COMPUTER SCIENCE PUBLICATION

APPROXIMATION OF POLYGONAL CURVES WITH
MINIMUM NUMBER OF LINE SEGMENTS OR MINIMUM ERROR

W.S. Chan and F. Chin

Technical Report TR-93-04

DEPARTMENT OF COMPUTER SCIENCE
FACULTY OF ENGINEERING
UNIVERSITY OF HONG KONG
POKFULAM ROAD
HONG KONG

UNIVERSITY OF HONG KONG
LIBRARY

This book was a gift
from

Dept. of Computer Science
The University of Hong Kong

Approximation of Polygonal Curves with

Minimum Number of Line Segments or Minimum Error

W.S. Chan and F. Chin
Department of Computer Science
University of Hong Kong

Abstract

‘We improve the time complexities for solving the polygonal curve approx-
imation problems formulated by Imai and Iri. The time complexity for ap-
proximating any polygonal curve of n vertices with minimum number of line
segments can be improved from O(n?log n) to O(n?). The time complexity for
approximating any polygonal curve with minimum error can also be improved
from O(n?log? n) to O(n*logn). We further show that if the curve to be ap-
proximated forms part of a convex polygon, the two problems can be solved in
O(n) and O(n®) time respectively for both open and closed polygonal curves.

1 Introduction

In various situations and applications, images of a scene have to be represented at
different resolutions. For pixel images, lower resolution images can be derived from
higher ones through a number of multi-resolution techniques[l, 3, 4, 8, 10]. If the
image is a line drawing, the problem becomes approximating the original figure with
a fewer number of line segments. A number of algorithms[5, 7, 9, 11] have been
devised to solve the approximation problem with different constraints and approxi-
mation criteria[5, 6, 7]. In this paper we consider the problem of approximating a
piecewise linear curve or polygonal curve by another whose vertices are a subset of
the original. We improve the time complexity given by Imai and Iri[7] and Melkman
and O’Rourke[§] from O(n?) to O(n?logn) and give efficient algorithms for other

variations.

Formally, let P = (po,p1,...,Pn—1) be a piecewise linear curve or polygonal

curve on a plane, i.e., Po,P1,...,Pn-1 is 2 sequence of points on a plane and each

pair of points p; and pi4y, 1 = 0,1,...,n — 2, are joined by a line segment (note

that the line segments may intersect). Lines segment P;p, can be used to approx-
imate the polygonal curve (pr,Pr41,..-,Ps) and the error of a line segment can

be defined as the maximum distance between the segment TP, and each point py

between p, and p,, i.e., r < k < s. The distance d(7;P;,px) between a line seg-

ment P;p; and a point py is defined to be the minimum distance between P;7;

and pr , i.e., d(F;P5, Px) = Mingepp;{d(z, px)} where d(z, py) is the Euclidean dis-
tance between points z and pg. Thus, the error of 775, e(F7P;), can be defined as
max,<k<s {d(FPs, Pr)}- Furthe;more, we say P’ = (Pig,Piys- -1 Pim) IS an approzi-
mate curve of P if piy,Piy,- -, Pim i @ subsequence of po,p1,...,pn-1 With 70 = 0,
in=n-1and 0 < m < n. The error of an approzimate curve P’ is defined as
the maximum error of each line segment in P, i.e., e(P') = maXock<m {&(FixPing;)}
We say that the error of P’ is within € if e(P’) < . Note that d(Fipi ;. px) < €

if and only if px lies within the shaded area as shown in Figure 1. Under this error

Figure 1: Definition of being within ¢ of a line segment

measurement, we can guarantee that P’ will lie totally within the “band” of width

2¢ running alongside P if e(P’) < € (Figure 2). There are two types of optimization

Figure 2: “Band” running alongside a polygonal curve

problems associated with the curve approximation problem.

min-# problem: Given ¢ > 0, construct an approximate curve with error within

¢ and having the minimum number of line segments.

min-¢ problem: Given m, construct an approximate curve consisting of at most

m line segments with minimum error.

In this paper, we show that the min-# problem for an open polygonal curve can
be solved in O(n?) time, improving the previous result of O(n?logn) time[7]. We
further show that if the polygonal curve forms part of a convex polygon, the min-#
problem can be solved in O(n) time for both open and closed polygonal curves. The
min-¢ problem can be solved in O(n?logn) time for a general open polygonal curve,
improving the previous result of O(n? log? n)[7], O(n®log n) time for a general closed
polygonal curve, and in O(n?) time for both open and closed convex curves. The

results are summarized in Table 1.

general convex
open closed open | closed
min# | O@?) | 0@ | O@m) | O(x)
min-¢ | O(n?logn) | O(n3logn) | O(a?) | O(n?)

Table 1: Summary of the time complexities of the polygonal approximation algo-

rithms

2 The Min-# Problem

Given a polygonal curve P and an error bound ¢, this problem can be solved in
two steps. The first step is to construct a directed graph G = (V, E), where each
vertex v, in V represents a point p, in P and each edge (v, v,) is in E if and only

if the error of the line segment 7;5; is within ¢, i.e., V = {vp, 1, ., ¥n-1} 2nd

3

E = {{(vy,v,) | 7 < sand e(777;) < €}. We shall call G the e-graph of P. Note
that a directed graph is used to model the problem so that it can later be extended
to the closed curve case. The second step is to find the shortest path in G from
v t0 Tp—y With each edge of unit length. Thus, the path length will correspond to
the number of line segments in the approximate curve. Moreover, the shortest path
from vg t0 ¥, also reveals the subset of points of P used in the approximate curve
P, Le., if (Vig, Viyy.» -y thy,) I the shortest path with ip = 0 and iy = n ~ 1, then
the corresponding P’ = (Pig, Pisy-++r Prm) Will be the approximate curve with error

< € and the minimum nurber of line segments.

The brute-force method of constructing G is to check for each pair of points, p,
and p,, whether the error of 7;7; is within ¢, i.e., (v,,v,) € E. There are O(n?)
pairs of points and checking the error of a line segment, corresponding to a pair of
points, takes O(n) time. This brute-force method takes O(n®) time. Since finding
the shortest path in G takes no more than O(n?) time, the min-# problem can be

solved in O(n®) time.

