’,y’}
(2) Let uvw = hypercubelx,y] and u'v'w = hypercube[x’y'}
where uu'vv e {0,1]" and ww' e (0,1}, ju] = '] = Llogyad and vi = P}
Liog,BJ
(3) Notethat ' e {uh,u}yv e (vov,v.).w e (w, W}
Case: ' #u and v’ =v_:remm u'vw
#u and V' =y, retum w'w
=u, and w =w : retumn &'vw
=u_and w =W : return ww’
V=yv_ andw =w:

’

ul

u

u’
if ((grid(<u_vw'>) and grid(<u,v,w>) are grid-neighbors)
and (grid(<u,v',w’'>) and grid(<u,vw' >) are grid-neighbors))

then retum wv'w else uww’

4

=y, and W =W
if ((grid(<u .Y’ . w>) and grid(<u,v’ w'>) are grid-neighbors)
and (grid(<u,v,w>) and grid(<u,.v' ,w>) are grid-neighbors})

then retumn www’ else w'w

Figure 4.4 Function path to determine the chosen intermediate
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Besides node embedding, the second half of the paper deals with path embedding. Each edge in
the grid is mapped into a path in the hypercube in parallel in constant time. In fact, each hypercube
node can be the chosen intermediate of at most two dilation-2 edges, thus curbing congestion.

There are two types of congestions associated with an embedding: node congestion and edge
congestion. According to {HIJ), the node congestion N (v) of a particular hypercube node v, is
defined to be number of paths containing v. Similadly, the edge congesuon E_(e) ofan edge ¢, is
the number of paths containing e. The node congestion N (H) of an embedding H is defined to be
the maximum N, (v) over all nodes v. Likewise, the edge congestion E.(H) of an embedding H is
defined to be the maximum E,(e) over all edges e. Since each grid node has at most 4 neighbors and
each hypercube node can be the chosen intermediate of at most two dilation-2 edges, N (v) £ 6. On
the other hand, when the size of the grid to be embedded is slightly less than the size of its optimal
hypercube, the number of dilation-2 edges in the embedding may be strictly larger than the number of
spare hypercube nodes (i.e. 2* - off). Thus some hypercube nodes, besides being involved in the
paths to their 4 neighbors, have (0 be a chosen intermediate of at least one dilation-2 edge, i.e. N (v}
2 5, making the node congestion of our embedding one above the optimal. As for edge congestion,
since each endpoint of an edge in the hypercube can be the chosen intermediate of at most two
dilarion-2 edges, each edge in the hypercube can be in at most four paths for dilation-2 edges. This,
together with the fact that each edge in the hypercube can act as an edge between two dilation-1
grid-neighbors, gives E.(e) £ 35, or E.(H) £ 5, which is four above the optimal.
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APPENDIX

Before proving Lemmas 3 1 and 3.2, we shall prove that the following situations 1n dependency graph
G’ are not possible.

a1 I {[xy-11Ixy}} is a cntical edge, then netther {{x-1,y—1],[x,y1} nor {{xy-1){x+1,y}} can be a
twin edge (Figure A 1(i)).

12y I {{xy-1LIxy1} and {[x+1y+1],[x+1,y+2]} are critical edges, then {[x,y][x+1,y+1]} cannot
be a twin edge (Figure A.1(ii)).

3y If {{xy-1L[xyl} and ({x~1y},[x~1,y+1]} are critical edges, then [[x-1,y},{x,y]} cannot be a
twin edge (Figure A.1(iii)).

@4) If {[x-1,y-11[x-1,y]} and {[x,y-11.[x,y]} are critical edges, then neither {{x-1,yl[x,y]} nor
{{x—1,y-11.[x.,y~1}} can be a twin edge (Figure A.1(iv)).

sy If {[xy-1L[xyl} is a cniical edge, then neither of the following cases (Figure A.1(v)) are
possible:
(a) both {{x,y~11[x—1,y~1]} and {[x,yL.[x-1y]} are twin edges, nor
®) both {[x,y—1},[x+1,y-11} and {[x.y}.[x+1,y]} are twin edges, nor
© {([xy-1LIx+1,y-1]} and {[x,y}Lix+1,y+1]} are twin edges.

(I6) Nodes in the same row of a grid cannot belong to more than two different chains.

Proof of (I1), (I3) and (X4) can be found in [C3]. ©

O betyn ) [xy-1] [xy] Iyl

®n vt L ] L ]
Byl xy \
L Mo i . . RAN W
] byl \ [,y bty 1] [xsTiye2]
-

b1y}

(i) -1y [x-1y+1] ) 1 Y ety [x-'t‘ B

- P I
W otodf LRV

L2
oy o byl B eyl (o)

(\Y) [x-1.y-1} {x-1.y] py-11 2] By-11 k]
e W P [ ]
I « I I [ I I\I
fxy-11 [xy] [x+1,y-1] [x+1,y] [x+1,y-1] [x+1.y+1]
(a) (b) (e)

FIGURE A.1 Some impaossible situations in dependency graph G
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Proof of (I2): Suppose to the contrary. Assume that CHAIN[xy-1} = C', CHAIN[x+1,y+2] = C”

and both {x)y] and {x+1,y+1] belong to chain C.

Casel: C” =C ~1: COLSUM@;C”) S x~1 and COLSUM(y+2;C") 2 x+1. This violates the fact
that | COLSUM(y;C”) -~ COLSUM@p+2;C) | < 1.

Case2: C'=C +1: COLSUM@y-1;0) < x~1 and COLSUM(y+1;C) = x+1. This violates the fact
that | COLSUM(y~-1,C) - COLSUM(y+1;Cy | S 1.

