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ABSTRACT
This paper proposes a risk measure for a portfolio of European-style derivative securities
over a fixed time horizon under the Black-Scholes economy. The proposed risk measure
is scenario-based along the same line as Artzner et al. (1999). The risk measure is
constructed by using the risk-neutral probability (Q-measure), the physical probability
(P-measure) and a family of subjective probability measures. The subjective probabili-
ties are introduced by using Girsanov’s theorem. In this way, we provide risk managers
or regulators with the flexibility of adjusting the risk measure according to their risk
preferences and subjective beliefs. The advantages of the proposed measure are that
it is easy to implement and that it satisfies the four desirable properties introduced in
Artzner et al. (1999), which make it a coherent risk measure. Finally, we incorporate
the presence of transaction costs into our framework.

Keywords: Coherent risk measure, Black-Scholes model, risk-neutral probability mea-
sure, physical probability measure, subjective probability measures.

1. Introduction

Risk management is one of the most important tasks in the insurance and fi-
nance industries. Investment banks and financial institutions around the world
seek various techniques to manage their risks. Due to the rapid development of
derivative markets, the tasks of risk management become more challenging. This
accelerates the development of more advanced risk-management techniques. Besides
many other issues in the practice of risk management, such as utility functions, de-
cision theory, etc., one of the key issues and the first step is to construct a proper
measure of risk. Traditionally, volatility has been a commonly used risk measure
by the finance community. Recently, Value-at-Risk (VaR) has also become a very
popular risk measure. VaR is an attempt to summarize the total risk of a port-
folio by a single number which is a statistical estimation of a portfolio loss with
the property that, with a given (small) probability, we stand to incur that loss or
more over a given (typically short) holding period. See Embrechts (2000) and J.P.
Morgan’s Risk Metrics – Technical Document for an introduction and the paper by
Duffie and Pan (1997) for a survey. As noted in Duffie and Pan (1997), VaR is not
easy to calculate if the portfolio contains derivatives. Perhaps the most effective
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and easiest way to obtain the VaR when the portfolio contains derivatives is by the
Monte Carlo simulation. Furthermore, as noted in Artzner et al. (1999), VaR does
not satisfy the subadditivity property in general, especially if the portfolio contains
derivatives. This makes the investigation and construction of risk measures for
derivative securities an interesting and important issue.

Artzner et al. (1999) studied methods of measuring both market and non-market
risk. They presented and justified a set of four desirable properties (translation
invariance, positive homogeneity, monotonicity and subadditivity) for risk measures.
A risk measure which satisfies the four properties is called a coherent risk measure.
Furthermore, they provided a representation form of coherent risk measures as the
supremum of the expected loss of a portfolio with respect to a family of probability
measures. By interpreting each probability measure as a generalized “scenario”, a
scenario-based risk measure, which generalises the margin system SPAN (Standard
Portfolio Analysis of Risk) developed by the Chicago Mercantile Exchange, has
been proposed. Motivated by Artzner et al. (1999), Cvitanic and Karatzas (1999)
have studied the dynamic measures of risk which are also discussed in Föllmer and
Leukert (1999).

Measuring risk for a portfolio of non-linear instruments, such as derivative se-
curities with non-linear payoff functions, has attracted the attention of both re-
searchers and financial practitioners. In particular, VaR of a portfolio of non-linear
instruments has been studied extensively by several authors. See, for example, J.P.
Morgan’s Risk Metrics-Technical Document, Duffie and Pan (1997) and Jahel et al.
(1998). In the literature, there are two commonly used approaches to the calcula-
tion of VaR for non-linear instruments. One is the so-called delta-gamma approach.
A portfolio of non-linear instruments can be decomposed in terms of the portfolio’s
delta and gamma. Another approach is to calculate the portfolio’s moments and
then find a distribution that matches the portfolio’s moments as closely as possible.
However, in both approaches, the distribution of the portfolio is built from those
of the individual instruments. If the portfolio consists of a significant number of
non-linear instruments, the task of finding the distribution of the portfolio’s return
becomes very tedious.

In Siu and Yang (1999), a risk measure for a portfolio of European-type deriva-
tive securities over a fixed time horizon in the context of a multiplicative bino-
mial model was proposed. Under the discrete-time binomial model, a risk measure
which is easy to implement and satisfies the four coherent properties introduced by
Artzner et al. (1999) was provided. This paper can be considered as a continuous
counterpart of Siu and Yang (1999). By following the representation form of co-
herent risk measures introduced by Artzner et al. (1999), our risk measure is also
a scenario-based risk measure which involves the use of the risk-neutral probabil-
ity (Q-measure) , the physical probability (P-measure) and a family of subjective
probability measures. Here, the physical probability P, which is also called the
statistical/data-generating probability, is the underlying probability law that drives
the realization of the stock-price movement. It is objective and unique. In prac-
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tice, the underlying probability law is not known but we can estimate it through
the use of some statistical techniques. A subjective probability measure is assigned
according to an agent’s subjective beliefs and risk preference. Its assignment needs
not be subjected to a general agreement. It is difficult to apply statistical methods
for evaluating whether a subjective probability is “well-chosen” or not. See Focardi
and Jonas (1997) and Wang (1999) for details. We organize this paper as follows:

Section 2 deals with the classical Black-Scholes model consisting of two primary
traded securities: a risky asset (a stock) and a risk-free investment (a bond). We de-
fine a risk measure for a European call option to illustrate the idea of our approach.
We use the celebrated Black-Scholes formula (see Black and Scholes (1973) or Mer-
ton (1973)) to calculate the call price. We use the risk-neutral valuation approach
here. The idea of a risk-neutral valuation can be found in Cox and Ross (1976).
Duffie (1996) and Musiela and Rutkowski (1997) provided an introduction to the
risk-neutral approach as well as other aspects of asset pricing. By the Fundamental
Theorem of Asset Pricing, the condition of no arbitrage is essentially equivalent to
the existence of a risk-neutral measure (see Harrison and Kreps (1979), Harrison
and Pliska (1981) and Dybyig and Ross (1987)). In order to incorporate the risk
manager’s/regulator’s risk preference and subjective beliefs, we introduce a family
of subjective probability measures by using Girsanov’s theorem. We calculate the
expected loss of a portfolio over a fixed time interval with respect to the family of
subjective probability measures.

In section 3, we assume that our financial model consists of several risky as-
sets and one risk-free money market. We propose a risk measure for a portfolio of
European-type derivative securities with different maturities and written on differ-
ent underlying assets. It is worth pointing out that the proposed risk measure still
satisfies the four coherent properties introduced in Artzner et al. (1999).

Section 4 investigates exotic options. We will use the barrier option as an ex-
ample. Many other exotic options can be treated similarly.

Section 5 constructs a risk measure for a portfolio of a single call option in the
presence of transaction costs. In Leland (1985), an option pricing formula in the
presence of small proportional transaction costs was obtained. The risk measure is
constructed by making use of Leland’s pricing formula.

Finally, in section 6, we summarize the main results from this paper, point out
the limitations of our model and suggest some possible topics for further research.

2. Risk Measures for Vanilla European Derivatives in the Univariate
Black-Scholes Model

In this section, we deal with plain vanilla European derivatives under the stan-
dard Black-Scholes assumptions. We consider a financial market consisting of one
risk-free bond B and one risky asset S with the time horizon [0, T ], during which all
economic activities take place. Suppose (Ω,F ,P) is a complete probability space,
where P is the physical probability measure. We assume that the physical probabil-
ity measure P is given or known. Let r, µ and σ be the risk-free interest rate of the
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bond B, the expected return, and the volatility of the stock S, respectively. We as-
sume that r, µ and σ are given constants. Let {Wt} be a standard Brownian motion
on the probability space (Ω,F ,P). Then, the evolution of the bond-price process
{Bt} and the stock-price process {St} are governed by the following equations:

dBt = r Bt dt , B0 = 1

dSt = µ St dt + σ St dWt , S0 = s . (1)

Let {FW
t } denote the natural filtration generated by the Brownian motion {Wt}.

That is, FW
t = σ{Wu |u ∈ [0, t]}, t ∈ [0, T ]. Then, we equip our sample space (Ω,F)

with the filtration {Ft} which is defined as the P-augmentation of {FW
t }.

In order to focus on the main idea of our model, we use the standard European
call option with strike price K, maturing at time T and written on the underlying
asset S as an illustration. For the valuation of the call option, we use the risk-
neutral probability measure Q which is defined by the following Radon-Nikodym
derivative:

dQ
dP

∣∣∣∣∣
Ft

= exp

{
−

(
µ− r

σ

)
Wt − 1

2

(
µ− r

σ

)2

t

}
, t ∈ [0, T ] (2)

Then, by Girsanov’s theorem,

W̃t = Wt +
µ− r

σ
t , t ∈ [0, T ] (3)

is a standard Brownian motion with respect to {Ft} under Q.
Let {Zt} be the discounted stock-price process {e−rtSt}. Then, by using (1),

(3) and Itô’s formula, it is easy to check that, under Q,

dZt = σ Zt d W̃t (4)

Thus, {Zt} is a Q-martingale with respect to {Ft}. Hence, the current price of the
call option at time t is given by

C(t) = e−r(T−t)EQ{max(ST −K, 0) | Ft} (5)

Under the usual Black-Scholes assumptions, the expectation (5) can be evaluated
to give the celebrated Black-Scholes formula:

C(t) = StΦ(d1)−K e−r(T−t)Φ(d2) (6)

where

d1 =
ln(St

K ) + (r + 1
2σ2)(T − t)

σ
√

T − t
,

d2 = d1 − σ
√

T − t

and Φ(·) is the c.d.f. of the standard normal distribution.
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To simplify the notations, we write the formula for the Black-Scholes call price
in (6) as a function C(St, t, K) of the current stock price St, the current time t and
the strike price K.