The critical part of the algorithm is the construction of G. Melkman and
O’Rourke [9] described an O(n?logn) algorithm to construct G. For each pair
of points, p, and p,, their algorithm maintains a data structure which represents
a region W;, such that (v,,v,) € E if and only if p, € W;,. Their data structure
allows checking of whether p, € Wy, and updating W;, to Wi 441 in O(logn) time.
Thus G can be constructed in O(n?logn) time and the time complexity of solving
the min-# problem is improved to O(n®logn). In this paper, we improve the com-
plexity of constructing G to O(n?). As a result, the time complexity of the algorithm
for solving the min-# problem is O(n?), an improvement from O(n?logn). In the
following, we shall discuss how G can be constructed in O(n?) time (Section 2.1)
and O(n) time if the polygonal curve is convex (Section 2.2). Sections 2.3 and 2.4
will be dealing with closed polygonal curves.

2.1 General Open Polygonal Curves

Before we proceed with the algorithm, let us discuss some necessary conditions for

d(7P5, k) < € when p, # p, and 7 < k < s, Le., (vr,v,) € E.

Condition A d(p,ps,px) € € where p,p, denotes the infinite line extending at both

ends of 7;P;.

Condition B If Lprp.ps > 7/2, d(pr,pr) < € where Lpip.p, denotes the conver

angle between line segments 7ipr and B77;(Figure 3).

Condition C If Lpip,pr > 7/2, d(pk,ps) < (Figure 3).

.

&
o

&
Mo

Figure 3: Conditions B and C

Note that Condition A is intuitively straightforward, while Conditions B and C

ensure that if px lie outside the “range” of 7, px would not be too far away from
pr OF py. Moreover, one can easily argue that it is not possible to have both {prp,p,
and £pip,p. greater than 7 /2, and satisfying these three conditions is also sufficient
to guarantee that d(P;p;,px) < ¢.

Now we are ready to discuss the construction of the e-graph G = (V, E). Basi-
cally, G is constructed in two phases, in which G’ = (V, E’) and G" = (V,E") are
formed. Note that G, G’ and G” have the same vertex set V' and we shall show that
E = E'N E". G' is a graph generated based on Conditions A and B, while G” on
Conditions 4 and C.

Let p,p, denote the “ray” emanating from p, and passing through p,. H 2, = p,,
let prPs=pr. (r,v,) € E'ifand only if r < s and forall r < k < s, d(prpapr) < €,
i.e., px lies in the area as shown in Figure 4(a). Similarly, (v,,v,) € E” if and only
if r < sandforall r < k < s, d(psPr, Pk) < €, i-e., Pi lies in the area as shown in
Figure 4(b).

Since segment F;P; is part of both p,p, and p,pr, it is easy to observe that the

shaded area in Figure 3 is the intersection of those shaded areas given in Figures 4(a)

Ed
s £
ey i g

2, R ®

(a) Area for which py lies within ¢ of p,p,

£1

< dm

. B, L]

(b) Area for which py lies within ¢ of p,p,

Figure 4: Relationship between P77, and its rays

and 4(b). Thus we have d(5;55, px) < € if and only if both d(p.ps, p¢) and d(p,p;, i)
are less than or equal to ¢, and similarly, E C E', E C E” and £ = E'NE". Instead

of constructing F directly, E can then be generated from E’ and E”.

Now we describe the construction of E’, and the construction of E” is similar.
Consider a particular vertex v, in V. We want to determine whether (v,,v,) € E*
for some s with r < 5. Let r < k < 5. I d(pr,pi) > ¢, let gy and by, be the two
rays emanating from p,, one at each side of pr and at a distance ¢ from py, ie.,
d(ark, pk) = d{brk,pr) = €, and let D,x be the convex region bounded by a.x and
brk, including a,; and brt but excluding point p, (Figure 5). If d(p,,px) < ¢, let
D,k be the whole plane. The following lemma shows that d(p,p,, px) < € as long as
Ps € Dy

Figure 5: Definition of D, when d(p,, pi) > €

Lemma 2.1 Assume 7 < k < s. p, € Dyt if and only of d(p,p,, pi) < €.

Proof: The proof is rather straightforward. Basically all cases when d(p,,zx) >
¢, d(pr.px) € € pr = p, and p, # p, have to be considered. O

In order to determine whether (v,,v,) € E’, it is necessary and sufficient to
check whether p, € Dy for all » < k& < 3 (from Lemma 2.1). Define W, =

Negkes Drk forr < s.
Lemma 2.2 Assume r < 8. (vr,v,) € E' if and only if p, € W,,.

Proof: (v.,v,) € B/ iff d(prps,px) S eforall r < k < s (from definition)
iff p,€Dppforallr<k<s (Lemma 2.1)
iff ps € Wrs = Mrgics Dri (from definition)
=]
From Lemma 2.2, we can determine whether (v,,v,) € E’' by testing whether
ps € Wyy. For any 7, the algorithm would consider all pairs of vertices (v,,v,) with
s ranging from r + 1 to n. The key part of the algorithm is to determine whether a

point is in W, and to update W;, from W, .., efficiently.

Since Wy, is an intersection of the D,;’s, the D,;’s and the W,, are either the
whole plane or a cone-shape region bounded by the two rays emanating from p,. As
long as we can keep track of these two rays(boundaries) of W,,, one can easily check
whether p, € W,, and update W,, in constant time. Checking whether p, € W,,
is equivalent to checking whether p, lies within the two rays. As for updating W,,,
Wrs = Wiy N Dpgq. In fact, if Wy, = ¢, we can conclude immediately that
(vr,vk) € E’ for all k£ > s. Thus we can determine all the edges in E’ incident from
v, in O(n) time and all edges in E’ in O(n?) time. The pseudo-code for constructing

E is listed in Figure 6.
Theorem 1 G = (V, E) can be constructed in O(n?) time.

Proof: As both E’ and E” can be constructed in O(n?) time, and E = E'N E”

can be generated with another n? operations, G can be constructed O(n?) time. O

Corollary 2.3 The mun-# problem for an open polygonal curve can be solved

in O(n?) time. O

algorithm A procedure el
begin begin
call procedure el to compute E’ for r=0ton-2do
compute E* in a sinular way begin
output E= E'nEY si=r41
end W := the whole plane { W =W, }
while W # @ and s < n do
begin
if ps € W then output (vr,v,) € B/
W =WnDe,
s=a41,
end { while }
end { for }
end

Figure 6: Algorithm which constructs E in O(n?) time

2.2 Open Convex Polygonal Curves

We call a polygonal curve P = (po,p1,..-,Pn-1) conves if the polygon formed by P

with the line segment 7,_7%p is convex.

