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Abstract 
 Admissible Matrix Formulation is a patch test approach for efficient construction of multi-
field finite element models. In hybrid stress and strain elements, the formulation employs the patch 
test patch to identify the constraints on, respectively, the flexibility and stiffness matrices which are 
most detrimental to the element efficiency. Admissible changes are introduced to the matrices so as 
to reduce the computational cost while the element accuracy remains virtually intact. In this paper, 
a comprehensive review of Admissible Matrix Formulation is presented. Finite element techniques 
seminal to the formulation are also discussed.  
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1. Introduction 
 Since Pian's momentous paper on hybrid stress element formulation was published in 1964 
[1], multi-field functionals have become one of the standard tools for designing and justifying 
advanced finite element models. In this paper, the definition of hybrid elements given by Pian in a 
recent keynote lecture is adopted, namely hybrid elements are formulated by multi-field variational 
functionals, yet the only unknowns in the resulting global equation are still the nodal displacements 
[2]. Owing to their multi-field nature which provides additional control over the element behaviour, 
hybrid elements have gained remarkable success in circumventing the deficiencies of the 
displacement elements. These deficiencies include membrane/shear locking, dilatational locking 
[3,4], susceptibility to mesh distortion, complications in constructing C1 displacement profile for C1 
plate/shell models, poor performance in stress singularity and material discontinuity problems [5-7] 
etc. However, this nature also give rises to new problems such as frame invariance, nodal 
invariance (element symmetry) [8,9], optimal choice of the assumed stress/strain field, suppression 
of deformation modes and high computational cost in condensing the assumed stress/strain field. 
Only a few references are cited for the aforementioned issues as many of them would be addressed 
separately by other contributors of this special journal issue on hybrid/mixed elements.  
 Admissible Matrix Formulation (AMF) which has been established as a tool for reducing the 
computational cost of hybrid elements is expounded in this paper. For hybrid stress elements, AMF 
employs the patch test to identify the constraints on the flexibility matrix. Changes admissible to the 
identified constraints are introduced in the flexibility matrix to enhance the element efficiency.  
AMF was first applied to lower order elements with incompatible displacement modes. After 
realizing the computational burden incurred by the incompatible modes, AMF was then generalized 
to lower order elements with no incompatible modes. Difficulties were then encountered in 
extending AMF to higher order elements and a stabilization approach was adopted. In the approach, 
the leverage matrix pertinent to the assumed higher order stress modes plays the role of stabilizing 
the sub-integrated element. For some elements, if the assumed stress is strictly contravariant, the 
leverage matrix can be made very simple and formed explicitly in the element subroutine.  
 In the comprehensive account of the SemiLoof elements [10] (whose complexity can be 
significantly reduced by using the hybrid formulation [11,12]), the late Irons' wrote : no formulation 
merges from a historical vacuum. AMF is not an exception. Seminal ideas leading to AMF will be 
addressed. Among them, the orthogonal approach comes first. 
 
 
2. Orthogonal Approach 
 Orthogonal Approach was first reported by Chen, Chow & Sze and submitted for reviewing 
in 1989 [13]. Unfortunately, substantial delay was encountered in the editorial process of the 
journal concerned. Since other papers by Chen & Cheung and Sze & Chow [14-17] rooted in the 
approach have been published elsewhere, withdrawal of reference [13] was decided. As a result, the 
manuscript has never been published.  