Given the market (price) information up to the time t (Ft), we define the future
net worth of the call option over the future short time horizon [t, t + h] (h is small)
as a random variable C(t + h) − erhC(t), denoted as ∆ Ct,h. For the purpose
of measuring risk, it is well-accepted by the finance community that the physical
probability measure P is normally used to calculate the distribution of the future
net worth (Profit/Loss distribution) of a portfolio over a fixed future time horizon.
However, Ait Sahjlia and Lo (1997) suggested the use of the risk-neutral probability
for the calculations of risk measures, in particular the VaR calculations, since they
argue that an economic value should be placed on measuring the losses of a portfolio.
Here, we use a family of subjective probability measures in order to incorporate the
risk manager’s/regulator’s risk preference and subjective beliefs. We define a family
of subjective probabilities equivalent to the P-measure as follows:

Let Λ be an interval [a, b] in R. For each λ ∈ Λ, we define the subjective
probability measure Pλ ∼ P associated with λ by the following Radon-Nikodym
derivative:

dPλ

dP

∣∣∣∣∣
Ft

= exp

{
−

(
µ− λ

σ

)
Wt − 1

2

(
µ− λ

σ

)2

t

}
, t ∈ [0, T ] (7)

Then, by Girsanov’s theorem,

Wλ
t = Wt +

µ− λ

σ
t , t ∈ [0, T ] (8)

is a standard Brownian motion with respect to {Ft} under Pλ. Hence, under Pλ,
(1) can be rewritten as

d St = λSt dt + σ St dWλ
t (9)

Let PΛ be a family of subjective probability measures {Pλ}λ∈Λ associated with
the index set Λ. Then, by following the representation form of coherent risk mea-
sures in Artzner et al. (1999), we define a risk measure for the call option over
[t, t + h] with respect to PΛ and Ft as follows:

ρPΛ

(
∆ Ct,h | Ft

)
= sup

{− EPλ

(
e−rh∆ Ct,h | Ft

) |λ ∈ Λ
}

(10)

Note that the risk measure (10) involves a double expectation with the outer
expectation taken under the Pλ-measure and the inner expectation taken under the
Q-measure.

From standard calculations, the conditional expectation EPλ

(
C(t + h) | Ft

)
, for

each λ ∈ Λ, can be obtained as follows (see Cox and Rubinstein (1985) or Boyle
and Yang (1998)) :

EPλ

(
C(t + h) | Ft

)
= C

(
St eλh, t, Kerh

)
(11)
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Note that the expression (11) is given by the Black-Scholes formula (6) with the
same time to maturity, the same volatility and the same interest rate, but a higher
input asset price St eλh and a higher input strike price Kerh. The new asset price
St eλh is equal to the expected value (under Pλ) of the asset price at time (t + h),
namely EPλ

(St+h | Ft) = St eλh.
Hence, the risk measure (10) can be rewritten in the following form:

ρPΛ

(
∆ Ct,h | Ft

)
= −e−rhC(St eah, t, K erh) + C(St, t, K) (12)

The risk measure (10) can be applied to evaluate the risk of a portfolio consisting
of several call and put options with different strike prices and maturities, but written
on the same underlying asset S. As long as the components (the numbers of units
of call and put options) within the portfolio have been specified, the closed-form
expression of the risk measure, which is similar to the expression given in (12),
can be obtained. Furthermore, it is worth pointing out that our risk measure is
defined from the viewpoint of a buyer. From a writer’s point of view, the future
net loss of the call option becomes ∆ Ct,h. This means that the future net loss
from the writer’s viewpoint is the negative of the future net loss from the buyer’s
perspective. Because of the different views between the writer and the buyer and
their risk preferences, they may choose different index sets Λ. For instance, since the
writer (buyer) faces the risk due to the upward (downward) stock-price movement,
the writer (buyer) may choose the index set Λ containing more upward (downward)
stock-price “scenarios”. Finally, it is clear that the risk measure (12) satisfies the
four coherent properties introduced in Artzner et al. (1999).

Remarks:

• Our risk measure deals with the risk of an unhedged/naked position of op-
tions due to the adverse market price movement, while Cvitanic and Karatzas
(1999) addressed the problem of measuring the risk of incomplete hedging.
Due to the rapid growth in the trading volume of derivatives in the secondary
markets, our risk measure is of practical relevance in evaluating the specu-
lative losses from the derivative markets. One common feature between our
risk measure and the proposed risk measure in Cvitanic and Karatzas (1999)
is that both are scenario-based.