Before the algorithm for the min-# problem of a convex curve is described, we

study some special properties of G for a convex polygonal curve.

2.2.1 Properties of Convex Polygonal Curves

Lemma 2.4 Let G = (V, E) be the e-graph of a convex polygonal curve P =
(P0sP1y e+ <1 Pr~1)- If 7+ 1< s and (v,,v,) € E, then (vr41, %), (Vr,05-1) € E.

Proof: By definition, since (vy,v,) € E, d(F;Ps,px) S e forallr £ k£ < 5. We
want to show that d{F;iPa,pe) S eforall b, r+ 1< k < s, and d(BPrmT,pr) X €
for all k, r € k £ s~ 1. The proofs for these two cases are similar; only the former

case will be shown here.

Let z be the point on B,7, which is nearest to px. Since P is convex, it can be

proved easily that the line P57 has to intersect line F;717; at some point y(FigureT).

Thus d(Pr51Ps,Pk) < d(y,px) < d(z,px) = d(FrP5, %) S & O

P

Figure T: pi is closer to $;315, than to 7755

The following corollary can be proved by applying Lemma 2.4 repeatedly.
Corollary 2.5 If(v,,v,) € E, (vp,09) €EE forallr <1< s <s. 0O

It follows from Corollary 2.5 that for each vertex v, where r < n — 1, there
is a vertex v, such that (v,,%) € Eforall k,r < & < 5 and (v,, %) ¢ E for all
k,s < k < n. We call v, the furthest vertez reachable from v,. We denote this
index s by f(r). Thus G can be completely characterized if f(r) is defined for
each r = 0,1,...,2 — 2. From Corollary 2.5, it can be shown easily that if r < s,
f(r) £ f(s). So, intuitively, one would like to find f(r) iteratively, i.e., to search for
f(r) starting from f(r — 1).

Another property is about the distance between p; and ;;:p‘, forr<k<s.

Lemma 2.6 [2] Let (pr, Prs1, - - -, Ps) be a convez polygonal curve andr < k < s.
The function d(p,ps, i) is unimodal with respect to k. O

Let y(r,s) be the smallest index between r and s such that d(p,P, Py(rs) =
(P Ps), i.. MaX,<hes d(PrPss Pi). With the unimodal property stated in Lemma 2.6
and the following lemma, ¥(r, s) can be found in O(y(r, s)—7(r, s—1)) or O{y(r, s}~

7(r—1, 5)) time by sequential search starting from ¥(r, s—1) or y(r—1, s) respectively.
Lemma 2.7 Let (po,p1,.- ., Pn-1) be a convez polygonal curve,

1 y(r,8) s v(rys+ 1) for0<r<s<n-—1,

9

2. y(r,8)Sy(r+1,8) for0<r+1<s<n—1.

Proof: Refer to Figure 8 (a) and (b), d(prPs,Pk) < d(PrPo;Py(r,s)) implies
d(PrPs-prk) S d(PrPa-{-l,P—y(r,:)) for all kv T < 3 < 7(1", ‘3)' Thus '7(T7 3) $ 7("1 s+ 1)-
The proof of ¥(r,) < v(r + 1, 3) would be simlar. O

o™
7 AN

*

e
w B
+1//

‘r’(7.3

~ .
e, N . b/
~
pi . \\\ ’
7

\p \-

’ Ber

(b)

Figure 8: Relationship between 7(r,s) and y(r,s+ 1)

2.2.2 egraph G and Greedy Algorithm

In order to find f(r), Condition A has to be checked. Lemmas 2 6 and 2.7 allow the
search of 7(r, s) to start from the point previously stopped, i.e., 7(r—1, f(r~1)): As
for the checking of Conditions B and C, we shall keep track of two indices a(r) and
B(r) for each point p, such that all points py with r < k < a(r) (or B(r) < k < 1)
would have satisfied Condition B (or C) already and pu(r) (or pg(r)) would be the
most likely candidate which would violate Condition B (or C). Note that d(pr, pa(r))

10

and d(p,, pp(r)) must be greater than e.

With a(r) found for 0 < 7 < n—1and B(r) for 0 < r £ n—1 respectively, we can
start sketching the algorithm for finding f(7), 0 < r < n — 1. Starting with r = 0,
s=1,2,...,are tested sequentially as possible candidates for f(r). For each s, condi-
tion A is tested, i.e., whether e(pops) < ¢, by sequential search for 4(0, s)}(Lemma 2.6)
starting from (0, s—1)(Lemma 2.7). At the same time, Condition B can be checked
in constant time by testing whether Zp,popa(o) £ 7/2 based on the property that
Condition B has already been satisfied for all the points pi,pa,.. ., Pafo)-1 2nd
d(po, Pa(0)) > € Condition B could not be satisfied if Lpspopa(oy > 7/2. Simi-
larly, Condition C can be checked by testing whether Zpopspg(s) < 7/2. Candidates
for f(0) are checked sequentially until one of these Conditions A, B or C is not sat-
isfied. Thus finding f(0) takes O(f(0)) time. The searching of f(1) can be started
from f(0) by checking P15}, Paz) 20d pp(s) for each s sequentially starting from
£(0), in particular v(1,s) from ¥(0, f(0)) (Lemma 2.7), and this process takes no
more than O(f(1) ~ f(0)) time. Simiarly, f(r), for r = 2,3,...,n ~2, can be found
sequentially from f(r—1) in O(f(r)~ f(r—1)) time. Thus given a(r),0 < r < n-1,
and B(r), 0 < r € n ~ 1, respectively, all the f(r)’s, and thus &, can be found in
O(f(0) + 222 f(r) = f(r = 1)) = O(f(n ~ 2)) = O(n) time. The algorithm for
defining f(r) is shown by Procedure Compute_f(n)(Figure 9).

Now we describe the method for computing a(r) forall 0 € r < n — 1. B(s),
0 < s < n~1, can be computed similarly. «(0) is chosen to be the smallest
index s such that d(po,p,) > €. With o(0) computed, we want to find a(1). If
d(p1,Pa(o)) > € then let a(1) be o(0). In general, we can find afr) by searching
sequentially from ofr — 1) for the smallest index s > a(r — 1) such that d(p,,p,) > €.
If no such s exists, L.e., d(p,,p,) < eforall a(r— 1) < s < n~ 1, let &(r) be n. The
algorithms to compute a(r) and fB(s) are shown by Procedures Compute_(n) and

Compute.B(n) respectively(Figure 10).