 



 The Orthogonal Approach starts with an extended elementwise Hu-Washizu functional 
[13,15,17] : 
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in which ε is the assumed strain, C is the material stiffness matrix, σ is the assumed stress, D is the 
strain-displacement operator,  denotes the integration over the element domain and t is the 

prescribed traction applied over the portion of element boundary denoted by St. Displacements uq  
and uλ are compatible and incompatible, respectively. Throughout this paper, the material 
properties are assumed to be constant inside an element. Without sacrificng generality, the assumed 
stress and strain can be  partitioned into constant "c" and non-constant "n" modes : 
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and the discretized displacements are written as : 
 
   ,          (3a,b)  u Nq q= q u Nλ λ= λ

 
where Ic  is the identity matrix of order equal to dim.(ε), q is the nodal displacement vector, α's, 
β's and λ are vectors of coefficients to be condensed in the element level. For Duλ  not equal to 

zero, in Eqn.(1) should be replaced by . The assumed non-constant stress and 

strain shape function matrices are often chosen to have the following uncoupled structure : 

σT Duλ σn
T Duλ
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where J is the Jacobian determinant, fi 's are simple polynomial terms of the natural coordinates 
(ξ,η,ζ). The above choices of stress and strain are advantageous in simplifying some matrix 
operations and probably inherent from the early works of Pian and his coworkers [18-20], Chen & 
Cheung [21,22]. Moreover,  
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in which δij  is the Kronecker delta. Substitutions of Eqn.(2), Eqn.(3), Eqn.(4) and Eqn.(5) into 
Eqn.(1) result in : 
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If the Jacobian determinant is replaced by its mean in evaluating the stiffness matrix Q CQn
T

n , 

i.e.  
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where " " denotes "is changed to", the matrix becomes :   →
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After replacing Q CQn
T

n  by Mn , the functional becomes :  
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Noting that  
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variations of α's and β's in the functional enforce :- 
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and 
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where  
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After condensing β's and α's,  
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Hence, the generalized element stiffness matrix (inside the parenthesis) is the sum of a series. The 
element stiffness matrix can be obtained by condensing λ. The attraction of the orthogonal 
approach as compared to the conventional hybrid formulation is attributed to the block-diagonal 
nature of P Qn

T
n  and Mn . 

 



 At the time reference [13] was completed, it was not understood : (Q1) why changing 
Q CQn

T
n  to Mn does not lead to patch test failure; (Q2) if the orthogonality between the constant 

and non-constant assumed strain modes does not hold, i.e. Qn ≠ 0 , why the resulting element 

fails the patch test after 
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(Q3) whether the same philosophy can be applied to elements based on the simpler Hellinger-
Reissner functional and its extensions.  
 
 
3. Patch Test : a Tool for Designing Finite Element Models 
 The inspiration for answering (Q1) and (Q2) came from Bergan & Hanssen's work of using 
the individual element test to design finite element models [23]. By using this special form of patch 
test, linear constraints on the stiffness matrix of the assumed displacement element are identified. 
These constraints serve as the clue in designing the nodal displacement interpolants which need not 
be pointwisely compatible and form the foundation for free formulation [24,25]. 
 With the notion of designing finite element models by patch test in mind, the author & 
Chow employed the form C test (also known as the generalized patch test) to examine the 
admissible changes in the flexibility and stiffness matrices of, respectively, the hybrid stress and 
strain elements [14,16]. For an element assemblage, the form C test is performed by fixing the 
minimal number of nodal displacement d.o.f.s ( for suppression of  the rigid body motions) and 
prescribing the natural boundary conditions at the remaining boundary d.o.f.s in accordance with 
an arbitrary constant stress/strain state. The test is satisfied if the predicted stress/strain, 
displacement and nodal forces are all exact [26]. To ensure the element stability, the one element 
form C test should also be considered. In contrast to the individual element test, the one element 
form C test can validate the element stability but not the pairwise cancellation of traction. Recently, 
Militello & Felippa proved that individual element test together with the element stability would 
secure the fulfillment of the form C test [27].  
 Let u  represent an arbitrary displacement field such that the derived strain Du = ε  is a 
constant (including zero) and q be the element nodal displacement vector obtained by collocating 

the nodal displacements with u . Moreover, the element boundary displacement interpolation is 
denoted as :  
 
           (14) v = Γ q

 

 



where Γ is the interpolation matrix. For an element model with stiffness K, the requirements of the 
individual element test [23,24,27], form A, form B and form C patch tests [26], see Fig.1, can be 
consolidated into : 
 
(C1) essential boundary condition (e.b.c.) consistency :    
  when q  is prescribed, all the computed stresses and strains are exact 

 
(C2) natural boundary condition (n.b.c.) consistency :   
  K q = ΓT dsn Cε∫    where  ds∫   denotes the closed boundary integration of the  

                  element and n is the traction-stress matrix.  
 