• For each fixed “scenario” λ ∈ Λ, EPλ
(−e−rh∆Ct,h | Ft) is the best estimate of

the discounted-future-net-loss −e−rh∆Ct,h in the expected squared-loss-error
sense with respect to the measure Pλ. Hence, our risk measure is just the
best estimate of the loss −e−rh∆Ct,h under the worst-case “scenario” over Λ.
In fact, the concept of VaR and our risk measure are quite different. VaR
concerns the statistical estimation of the loss of a portfolio with a certain
degree of confidence (or probability level) while our risk measure deals with
the estimation of the loss of the portfolio under the worst-case “scenario”.
Nevertheless, both risk measures express the concept of risk as the portfolio’s
loss in domestic monetary units. By changing probability measures, we can
shift the conditional mean of the discounted-net-loss −e−rh∆ Ct,h given Ft
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under the Pλ-measure to the α-quantile of the conditional distribution of
−e−rh∆ Ct,h given Ft under the original P-measure for a given α ∈ (0, 1).
That is, there exists an index set Λα associated with a given confidence level
α such that ρPΛ

(
∆ Ct,h | Ft

)
= V aRP,α

(
∆ Ct,h | Ft

)
:= sup

{
x ∈ R | P( −

e−rh∆Ct,h > x | Ft

)
> α

}
. This somehow suggests a way to relate our risk

measure to the VaR measure in the case of the European call option.
• In our model, the index set Λ is chosen according to one’s subjective beliefs

and risk preference. One may argue that it is not easy to implement our
risk measure in some practical situations since the choice of the index set
involves human judgment or the practitioner’s subjective beliefs. However,
we contend that the role of human judgment provides an important way to
improve risk measurement. Holton (1997) pointed out the subjective nature
of risk and the inappropriateness of neglecting the role of human judgment for
measuring risk. In Artzner et al. (1997), it has been mentioned that the only
way to improve risk management is to think before calculating risk measure.
In Delbaen (1999) and Wang (1999), it is also pointed out that the choice of
probability measures for measuring risk is quite subjective. Furthermore, we
notice that EQ

( − e−rh∆ Ct,h | Ft

)
= 0. This implies that the risk-neutral

probability can serve as a reference point for our risk measure. Suppose an
agent chooses an index set Λ for applying our risk measure. Then, the risk
measure ρPΛ

(
∆ Ct,h | Ft

)
is positive (zero, negative) if and only if the agent is

risk-averse (risk-neutral, risk-taking). This property plays a similar role with
the utility functions in financial economics.

• If Λ1 ⊆ Λ2, ρPΛ1

(
∆ Ct,h | Ft

) ≤ ρPΛ2

(
∆ Ct,h | Ft

)
. This means that the more

“scenarios” you consider, the more conservative the risk measures obtained
are. If an investor is more risk-averse, he/she may choose a set Λ with a
smaller a and/or a larger b, and hence enlarge the risk measure.

• ρPΛ

(
∆ Ct,h | Ft

)
can be interpreted as the margin requirement that should be

charged in order to withstand the risk of the portfolio. If ρPΛ

(
∆ Ct,h | Ft

)
is negative, −ρPΛ

(
∆ Ct,h | Ft

)
can be interpreted as the cash amount that

can be withdrawn from the current account so that one can still support the
expected loss in the portfolio under the worst-case “scenario” over the time
horizon [t, t + h].

• The risk measure involves the volatility σ which is assumed to be given in
our framework. However, in reality, σ is unknown and hence, so is the risk
measure. Since the unknown parameter, σ, is defined under the P-measure,
it can be estimated by some statistical techniques which have been provided
by some standard texts. For instance, Hull (1997). Then, we can obtain a
point estimate for the risk measure by replacing the unknown parameter σ

with its estimate σ̂. By making use of the confidence interval for the unknown
parameter σ, we can also obtain a confidence interval for the risk measure.
This idea is similar to the idea of confidence intervals for VaR introduced in
Chappell and Dowd (1999).
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3. Extension of our Risk Measures to the Multivariate Black-Scholes
Model

We extend our definition of risk measures for derivatives in the context of the
multivariate complete Black-Scholes Model. The extended risk measure is appli-
cable for a portfolio consisting of derivatives written on several underlying assets
such as basket options, cross-currency options, exchange options, index options,
options on the extremum of several assets, etc. As long as the valuation formu-
las for the derivatives are available, analytical forms of the risk measures can be
obtained. In general, the extended risk measures can be expressed in the expecta-
tion form like expression (10). Now we suppose that our financial model consists
of one riskless bond B and n risky stocks S1, . . . , Sn. The time horizon during
which all economic activities take place is given by [0, T ]. Let (Ω,F ,P) be a com-
plete probability space with P being the physical probability measure. As in sec-
tion two, we assume that the physical probability measure P is given or known.
Let r, µ and σ denote the risk-free interest rate of the bond B, the vector of
stock-appreciation rates (µ1, . . . , µn)′ (The prime (′) denotes transposition) and the
volatility matrix (σij)1≤i,j≤n of the stocks, respectively. We suppose that r, µ and
σ are known or given and that σ is non-singular (σ−1 exists). Let {Wt} denote an
n-dimensional standard Brownian motion (W1t, . . . , Wnt)′ on the probability space
(Ω,F ,P). Then, the dynamic of the bond-price process {Bt} and the stock-price
process {Sit} for the stock Si (i = 1, 2, . . . , n) are governed by the following equa-
tions:

dBt = r Bt dt ; B0 = 1

dSit = µi Sit dt +
n∑

j=1

σij Sit dWjt ; Si0 = si; i = 1, 2, . . . , n . (13)

Let {FW
t } denote the natural filtration generated by the Brownian motion {Wt}.

That is, FW
t = σ{Wu |u ∈ [0, t]}, t ∈ [0, T ]. Then, we equip our sample space

(Ω,F) with the filtration {Ft} which is defined as the P-augmentation of {FW
t }.

In order to ensure that there is no arbitrage opportunity, we need to define
the minimal martingale measure. Let γ := σ−1(µ− r 1n) be the price of unit risk
where 1n is the n-dimensional unit vector. Note that the γ defined in this way is not
unique. Let γ̂ ∈ Rn be the vector given in Musiela and Rutkowski (1997) (p. 256).
We define the minimal martingale measure Q by the following Radon-Nikodym
derivative:

dQ
dP

∣∣∣∣∣
Ft

= exp

{
− γ̂′Wt − 1

2
‖γ̂‖2t

}
; t ∈ [0, T ] (14)

By Girsanov’s theorem,

W̃t = Wt +
1
2
γ̂t ; t ∈ [0, T ] (15)

is an n-dimensional standard Brownian motion with respect to {Ft} under Q.
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Hence, under Q, (13) can be rewritten as

dSit = r Sit dt +
n∑

j=1

σij Sit d W̃jt (16)

Now we consider a portfolio V consisting of m contingent claims V1, V2, . . . , Vm.
Each contingent claim Vk (k = 1, 2, . . . , m) is written on n underlying assets S1, . . . , Sn

and with maturities at time Tk. Hence, the payoff function for Vk at time Tk can
be written as a certain smooth function, Vk(S1,Tk

, S2,Tk
, . . . , Sn,Tk

, Tk), where Si,Tk

is the price of the stock Si at time Tk and max{T1, T2, . . . , Tm} ≤ T . We assume
that the portfolio V consists of φk(t, h) units of the contingent claim Vk over the
small time horizon [t, t + h]. Note that φk(t, h) remains unchanged over [t, t + h]. If
(t + h) > Tk, we set φk(t, h) = 0. If φk(t, h) is negative, −φk(t, h) is interpreted as
the number of units selling short for Vk.

Then the no arbitrage price of the portfolio V at time u, where u ∈ [t, t + h], is
as follows:

V (u) =
m∑

k=1

φk(t, h)e−r(Tk−u)EQ
{
Vk(S1,Tk

, S2,Tk
, . . . , Sn,Tk

, Tk) | Fu

}
(17)

Let Λ be a compact and convex set in Rn. For each λ := (λ1, . . . , λn)′ ∈ Λ,
we define the subjective probability measure P� associated with λ by the following
Radon-Nikodym derivative:

dQ
dP

∣∣∣∣∣
Ft

= exp

{
− σ−1(µ− λ)′Wt − 1

2
‖σ−1(µ− λ)‖2t

}
; t ∈ [0, T ] (18)

Then, by Girsanov’s theorem,

W�
t = Wt +

1
2
σ−1(µ− λ)t ; t ∈ [0, T ] (19)

is an n-dimensional standard Brownian motion with respect to {Ft} under P�.
Hence, (13) can be rewritten as

dSit = λi Sit dt +
n∑

j=1

σij Sit dW�
jt ; i = 1, 2, . . . , n (20)

where W�
jt is the j-th component of W�

t .
Let PΛ be a family of subjective probability measures, {P�}�∈Λ, associated

with the index set Λ. Suppose ∆Vt,h denotes the change in the no arbitrage value
(measured in terms of the value at time (t + h)) of the portfolio V over the time
horizon [t, t + h]. Then, similar to section two, the risk measure for the portfolio V

over the time horizon [t, t + h], with respect to PΛ and Ft, is defined as:

ρPΛ
(∆ Vt,h | Ft) = sup

{
−

m∑

k=1

φk(t, h)e−r(Tk−t)
{

EP�

[
EQ

(
Vk(S1,Tk

, . . . , Sn,Tk
, Tk)

| Ft+h

) | Ft

]
− EQ(Vk(S1,Tk

, . . . , Sn,Tk
, Tk) | Ft

}
|λ ∈ Λ

}
(21)
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An interesting special case of risk measure (21) is obtained by letting n = 1.
This special case deals with a portfolio of options with different maturities but
written on the same underlying asset. It is clear that risk measure (21) satisfies
the four coherent properties and hence, is a coherent risk measure. In the following
example, we use a portfolio consisting of a single exchange option maturing at time
T as an illustration. Closed-form expression of the risk measure for the exchange
option over the time horizon [t, t + h] can be obtained.