1t is shown in Appendix A.l thatforall r, 0 < 7 < n — 1, all points px, r < k <

a(r), satisfy Condition B for any line segment p;p,, where k< s <n — 1.

After the e-graph G of a convex polygonal curve has been constructed, we can ap-

ply a greedy approach to find the shortest path from vg to v,—;. For each step, we go

11

procedure Compute.f(n)

begin
ra=0
s:=af0) {d{po,pr) < € due to the definition of a(0) }
vi=0
while r<n~1do
begin
7 = Peak(pps h) {7is2(r) }
while s < n and d(p,ps,p5) < cand { Condition 4 }
not (a(r) < s and Lpa(ryprps > 7/2) and { Condition B }
not (8(s) > r and Lpg(s)pspr > 7/2) do { Condition C }
begin
s=s4l
7 := Peak(p;ps,7)
end
output f(r)=s—~1
rimrl
end
end

function Peak(L,v) { This function returns 4(r,s), where L =p,ps and ¥ is
the starting index for the sequentjal search based on Lem-
mas 2.6 and 2.7 }

begin
ki=h
while d(L,px) < d(L, pr41) do
bi=mk41
return k
end

Figure 9: Procedure Compute.f(n)

as “far” as possible until v, is reached, i.e., the pathis B(n—1) = (i, Viys .+« 21 Vipn)
where v, = v, %, = Vn-1,841 = f(i;) for 0 < 7 £ m— 1. It can be proved (Ap-

pendix A.2) that R{n — 1) is a shortest path from vy to v5_;3. Thus we have,

Theorem 2 Given ¢ > 0, and a convez polygonal curve P = (po,p1,++ .y Pam1)s

the min-# problem can be solved in O(n) time. O

2.3 General Closed Polygonal Curves

A polygonal curve is closed when there is an edge joining pn-1 and po, i.e., pn = Po.
The min-# problem for a closed polygonal curve is to find an approximate curve

(PiosDiyy» - -1 Pirg) With error within €, piy = p;,, and m as small as possible.

12

Procedure Compute.a(n) Procedure Compute.3(n)

begin begin
ri=0 si=n-]
s:=1 =g
whiler < n~1do while ¢ > 0 do
begin begin
while s < n and d(p,,p,) < ¢ do while r > 0 and d{p,,ps) S e do
begin begin
gr=g41 ri=r-1
end end
output af{r) =s output B{s) =r
rimyr4l si=gm~1
end end
end end

Pigure 10: Computing a(r) and f(r)

Theorem 3 Given ¢ > 0 and a closed polygonal curve P = (po,P1,- -y Pn1);

the min-§ problem can be solved in O(n®) time.

Proof: The problem can be solved by considering n separate open curve prob-
lems by breaking up the closed curve at each point p. Since each min-# problem
can be solved in O(n?) time, the closed curve min-# problem can be solved in O(n®)

time. O

Similarly, the min-# problem for a closed convex polygonal curve can also be
solved in O(n?) time. We shall show in the following how the problem for a closed

convex polygonal curve can be solved in O(n) time.

2.4 Convex Closed Polygonal Curves

First of all, we construct the ¢-graph G for a closed polygonal curve Pe. Formally,
G is redefined for a closed polygonal curve as follows. G = (V, E) where V =
(V03 V1y-+ oy Vnt) and E = {{vy,v,) | d(FP5,pk) S €forall k=r, 7+ 1,...,5~1,5}.
For example, if n = 9, (v4,vs) € E if d(PaPs, px) < € for all k = 4,5,6,7,8. (vs,vq) €
E if d(p3Pa, pr) < ¢ for all k = 8,0,1,2,3,4. Thus when G is constructed, the same
G can be referenced in order to find the optimal approximate curve of each open

curve.

It can be verified easily that Lemma 2.4 and thus Corollary 2.5 can be extended to

each open curve (Pr, Pra1s- -+ P05+ -, Pr). 10t terms of the e-graph G, these properties

13

can be summarized in the following lemma. Note that modulo n arithmetic is

assumed in the indexing of the vertices.

Lemma 2.8 If (v,,v,) € E, then (vyr,v9) € E forall v/ =r,r+1,...,8-1,

and s =r"+1,r"+2,...,s. O

Thus f(r) can still be used to characterise G when it is redefined for a closed
curve. f(r), 0 < r < n, is now defined as the index s such that (v,,v;) € E for all
k=7+1,74+2,...,5 and (vy,v) ¢ E for any other k.

It can be shown easily that the e-graph Gy = (V, Ep) for the open polygonal
curve Py = (Po, P1, - - -, Po) Where p, = py is always a subgraph of G = (V, E) for Pe.
The edges which are in E but not in Ej are those (v, v,) where r > 5. Lemma 2.9
shows how we can construct G by constructing Go first and adding those edges

(vr,v,) With r > 5 afterwards, i.e., the set of edges E ~ Eq.

Lemma 2.9 Let g be the smallest indez such that (vy,v0) € Ep. All edges in
E-Eq are contained in the ¢~graph of the open curve Py = (Py; Pgatavr vy Pae1aD0+« -,

Pi(0))-

Proof: Trival. O

Let f(r), fo(r) and fy(r) be the index of the furthest vertex reachable by v, in
the graph for Pe, Po and P, respectively. If fo(r) = 0 for some r > g, there is a
possibility that (v,,vy) € E for some &', 0 < &' < f(0). Thus f(r) = fo(r). I
Jo(r) # 0, all (#,,v,) in E are contained in Eg and f(r) equals fo(r). Thus G can

be constructed for P in O(n) time.

QOur next step is to apply greedy approach to find a shortest path P§ from v to
vp itself. Let Py = (vig, Uiy, Vigs o+« Viny)» Note that vy, = v, = g, i = f(4;~;) for
ji=1,2,...,m—1. The following lemmas show that the optimal approximate curve
of each open curve, constructed by breaking up Pc at each point, consists of similar

number of line segments.

Lemma 2.10 If P} consists of m line segments, the optimal approzimate curve
P! for the open curve P; = (Pi,Dig1s--+»Pre11P0s -+, Pi) has at least m ~ 1 and at

most m + 1 line segments.