Case3: ¢’ =C -1 and C” =C + 1: this implies that both {x+1,y} and [x,y+1] belong to chain C,
i.e. there are two consecutive columns with two elements belonging to chain C. This
contradicts the property of matrix A. @

Proof of (I5): Consider case (a) and suppose to the contrary. Since {[x,y—~11.[x,y]} is a critical edge,

CHAIN[x,y~1] # CHAIN[x.y]. Furthermore, COLSUM(y~1;CHAIN[x,y-1]) =
COLSUM(y;CHAIN[xy}) = x and QCHAIN[xy-lly-] = GCHAINIzyly = 2. If CHAIN[xy-1] =
CHAIN[xy} +1, then COLSUM(y-L;CHAIN[xy]) = x-2. Alematvely if CHAIN[xy] =
CHAIN(x,y-11+1, then COLSUM(y;CHAIN[xy-1]) = =x-2. In the former case,

| COLSUM(y-Y;CHAIN{x,yl) ~ COLSUM(y;CHAIN[x,y)) | =2, while in the lamer case,
| COLSUM(y~L;CHAIN(x,y~1}) ~ COLSUM(y;CHAIN[xy-1]) | =2. Both violate the fact that
| COLSUM(j;k) - COLSUM(J";k) | € 1. Proofs for cases (b) and (c) follow a similar argument. o

Proof of (I6): Suppose to the contrary. There must exist two nodes {x,y] and [x,y’] on the same row
belonging to chains € and C”, respectively, where " =C -2 or C" =C +2. Without loss of
generality, let €' = C - 2; then, COLSUM(y;C") S x~2 and COLSUM(y";C") 2 x. This contradicts the
fact that any two partial column sums of matrix A should be almost equal, ie.
| COLSUM(y;,C") ~ COLSUM(Y,CY | s 1. @

Lemma 3.1: Suppose {[xy-1l[xyl} and ([xyl.[x,y+1]} are two critical edges. Applying Rule 1
with respect to each of these critical edges will cause the same last bit to be assigned to node {x.y].

Proof of Lemma 3.1: Consider the possible positions for [u,v] where {[x,y1l.[u,v]} is a twin edge.
Since {{x,y-11[x,y]} and {[xy].{x,y+1]} are critical edges, the only possibilities for [u,v] are {x-1,y],
[x+1,y}, [x~1,y~1] and [x+1,y+1] (Property 4 in Section 2).

Case i [uv] = [x-1y] (Figure A.2(1))

Rule 1 will assign y mod 2 as the last bit of {x,y] and [xy+1]. Based on the critical edge
{[xy-11[xy]}, the only way that [x,y] can be conflictingly assigned (y-1)mod 2 is for
{fx~1,y-11,[x,y~11} t be a twin edge. But this is impossible in G’ (by I5).

Case ii: [u,v] = [x+1,y] (Figure A.2(ii))

Rule 1 will assign (y~1) mod 2 as the last bit of [x,y~1] and [xy]. On basis of critical edge
{fxyLIx,y+1]}, the only way that [xy] can be conflictingly assigned y mod 2 is for either
{[xy+1L[x+1,y+1}} or {{x,y+1],{x+1,y+2]} to be a twin edge. But this is again impossible in G’ (by
15).
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FIGURE A.2 Possible situations for a twin edge attached to the junction
of two connecting cntical edges

Case iii: [u,v] = [x-1,y-1] (Figure A.2(iii))
This case is impossible in G (by I1).

Case iv: [uy] = [x+1,y+1] (Figure A.2(iv))
This case is impossible in G© (by I1). ©

Lemma 3.2: Suppose {[x.y—1],[x,y}} and {[x"y'l.[x,y’+1]} are critical edges and {[xyL[¥.y'l} is a
twin edge. Then, Rule 1 will assign different last bits to [x.y] and [x"y’).

Proof of Lemma 3.2: The proof is by exbaustion. We shall consider all cases in which two critical
edges are connected by a twin edge. There are four cases depending on the orientation of the twin
edges.

Case i: The twin edge is a vertical edge.

Because of I3 and 4, the positions of the two critical edges relative 1o the twin edge must take the
form as shown in Figure A.3(1). According to Rule 1, (y~1) mod 2 and y mod 2 are assigned as the
last bits of nodes [x,y} and [x+1,y], respectively. This assignment is consistent since different last bits
are given to the endpoints of the twin edge.

Case ii: The twin edge is a horizontal edge.

Figure A.3(jii) gives the only two possible situations for this case. Without loss of generality, let us
consider the first simation. According to Rule 1, (y-1) mod 2 is assigned to [x,y—1] and [x,y]. Since
the twin edge connecting [x,y+2] can neither be ([xy+2L.[x+Ly+2]1} nor {[x,y+2],{x+1.y+3]]
{(otherwise this will violate the fact that the partial column sums of two columns differ by more than
1), according to Rule 1, the last bit assigned to [x,y+1], [x,y+2] should be y mod 2. This again leads
to a consistent last bit assignment to the endpoints of a twin edge.
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FIGURE A 3 Twin edge connecting two critical edges

Case iii: The twin edge wraps around.

Figure A.3(iii) gives the only possible situation for this case with y’ =1 and y = f. According to
Rule 1, nodes [x,y’] and [x,y] will be assigned 1 and (B-1) mod 2 as their last bits. Since we only
have to consider the case where P is odd with column splicing (Section 2.4), nodes {x’,y’] and [x.y}, as
the endpoints of a wraparound twin edge, have different last bits.

Case iv: The twin edge slopes down.
I1 and I2 make this case impossible. @
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