Example:
We consider a financial model consisting of one risk-free asset, B, and two risky

stocks, S1 and S2. The governing equations for the evolution of the financial in-
struments are given in (13) with n = 2. The exchange option gives the holder the
right to exchange S2 by S1 at time T . We can view the exchange option as a call
on the underlying stock S2 with a strike price equal to the price of the stock S1 at
time T , or a put on the stock S1 with a strike price equal to the price of the stock
S2 at time T . For more detailed discussions on exchange options, see Margable
(1978), Rubinstein (1991), Hull (1997), Kwok (1998), etc. Let S1T and S2T denote
the prices of the stocks S1 and S2 at time T , respectively. Then the payoff function
of the exchange option at expiry T is given as:

X(T ) = max(S2T − S1T , 0) (22)

In Margable (1978), the following pricing formula for the exchange option was
derived:

X(t) = S2tΦ(d̂1)− S1tΦ(d̂2) , (23)

where

d̂1 =
ln

(
S2t

S1t

)
+ 1

2σ2
x(T − t)

σx

√
T − t

,

d̂2 = d̂1 − σx

√
T − t

and
σ2

x = σ2
11 + σ2

12 − 2(σ11σ21 + σ12σ22) + σ2
21 + σ2

22

Note that the prices for the American and European exchange options are the same
since it is not optimal to exercise an American exchange option prematurely (see
Kwok (1998)). To simplify the notations, we write the pricing formula (23) as a
function, X(S1t, t, S2t), of the current price S1t for the stock S1, the current time t

and the current price S2t for the stock S2.
From standard calculations, it can be shown that, for each λ := (λ1, λ2) ∈ Λ,

the conditional expectation EP�
(
X(t + h) | Ft

)
is given as follows:

EP�
(
X(t + h) | Ft

)
= X

(
S1t eλ1h, t, S2t eλ2h

)
(24)

Let ∆ Xt,h be X(t + h)− erhX(t). Suppose λ+
1 and λ−2 denote maxλ∈Λ λ1 and

minλ∈Λ Λ2, respectively. Then, the risk measure for the exchange option over the
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time horizon [t, t + h] is given as follows:

ρPΛ
(∆ Xt,h | Ft) = −e−rhX(S1t eλ+

1 h, t, S2t eλ−2 h) + X(S1t, t, S2t) (25)

Note that the risk measure (25) is a special case of the risk measure (21) with
n = 2, m = 1 and V (T ) = X(T ).

4. Risk Measures for Barrier Options

Recently, barrier options have become increasingly popular in over-the-counter
options markets. Now a large variety of barrier options are available in equity, for-
eign exchange and fixed-income markets. For more detailed discussions on barrier
options, see Hull (1996), Jarrow and Turnbull (1996), Nelken (1996) and Kunit-
omo and Ikeda (1992). Basically, one can classify eight types of standard European
barrier options. Namely, down-and-out calls, up-and-out calls, down-and-in puts,
down-and-out puts, etc. Closed-form valuation formulas for all eight types of bar-
rier options were obtained in Rubinsten and Reiner (1991). Intuitively, one expects
barrier options to be cheaper than vanilla contracts. However, the reduction in
premium payment requires the holder of barrier options to bear a higher risk since
barrier options are extinguished when the price of the underlying asset hits a pre-
specified price level (barrier). Therefore, it is essential for the holder of barrier
options to perform risk measurement for his/her risky portfolio. In this section, we
consider the risk-measurement problems with barrier options. We only construct a
risk measure for a portfolio consisting of a single down-and-out call option which
matures at time T for illustration. An analytical form of the risk measure can be
obtained. For other types of barrier options, analytical forms of the risk measures
can be calculated by their corresponding valuation formulas in a similar way. Now,
let L and K be the barrier and the strike price of the down-and-out option respec-
tively. We assume that S0 > L. Let I{A} denote the indicator function of an event
A. Then the discounted payoff of the down-and-out call option is given by:

e−rT max
{
ST −K, 0

}
I
{

min
0≤t≤T

St > L
}

(26)

We assume that the evolution of the prices of the risk-free bond B and the risky
stock S are the same as in section two. Let C(St, t, K) denote the European call
option price. Then the European down-and-out call option price at the current time
t is given by:

bdo(St, t, L)

= C(St, t, K)−
( L

St

) 2r
σ2

[
LΦ(d3)− KSt

L
e−r(T−t)Φ(d4)