14

Proof: Assume the contrary that P/ consists of only m — 2 line segments. If
po is in P!, we would break up P! at po and arrive at an approximate curve for P,
which has only m — 2 line segments. If pg is not in P/ , by Lemma 2.8, we can
replace the line segment 37 77,,, in P, which “covers” py, L.e., ij < n and 0 < 541,
by two line segments 7,55 and Popi,,, and can also arrive at another approximate
curve for Py which has m — 1 line segments. Both cases lead to the contradiction

that P consists of m line segments.

With similar argument as above, we can show that P, consists of at most m + 1

line segments. ©

Since P is one of the P!’s, we have the following corollary.

Corollary 2.11 If P} consists of m line segments, the optimal approzimate

curve PL for the closed curve Pg has at least m — 1 line segments. O

Lemma 2.12 For any line segment 7, Pi,, in Pj, 0 < j < m~1, the optimal

approzimate curve Pi must contain some vertez py with i; < k <ijyq.

Proof: Assume the contrary that 775y, does not “cover” any vertex of the

optimal curve. The optimal curve must contain a line segment P;p; where r < i; <
ij41 < 8. Thus (v;,,v,) € E by Lemma 2.8 and f(4;) > s. This contradicts the fact
that f(i;) = i,4q. O

To find P¢, we can select the line segment with minimum difference (444 —¢;) and
find the approximate curve for each open curve (Dk,Pk+1s«-+sPna1sP0sPls- s Pio1s
pi) where i; < k < ij4;. Note that by Lemma 2.12, one of these approximate curves
would be an optimal approximate curve P{ for Pc. Since each approximate curve
has at most m + 1 edges, it takes O(m) time to search G to find the shortest path
and the approximate curve. As the minimum difference (i;4; —4;) € n/(m—1), the

total time to find P{ would be no more than.O(mZ) = O(n) time.

Theorem 4 Given € > 0 and a closed polygonal curve Pe = (po,p1,y-+-»Pa=1)

the min-# problem for P¢ can be solved in O(n) time when P¢ is convez. O

15

3 The Min-¢ Problem

Given m > 0 and a polygonal curve P, the problem is to find an approximate
polygonal curve P/ consisting of at most m line segments having minimum error
e(P'). We denote this minirmum error by €. We consider open curves in this section

first.

3.1 General Open Polygonal Curves

Imai and Iri[7] have proposed a method which makes use of the algorithm for solving
the min-# problem. For any line segment 7,7; and point py, the distance d(7;75, px)
is one of d(p,, px), d(ps, pi) or d(p’ﬁo’,,pk), depending on Lpxp-p, and Lpkp,pr. Thus
€ of P is contained in aset § = {d(p,, ps)|0 < r < s < n}U{e(p.ps) |0 S 7 < s < n}.
The set {e(p,ps) | 0 € r < s < n} can be determined in O(n®logn) time{11] and
{d(pr,ps) | 0 £ 7 < s < n} in O(n?) time. Since |§| < 2n?, sorting elements in S
needs O(n?logn) time. ¢ can be found by binary search for the smallest element in
S such that P can be approximated with at most m line segments. Foreachein §, we
can test whether it is a possible candidate for €* by using the algorithm for solving the
min-# problem with input P and ¢. Thus this approach takes O(n?log n+1(n)logn)
where #(n) is the time required to solve a min-# problem. If the algorithm discussed
in Section 2 is used, t(n) is O(n?) and the total running time is (n?logn). This is
an improvement from O((nlogn)?), in which ¢(n) = n?log n where the method of

Melkman and O’Rourke [9] is used.

Theorem 5 Given m > 0 and an open polygonal curve with n vertices, the

min-¢ problem can be solved in O(n’logn) time. O

3.2 The Min-¢ Problem of a Convex Curve

Imai and Iri[7] have also proposed another approach using graphs to solve the min-¢
problem. Let G* = (V, E*) be a weighted directed graph where V = {vg,v1,...,
Un-1} and E = {(p,,ps)|0 < 7 < s < n}. Let w(r,s), the weight of edge (v, v,), be
the error of 7;p;, i.e., w(r,s) = e(P:P;). In particular, w(r,r+1)=0forall 0 < r <
n — 1. We shall call G* the error-graph of Py. For each path R = (U5, ¥y, - 1) Vi)s

16

the weight of R, w(R), is defined to be the maximum weight of the edges on R,
i.e, maxog;<m {w(i;,1;41)}. Such path R corresponds to an approximate curve of
P = (Pig: Prys-+ -1 Prm) having e(P’) = w(R). Thus solving the min-¢ problem is
equivalent to finding a path R from g to v, in G* consisting of at most m edges
and having minimum w(R).

In the following, we shall discuss how to take advantage of the convexity of the
given curve P to construct G* in O(n?) time and to find €* with an additional O(nm)

time.

Recall that in Section 2, we can construct G by considering Conditions 4, B
and C. In order to compute w(r, s), we consider the following three types of values,

&(PyPs), trs and vy, where

Upy = MaXr<hga{d(Pr,Pr) | Lprprps 2 7/2}, radius of the smallest “hemisphere”

centered at p, to include those vertices pi, 7 < &k < s, lying outside 7;7;, and

Ups = MaXr<h<a{d(Ps,Pr) | LPkPspr 2 7/2}, radius of the smallest “hemisphere”

centered at p, to include those vertices pg, r < k < s, lying outside 777;.

1t is easy to show that w(r,s) = max{e(ﬁ,), Upsy Urs}. We shall show that all
€(PrPs)s Urs and ry, 0 € 7 < 3 < 1, can be found in O(n?) time and thus w(r, s) for

0<r<s<n.

Computing e(p,ps) is not difficult since 7(r, s) can be found by sequential search
from v(r, s~ 1) (Lemmas 2.6 and 2.7). e(p-p,), for all 5, * < s < 7, can be found in

O(n) time for any particular r and in O(n?) time for all » and s where 7 < s.

In general, u,, can be computed from u,,-1 and similarly v,, from v,41,. In
the following, only the computation of u,, from %, ,.; will be described. Since P
is convex, for each pair of points p, and p, where r < s, LpxPrPs 2 Prrprps if
r < k < kK < 5. Thus, there exists a unique index (v, s) such that Lpxprps > 7/2
forall k, r < k < o(r, s) and £prp.p, < w/27or all k, @(r,38) £ k £ s. In other words,
@(r,8) is the smallest index k greater than r having Lpxp-p, less than 7/2. Since P
is convex, LpxP,rPs—1 < Lprpeps for all k, r < k < s, and thus ¢(r,s ~ 1) < p(r,s)-
@(r,s) can therefore be found by searching from ¢(r, s — 1) towards s for the first &

having Lpgpeps < 7/2(Figure 11). Therefore u,, can be found without considering

17

all pg a'gain: ey tyy = ma‘x{ui’.l'—hma‘xw(r,s—l)sk<w(r,a){d(pfypk)}}' Thus u,, can
be found in O(¢p(r, 8) — ¢(r, s ~ 1)) time. Since ¢(r,8) < s < n, U, can be defined

in O(n) time for all 5, < s < n, and in O(n?) time for all r and s where r < s.

