Large body defects in the skull heal by fibrous connective tissue and do not form bone unless osteogenic material is placed in the defects. In view of its osteogenic capacity and lack of immunogenicity, bone was used as the implant material for bone regeneration. Eight adult dogs were anesthetized and a midline longitudinal incision along the frontal suture was made over the skull reflecting the skin flap laterally. Periosteal tissue was also removed from the defect. Two defects (10 mm) were spanned by two sides of the bony cranium. The incision was not closed to allow the developing new bone to fill the defects. The defects were implanted with bone harvested from the iliac crest of the defect donor, fixed in 10% formalin, dehydrated, and embedded in paraffin. The defects were then re-implanted into the same site. The bone that was removed from the donor site was also fixed in 10% formalin, dehydrated, and embedded in paraffin. The bone from the donor site was then re-implanted into the same site. The bone that was removed from the donor site was also fixed in 10% formalin, dehydrated, and embedded in paraffin. The bone from the donor site was then re-implanted into the same site.

Phytochemical Analysis of Seeds of O. tetraptera: An In vitro Assay for the Evaluation of Phytotherapeutic Activities

Phytochemical analysis of the seeds of O. tetraptera was performed to evaluate the presence of bioactive compounds. The seeds were extracted using different solvents, and the extracts were subjected to various analytical techniques to identify the phytochemical components. The results showed the presence of flavonoids, saponins, terpenoids, and phenolic compounds. These compounds are known for their potential health benefits, such as antioxidant, anti-inflammatory, and anti-cancer properties. The study highlights the potential of O. tetraptera seeds as a source of valuable bioactive compounds.

Automated Measuring of Mineralized Bone Fracture Around Endosseous Implants

G P MURDOCH, J C MITCHELL and A B CARR (The Ohio State University, Columbus Ohio USA)

Previous studies of osteointegration have employed manual interpretation of photomicrographs. This procedure is time-consuming and subjective. In this study, we used an image analysis software on directly digitized SEM images to evaluate the percentage of mineralized bone and bone volume in the implant. The percentage of mineralized bone was defined as a function of distance from a titanium implant. Geographical Information System (GIS) software was used to characterize the geometric shape and topography of the implant. The results showed that the percentage of mineralized bone increased with increased distance from the implant. The GIS software also allowed for the calculation of bone volume and bone area. These results suggest that the image analysis technique is a reliable and objective method for evaluating bone integration around endosseous implants.

Phytochemical Analysis of Seeds of O. tetraptera: An In vitro Assay for the Evaluation of Phytotherapeutic Activities

Phytochemical analysis of the seeds of O. tetraptera was performed to evaluate the presence of bioactive compounds. The seeds were extracted using different solvents, and the extracts were subjected to various analytical techniques to identify the phytochemical components. The results showed the presence of flavonoids, saponins, terpenoids, and phenolic compounds. These compounds are known for their potential health benefits, such as antioxidant, anti-inflammatory, and anti-cancer properties. The study highlights the potential of O. tetraptera seeds as a source of valuable bioactive compounds.

Pattern of Avogadro in the healing of Composite Intramembranous Bone and Demineralized Bone Matrix

The pattern of avogadro in the healing of composite intramembranous bone and demineralized bone matrix was studied using histological and immunohistochemical techniques. The results showed that the pattern of avogadro is present in the healing of composite intramembranous bone and demineralized bone matrix, indicating the presence of osteoblast-like cells.

Pattern of Avogadro in the healing of Composite Intramembranous Bone and Demineralized Bone Matrix

The pattern of avogadro in the healing of composite intramembranous bone and demineralized bone matrix was studied using histological and immunohistochemical techniques. The results showed that the pattern of avogadro is present in the healing of composite intramembranous bone and demineralized bone matrix, indicating the presence of osteoblast-like cells.

Laminar Pattern of Alveolar Bone Loss Observed in Ovarian Dermytus Dysplasia

Laminar pattern of alveolar bone loss was observed in patients with ovarian dysmaturity dysplasia. The pattern is characterized by the presence of lamellar bone loss followed by the formation of new lamellae. The study suggests that the pattern of alveolar bone loss in this condition is similar to that observed in other bone loss diseases, such as osteoporosis.

Laminar Pattern of Alveolar Bone Loss Observed in Ovarian Dermytus Dysplasia

Laminar pattern of alveolar bone loss was observed in patients with ovarian dysmaturity dysplasia. The pattern is characterized by the presence of lamellar bone loss followed by the formation of new lamellae. The study suggests that the pattern of alveolar bone loss in this condition is similar to that observed in other bone loss diseases, such as osteoporosis.

Laminar Pattern of Alveolar Bone Loss Observed in Ovarian Dermytus Dysplasia

Laminar pattern of alveolar bone loss was observed in patients with ovarian dysmaturity dysplasia. The pattern is characterized by the presence of lamellar bone loss followed by the formation of new lamellae. The study suggests that the pattern of alveolar bone loss in this condition is similar to that observed in other bone loss diseases, such as osteoporosis.