]
(27)

where

d3 =
ln

(
L2

StK

)
+

(
r + 1

2σ2
)
(T − t)

σ
√

T − t
,

d4 = d3 − σ
√

T − t
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Let ∆bdo(t, h) be bdo(St+h, t + h,L)I
{

min
0≤t≤T

St > L
}
− erhbdo(St, t, L). Again,

we define the risk measure for holding the long position of a down-and-out call
option over the future short time horizon [t, t + h], with respect to the family PΛ

(where PΛ is defined in section two) and Ft, as follows:

ρPΛ

(
∆bdo(t, h) | Ft

)
= sup

{− EPλ

(
e−rh∆bdo(t, h) | Ft

) |λ ∈ Λ
}

(28)

Let Φ2(x, y; ρ0) denote the distribution function of a standardized bivariate nor-
mal random vector, where ρ0 is the coefficient of correlation between the random
variables. From standard calculations, for each λ ∈ Λ, the conditional expectation
EPλ

(
bdo(St+h, t + h,L) | Ft

)
, denoted as EB(λ, r, σ, St, t, h, T,K, L), is obtained as

follows:

EB(λ, r, σ, St, t, h, T,K, L)

= bdo
[
eλhSt, t, K erh, L erh

]

−L
( L

St

) 2λ
σ2 eλhΦ2

(
d′3,

ln( L
St

) + (λ + 1
2σ2)h

σ
√

h
;

√
h

T − t

)

+L
( L

St

) 2r
σ2 e

2r(r−λ)
σ2 h+rhΦ2

(
d̂′3,

ln( L
St

) + (2r − λ + 1
2σ2)h

σ
√

h
;

√
h

T − t

)

−St eλhΦ2

(
d̂1,

ln( L
St

)− (λ + 1
2σ2)h

σ
√

h
; −

√
h

T − t

)

+St

(St

L

) 2(r−λ)
σ2 e

2r(r−λ)
σ2 h+rhΦ2

(
d′1,

ln( L
St

)− (2r − λ + 1
2σ2)h

σ
√

h
; −

√
h

T − t

)

+K e−(T−t−h)rΦ2

(
d̂2,

ln( L
St

)− (λ− 1
2σ2)h

σ
√

h
; −

√
h

T − t

)

−K e−(T−t−h)r
(St

L

) 2(r−λ)
σ2 e(λ+

2r(r−λ)
σ2 −r)hΦ2

(
d′2,

ln( L
St

)− (2r − λ− 1
2σ2)h

σ
√

h
; −

√
h

T − t

)

+K e−(T−t−h)r
( L

St

) 2λ
σ2−1Φ2

(
d′4,

ln( L
St

) + (λ− 1
2σ2)h

σ
√

h
;

√
h

T − t

)

−K e−(T−t−h)rSt eλh
( Lerh

St eλh

) 2r
σ2

erhΦ2

(
d̂4,

ln( L
St

) + (2r − λ− 1
2σ2)h

σ
√

h
;

√
h

T − t

)

(29)

where

d′1 =
ln

(
St e−λh

K e−rh

)
+ (r + 1

2σ2)(T − t)
σ
√

T − t
,

d′2 =
ln

(
St e−λh

K e−rh

)
+ (r − 1

2σ2)(T − t)
σ
√

T − t
,



Risk Measures for Derivatives 13

d̂3 =
ln

(
L2 e2rh

St eλh K erh

)
+ (r + 1

2σ2)(T − t)

σ
√

T − t
,

d′3 =
ln

(
L2 e−2rh

St e−λh K e−rh

)
+ (r + 1

2σ2)(T − t)

σ
√

T − t
,

d̂4 =
ln

(
L2 e2rh

St eλh K erh

)
+ (r − 1

2σ2)(T − t)

σ
√

T − t
,

d′4 =
ln

(
L2 e−2rh

St e−λh K e−rh

)
+ (r − 1

2σ2)(T − t)

σ
√

T − t
,

Hence, the risk measure (28) can be rewritten as follows:

ρPΛ(∆bdo(t, h) | Ft)

= sup
{− e−rhEB(λ, r, σ, St, t, h, T, K,L) + bdo(St, t, L) |λ ∈ Λ

}
(30)

where EB(λ, r, σ, St, t, h, T, K,L) is given in (29).
Finally, it is worth pointing out that the analytical form of a risk measure can

be obtained in a similar way when the portfolio consists of other types of exotic
options for which closed-form valuation formulas are available. Some examples of
these are look back options, step options and passport options, etc. For detailed
discussions on step options and passport options, see Linetsky (1999) and Delbaen
and Yor (1999) respectively.