Figure 11: Relationship between ¢(r, s) and @(r,s ~ 1)

Since e(5,Ps); Ursy Urs 25 well a5 w(r, 8) can be found in O(n?) time. The weighted
error-graph G* can therefore be constructed for a convex polygonal curve in O(n?)
time.

With G* constructed, we can use it to find € and its corresponding approximate
curve by binary search on the sorted weights in G* in O(n%logn) time. In the
following, we shall describe a dynamic programming method to find €* in O(nm)

time after the error-graph G* has been constructed.

Let f(4,k) be the minimum weight of a path from vy to v, consisting of at most

k edges. f(i,k) can be defined as follows:

f(i k) = min;s_,s;{max{f(j,k-— 1),w(j, 2)}} ifk>1

' w(0,4) if k=1
The path corresponding to each f(i,k) can be found by keeping track of the index
at which the minimum occurs, i.e., the last vertex adjacent to v; on the minimum-

weight path from vg to v;.

If we consider the problem as a general dynamic programming problem, all
f(G, k- 1), 1 € j < i, have to be referenced in order to compute f(i,k). There

are up to n — 2 such j’s. Thus solving the problem in this way takes O(n?m) time.

18

However, the following two lemmas, which hold for the convex polygonal curves,

allow us to find f(%, k) without considering all these j’s.

Lemma 3.1 Let G* = (V, E*) be the error-graph constructed for a convez polyg-
onal curve P. If (p,,ps) € E*, then
L w(r,s)<wlr,s+1)if0<r<s<n~1;and

2 w(r,s)w(r—1,8)if0<r<s<n—1.

Proof: Similar to Lemma 2.4, O

Intuitively, Lemma 3.1 states that the error will be larger for more “separated”

vertices, This fact also makes f(i, k) nondecreasing with respect to i.

Lemma 3.2 Let P = (po,p1,.--,Pn-1) be & convez polygonal curve. f(i,k) <
fE+1L,k)for1<i<nand1<k<m.

Proof: The lemma can be proved by induction on k. The lemma is true for
k = 1 by Lemma 3.1. Assume the lemma is true for ¥ ~ 1 for some 1 < k < m. For

the case of k,

fi+L,k) = lsrpsiglﬂ{max{f(i.k - 1,w(Gi+ 1}
= min{min {max{f(j,k ~ 1), w(7 i+ D} [+ 1L, k- 1)}
2 min{mig {max{f(j,k - 1),w(5, i+ 1)}}, f(i,k~ 1)} (ind. hypo.)
> Mn{lr;ljéi{maX{f(j,k - 1),w(f, O}, (k- 1)} (Lemma3.1)

= f(i,k)
a
From Lemmas 3.1 and 3.2, f(j,k — 1) is non-decreasing and w(j,i) is non-
increasing with respect to j. Moreover, f(1,k~1) =0 £ w(1,i) and f(3,k~1) 2
w(?,1) = 0 for both i and k greater than 1. Therefore the functions f(j,k — 1)

and w(7,?) must “intersect” at some j, i.e., there exists an index j', such that
fG' k= 1) € w(j',i) and f(§' + 1,k — 1) > w(i’ + 1,i). Let A(i, k) be the value j

19

such that max{f(j, k - 1), w(j, 1)} attains its minimum. It is easy to see that A(, k)
is either ' or 7'+ 1.

Assume that we have found f(i— 1,k) for some i > 2and k > 1 and A(i ~ 1,k)
is known, we can find M(4, k) without considering all values of f(4, %) and w(j,%),
1< j <4 Since w(A(i~ 1,k),7) 2 w(A(i — 1,k),i~ 1) by Lemma 3.1, the index
§' where w(j’,i) and f(j’,k — 1) “intersect” should not be less than A(i — 1,k),
i, A(i, k) 2 A(i— 1,k). Thus we can search sequentially from A(i — 1,k) towards
i for A(4, &) and find f(i,k) in O(A(i, k) — A(i — 1,k)) time. Therefore all f(i, %),
i=1,2,...,n~1 can be found in O(n) time for a particular k and in O(nm) time for
all ¥, 1 < k < m. Combining the fact that the error-graph of P can be constructed

in O(n?) time, we have the following theorem.

Theorem 6 Given m > 0 and a convez polygonal curve with n vertices, the

min-¢ problem can be solved in O(n?) time. O

3.3 Min-¢ Problem of a General Closed Polygonal Curve

For a general closed polygonal curve Pe = (po,p1,.-+,Pn~1), the min-¢ problem
is to find an approximation curve P{ = (Pig,Piys.+ 1 Pim)» Where fg = iy, = k for
some k < n, and its error e(F¢) is as small as possible. The problem can be solved
by considering n open curve problems. Each problem consists of an open curve
formed by breaking up Pc at each point px. Solving one open curve problem takes

O(n*log n) time. Thus the min-¢ problem can be solved in O(n®logn) time.

Theorem T Given m > 0 and a closed polygonal curve with n vertices, the

Al

min-€ pr can be solved in O(n%logn) time. O

3.4 The Min-¢ of a Convex Closed Polygonal Curve

Now we turn to the closed curve min-¢ problem for a convex polygonal curve. “We
shall show in the following that the minimum error ¢* can be determined without
considering all n open curves.

We extend the definition of the error-graph G so that the error of the line

segment between any pair of distinct points are included. Now define G* = (V, E)

20

where V = (v0,v1,...,9n-1) and E = {(v,,) | 0 £ r,5 < n}. The weight w(r, s)
of (vr,9,) Is defined as maXe=r ri1,..,.{d(P7P5, k) }. For example, if n = 9, w(4,8) =

Maxk=4,56,78{d(PiPe, Pk)}, w(8,4) = maxe=g,1,2:3,4{d(Pa7E, p)}, and w(4,4) = 0.

Since the algorithm discussed in Section 3.2 to find the error-graph for an open
curve can be modified to find the error-graph for P, error-graph for P can be
constructed in O(n?) time. Given the error-graph of P, if we find the optimal
approximate curve of Pc by considering all n open curves, it will take O(n(nm))

time. In the following, we shall show how this problem can be done in O(r?) time.

The first step is to apply the algorithm described in Section 3.2 to solve the min-¢
problem for the open convex polygonal curve Py = (po,Py,---,Pn—1,P0)- Let € be
the found minimum error to approximate Py with at most m line segments. Note
that € > €. The second step is to solve the min-# problem for Py with the given
error ¢g by the greedy algorithm as described in Section 2.2. Let m' be the minimum
number of line segments to approximate Py with error €g and Py = (pig, Piys -+ -2 75,,)
be its approximate curve such that w(i;j_1,%; + k) > ¢ for all k£ > 1(except the last
segment). Note that for any line segment 77, 7;, of Py, 0 < j £ m’ — 1, there
must be a point pi, i1 € & < 1;, belonging to an optimal approximate curve of
P. with error ¢* and at most m line segments, i.e., the solution of this problem.
Assume the the contrary that 77 -7p;, does not “cover” any point of an optimal
curve. This optimal curve must contain a line segment 77p; where r < 451 < ; < 5.
Thus w(ij—y,s) € w(r,s) < € < ¢ by Lemma 3.1. This contradicts the fact that
w(ijo1,ij + k) > € forall k> 1.

The third step is to select the line segment 7,77, of Py with minimum difference
ij-1—1j, § € m’ ~ L. The last step is to apply the min-¢ algorithm (Section 3.2) to
find the minimum error ¢ for each open curve Py = (g, Pkats«- -2 P05+ -+ o Pk}, Where
i3 < k < i;. With the previous argument € must be equal fo one of the &’s,
€ = min;,_lgk‘(,} {Ek}.

As far as the time complexity is concerned, the first three steps takes no more
than O(n?) time. Since the minimum difference i1 — i; < n/(m/ — 1) = O(n/m)
and m’ > m/2 (Lemma 3.3), the total time to find ¢ and its approximate curve

would take no more than O(mnZ) = O(n?) time.

21

Lemma 3.3 m' > m/2.

Proof: By contradiction. Assume m’ < m/2, we can construct another approxi-
nate curve P} with error less than ¢ and the number of line segments is at most m.
3asically, each line segment F;,77,,; of Py with w(i;,4;41) = €o can be replaced by
.wo line segments Py, Pk and Pibr,gr» 1 < & < 4541, with w(iy, k), w(k, i,41) < w(?, 5).
Jote that the above replacement can always be possible for all edges with at most

>ne exception where the replacement can only be possible with three line segments.

Thus P{ can be constructed with at most 2m’ + 1 < m line segments. This

ontradicts the fact that ¢o is the minimum error. O

Thus we have the following theorem.

Theorem 8 Given m > 0 and a closed convez polygonal curve with n vertices,

the min-¢ problem can be solved in O(n?) time. o

4 Conclusion

In this paper, we have shown that the min-# problem formulated in [7] can be solved
in O(n®) time for an open polygonal curve and O(n®) for a closed curve, where n
is the number of vertices of the given polygonal curve. If the given polygonal curve
is convex, the problem can be solved in O(r) time for both open and closed curves,
which is optimal in terms of time complexity. We have also shown that the min-¢
problem can be solved in O(n?logn) time for a general open polygonal curve, and
O(n®logn) time for a closed curve. This time complexity can be further reduced to

O(n?) for both open and closed convex polygonal curves.

For the general curve approximation problem, results for other error criteria can

be found in [5, 7].

References

[1] P.J. Burt. Fast filter transforms for image processing. Computer Graphics and

Image Processing 16, pp. 20-51,1981.

22

[2] B.M. Chazelle. Computational Geometry and Convezity. Ph.D Thesis, Yale Uni-
versity, 1980.

{3] F. Chin, A. Choi and Y. Luo. Optimal generating kernels for image pyramids by
Linear fitting. In Proc. 1989 Int. Symp. on Computer Archutecture and Digital
Signal Processing (Hong Kong, Oct. 11-14, 1989), 612-617.

{4] F. Chin, A. Chol and Y. Luo. Optimal generating kernels for image pyramids
by Piecewise fitting. IEEE Trans. Pattern Anal. Machine Intell. (to appear).

[5] L. Guibas, J. Hershberger, J. Mitchell and J.S. Snoeyink Approximating Poly-
gons and Subdivisions with Minimum Link Paths. Technical Report 92-5, Uni-
versity of British Columbia, March 1992.

[6] S.L.Hakimi and E. F. Schmeichel. Fitting polygonal functions to a set of points
in the plane. CVGIP, Graphical Models and Image Processing, Vol. 53 (1991),
pp. 132-136.

[7] H. Imai and M. Iri. Polygonal Approximations of a Curve-Formulations and
Algorithms. In G. T. Toussaint, editor, Computational Morphology. North Hol-
land, 1988

[8] P. Meer, E.S. Baughter and A. Rosenfeld. Frequency domain analysis and syn-
thesis of image pyramid generating kernels. IEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-9, pp. 512-522, July 1987.

[9] A. Melkman and J. O'Rourke. On Polygonal Chain Approximation. In G. T.
Toussaint, editor, Computational Morphology. North Holland, 1988

[10] A. Rosenfeld. (ed.) Multiresolution Image Processing and Analysis. New York,
Springer-Verlag, 1984.

[11] G. T. Toussaint. On the Complexity of Approximating Polygonal Curves in the
Plane. In Proc. IASTED, International Symposwm on Robotics and Automa-
tion, Lugano, Switzerland, 1985

Appendix

A.1 The Proof that for all r,0 < r <n -1, all points pi, r < k < «(r),
satisfy Condition B for any line segment 5;7,, where k < s <
n-1

Figure 12: Property of a{r)

Lemma A.1 Forallr,0 r<n=l,anyk,r<k<oafr), ands, k<s<n-1,
if Lpkprps > 7[2, dipr,pi) S €

Proof: If a(r ~ 1) € k < afr), from Procedure Compute.a(n) given in Sec-
tion 2.2.2, d(pr,pi) < € and the lemma is proved. If k < a(r ~ 1) (Figure 12), from
Procedure Compute.ca(n), there must exist some vertex p+ where 0 € v’ < r with
d{pyr,pr) S €. If Lpxp,rps > 7 /2, we must have Lpep.py > 7 /2 and it is easy to see
that d(p,,px) <e. O

Note that d{py, Pa(r)) > € if @(r) # n. The following lemma shows that Condition
B for 777, is satisfied by all points pr such thatr < k < sifandonlyifr< a{r) < s
and {Pa()PrPs £ 7/2.