5. Risk Measure for Vanilla European Derivatives in the presence of
Transaction costs

In this section, we incorporate transaction costs into our framework. Under the
assumption that proportional transaction costs are incurred when the underlying
asset is traded, as well as the other usual assumptions in the Black-Scholes model,
Leland (1985) provided a modification of the Black-Scholes model, where the repli-
cating portfolio for the option can be revised only at regular time intervals in such a
way that the total transaction costs incurred in the replication are finite. Following
his approach, the pricing formulas for the standard European call and put options
can be obtained as the modification of the Black-Scholes formulas with the original
volatility replaced by the modified volatility which depends on the Leland number.
Hence, based on Leland’s option pricing model, we can obtain the closed-form ex-
pression of the risk measure for a portfolio consisting of standard European call and
put options over the short time horizon [t, t + h]. Of course, Leland’s adjustment
for transaction costs is only an approximation. For simplicity, we only deal with a
single European call option with a strike price, K, maturing at time T . The general
result can be obtained in a similar way. First, we impose the following assumptions:

(1) The dynamics of the bond price and the stock price are the same as in section
two, where the volatility is assumed to be constant.
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(2) The proportional transaction costs are incurred only when the underlying
asset is traded. However, there is no transaction cost in the derivative and
bond markets.

(3) The replicating portfolio for the call option can be revised at regular intervals
with common length δt.

(4) If α units of the underlying asset are bought (if α > 0) or sold (if α < 0)
at the price S, then the transaction costs incurred is 1

2L|α|S, where L is the
round-trip transaction cost per unit dollar of transaction.

(5) There is no dividend payment in the underlying stock during the life of the
option.

Then, from Leland’s option pricing model with transaction costs, the price of
the call option is given as follows:

C̃(t) = StΦ(d̃1)−K e−r(T−t)Φ(d̃2) (31)

where

d̃1 =
ln(St

K ) + (r + 1
2 σ̃2)(T − t)

σ̃
√

T − t
,

d̃2 = d̃1 − σ̃
√

T − t ,

and

σ̃2 = σ2

[
1 +

√
2
π

(
L

σ
√

δt

)]

For details of the proof, see Leland (1985) or Kwok (1998). Note that formula
(31) resembles the Black-Scholes formula for the call option except that the original
volatility σ is replaced by the modified volatility σ̃. Since the modified volatility
σ̃ is greater than the original volatility σ, Leland’s call price is greater than the
Black-Scholes call price. It is expected that the presence of transaction costs affects
the risk measure only through the option’s pricing formula. In the following, we
construct the risk measure for the call option based on pricing formula (31). We
use notations with the same meaning as those used in section two. For simplicity,
we write pricing formula (31) as the function C̃(St, t, K) of the current stock price
St, the current time t and the strike price K.

Let ∆ C̃t,h be C̃(t+h)−erhC̃(t). C̃(St eλh, t, K erh) denotes the modification of
the expression (11) with the original volatility σ replaced by the modified volatil-
ity σ̃. Then, by following the same procedure as in section two, the closed-form
expression of the risk measure can be obtained as follows:

ρPΛ(∆ C̃t,h | Ft) = −e−rhC̃(St eah, t,K erh) + C̃(St, t, K) , (32)

It is not difficult to check that risk measure (32) is coherent.
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6. Conclusion and future research

In this paper, we considered the well-known Black-Scholes model and proposed a
risk measure for a portfolio containing derivative securities. The popular risk mea-
sure, Value-at-Risk, is difficult to implement when the portfolio contains derivatives
and it is not a coherent risk measure. The advantages of our risk measure are that
it is easy to implement and it is coherent. Our method can be applied, not only
to standard call or put options, but, as long as the pricing formula is available, to
calculate a risk measure as well.

We used the risk-neutral probability Q to calculate the price of derivatives. We
calculated the expected loss of a portfolio over a fixed time period with respect to
a family of subjective probability measures in order to incorporate the risk trader’s
risk preference and subjective beliefs. Our risk measure is scenario-based, which is
of the same type as the representation form of coherent risk measures. Transaction
costs were included by using the option pricing formula with transaction costs given
in Leland (1985).

However, the risk measure defined in this paper also has some limitations. For
example, in the presence of transaction costs, we can only measure the risk of a
single call option. In this paper, we did not include the case of American options.
Although the American options can be treated similarly, the computational problem
becomes very difficult when using the method in this paper. We can incorporate
the model risk using our model by letting the volatility σ vary on an interval. All
the analyses remain the same.

Many related problems can be considered in the future. The relationship be-
tween Siu and Yang (1999) and this paper need to be investigated further. In
particular, whether or not we can obtain the risk measure of this paper by taking
proper limit of the risk measure in Siu and Yang (1999) is an interesting problem.
Furthermore, the problem of measuring risk for derivatives could become very chal-
lenging if we include the stochastic interest rate models and foreign exchange rate
models in our formulation. Some numerical studies could also prove to be enlight-
ening. The problem of implementing efficient numerical procedures and algorithms
may also be worth investigating.
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