Lemma A.2 Assume () < 7 < s < n. There ezists some pi, * < k < s such that

d(pryp) > € and Lpep,ps > 7/2 if and only if r < a(r) < s and Lp,(x)prps > 7/2.

Proof: If part can be proved easily. As Lp,()p,ps > 7/2, from the definition
of Q(T)} 0(1‘) # n, d(?ﬁ pa(r)) >e

24

The only if part can be proved by contrapositive. Assume a(r) > s or
LPa(r)PrPs S 7 /2. 1t follows from Lemma A.1 that d(p,, pi) < € for all those points
pr with Lpepep, > 7/22nd v < k < ¢(r). Since r < k < a(r) has already been
covered by the case with a(r) > s, what remains to be shown is for the assump-
tion when {p,(»)prps < 7/2 and or) < s. Since the given polygon P is convex,
LpipePs S LPafe)PrPs < w/2 for all points py with a{r) < k < 5. Thus the lemma is
proved. O

A.2 The correctness proof of the greedy approach in finding the
shortest path from vy to v,—; in the e-graph G of a convex
polygonal curve

Lemma A.3 Let G = (V, E) be the corresponding €-graph constructed for a
convez polygonal curve P = (po,p1,...,Pn=1). Assumel <k <n—1, R(k)=(vo=
Vigy Vigrerer Vim = V) With iy = f(i,) for 0 L j < m~1 and iy < f(im-1) i5 @

shortest path from vy to vg.

Proof: By induction on k. Clearly the lemma is true for k£ = 1. Assume that
the lemma is true for all ¥’ < k — 1 with k < n — 1. I (vp,0) € E, R(K) = (vo, vk)
and the lemma holds trivially. Otherwise any shortest path from wg to ux has at
least two edges. Let R*(k) = (vo = UjyyUjyy---sVjys ¥ = vk) be a shortest path
from vy to vk, Clearly {vjy,7j,,...,5_,) is a shortest path from vp to v;_,. By
induction hypothesis, R(ji.1) is also a shortest path from vy to vj,_,. Thus, the new
path with (vj,,v5,...,;.,) in R*(k) replaced by R(ji-1) is also a shortest path
from vg to vk. Let R(ji-1) = (vo = iy, Vigs- -, Vi, = ¥y,). Note that f(ij2) <k,
otherwise (v, iy, -y Vi, vkj would be a path from vy to v with length shorter
than that of R*(k), contradicting the fact that R(k) being the shortest. Since
i1 £ f(ii=2) < k and (vi_,,ve) € B, (vs(5,,), %) € E by Corollary 2.5. Thus
(Y0 = Wigy Tiyse-vs Vipgy U(isng)s V&) = B(K) as specified in the lemma with m = [
is also a feasible path from vy to v and has the same length as R*(k). Thus, the

lemma is true for k. O

25

Figure 13: Another property of a{r)

A.3 The min-# problem for a closed convex polygonal curve

The method for solving the min-# problem for a closed convex polygonal curve P,

which can be approximated by at most two lines only, will be described.

Let Pec = (posP1s- - -+ Pn—y)- Suppose we compute the values of a(r) for the open
curve Py = (PoyP1:-.+;Pn-1)- Some properties of a(r) can help us to solve the

problem.

Lemma A4 If d(p,,pu(r) > € d(pr,px) S € forallk, v £ k < or) and p,s is
a vertez such that r < v’ < a(r) and d(py,pa(s)) < €, then d(py, pr) < € for all k,
<k afr).

Proof: F;Pk and PriPs(y) should intersect at some point z(Figure 13). By
triangular inequality, d(px,z) + d(pr,2) 2 d(pr,px) and d(py,z) + d(Pa(r), z) 2
APy, Pagny). Thus d(pr,pi) + @(PrsPa(r)) 2 d(pr,px) + d(Pr,Po(ry)- Since
d(Prs Pa(r)) > € and d{pw, Pags))s d(Prs) < € d(pey Pi) = d(pr> Pi) + A(Prt; Pa(r)) =
d(PsyPay) Se O

Note that there are difference between Lemma A.4 and Lemma A.l. From
Lemma A.l, it is obvious that d(p,,ps) can be larger than ¢ and nothing is daid
about d(pk, pa(r))- But in Lemma A.4, it is assumed that d(p,, px) < ¢ for all k,
r < k < a(r) in order to show d(pp,px) S eforall k, r < ' < k < (7).

Now we describe the method to determine whether the optimal approximate

curve of P consists of a single vertex only. If d(po, pa(0)) > €, po cannot approximate

26

P.. The next candidate that might approximate P can be found by searching
P1,P2, -+ - sequentially for the first vertex p, whose distance d(pr, pago)) < €. From
Lemma A.4, d(p,,px) < € for all k, 7 < k < o(0). Thus pr can be considered as if
Compute.c: was started at p, instead of pg and all pg, 7 < k £ «(0) have already
been tested. Other vertices are tested in a similar way. The time complexity the the
method can be analysed in the following way. Between each evaluation of d{p;, pz),
either 7 of k£ must be incremented by one. r range from 0 ton—1. k is “ahead” of k
by at most 7 and so & vanes from 0 to n — 1 at most twice. Thus no more than 3n
evaluations of d(p,, pr) are needed. We can conclude that if P can be approximated

by at most two line segments, the optimal curve can be determined in O(n) time.

27

Xxgqoooave

AR

¥P 516.22 C45
Chan. W. S.
Approximation of polygonal
curves with minimum number of
line segments or minimum error
_ Hong Kong : Department of
~ Computer Science. Faculty of

	COVER
	Abstract
	1 Introduction
	2 The min problem
	2.1 General open polygonal curves
	2.2 Open convex polygonal curves
	2.3 General closed polygonal curves
	2.4 Convex closed polygonal curves
	3 The min problem
	3.1 General open polygonal curves
	3.2 The min-e problem of a convex curve
	3.3 Min-e Problem of a general closed polygonal curve
	3.4 The min-e of a convex closed polygonal curve
	4 Conclusion
	References
	Appendix
	COVER BACK
	CONTENTS