(C3) weak form of displacement compatibility :  
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(C4) stability :   
  besides the rigid body modes, the element does not possess any zero energy mode. 
 
(C1) leads directly to the fulfillment of form A test. For the two adjacent elements under the same 
constant stress, (C3) immediately implies the pairwise cancellation of traction [23,24,27]. Thus, 
(C3) leads to the fulfillment of form B test whereas (C2) and (C3) lead to the fulfillment of the 
individual element test. Finally, (C2) and (C4) leads to the fulfillment of the one element form C 
test.  
 In an element assemblage containing more than one element and at least one internal nodes, 
when the global displacement vector qG  is set to qG  which is obtained by collocating qG  with 
u , we have  
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where KG  is the global matrix, denotes the summation over all the elements and S

e
∑ ext denotes 

the portions of element boundary common to the boundary of the assemblage. In the manipulation 
of Eqn.(15), (C2) and (C3) have been incorporated. It can be seen that the global nodal force 
vectors resulting from mulitiplying KG  with qG  and assembling the boundary integrals over 

Sext's (note : all Sext's constitute the entire boundary of the assemblage) are identical. In other words, 

 



n.b.c consistency also holds for the assemblage. If the assemblage has been restrained from all rigid 
body modes, the n.b.c. consistency of the assemblage and (C4) ensure that qG  is the unique 

solution of the restrained assemblage. Therefore, the element model also passes the form C test. 
 
 
4.  Patch Test Approach for Designing Displacement-Based Elements 
 Taking the displacement-based element as an example for the patch test approach of element 
design, the element strains are expressed as : 
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It should be remarked that Bq  and Bλ are not necessarily equal to D operated on some 
displacement interpolation matrices. This allows us to include the assumed strain, B-bar, enhanced 
strain methods, etc [28-32]. The functional used to formulate the element is : 
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λ is the vector of internal d.o.f.s (bubble displacements, incompatible displacements and enhance 
strain modes) and will be condensed in the element level. Hence, n.b.c. cannot be prescribed via λ 
and the conjugate force of λ must be zero as noted in the equation. Variation of λ enforces : 
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After condensing λ, 
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Consideration for (C1) : It is assumed that ε ∈ εu   for any constant strain ε . In other words, we 
can always find q  and λ  such that  

 
 ε u

q= + =B q B λ ελ          (20) 

 
For the consistency of Eqn.(18) and owing to the arbitrary nature of ε ,  
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This is the well-known consistency criterion for incompatible internal d.o.f.s and the enhanced 
strain modes [32,33].  
 
Consideration for (C2) : For the validity of (C2) and by recalling Eqn.(18), Eqn.(19) and Eqn.(20), 
we should have 
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The condition always hold if Bq  is derived from a displacement interpolation matrix, i.e. Bq = 
DNq , and Γ equals Nq  over the element boundary as a result of the divergence theorem.  
 
Consideration for (C3) : Being a compatibility condition, (C3) depends purely on the choice of Γ. 
Since  is rather apparent, no further deduction will be attempted. n q na
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Consideration for (C4) : If εu  has the proper kernal (i.e. εu  vanishes only for the rigid body 
modes) and the strain energy is fully integrated, (C4) will be valid as C is positive definite. Full or 
standard order of integration is defined as the least order of quadrature that can exactly evaluate the 
highest order polynomial term in an integral when the element is regular in geometry. If the integral 
is computed by using a lower order quadrature, it is said to be sub-integrated.  
 In particular, free formulation is commonly perceived as a methodology for designing a 
special kind of incompatible displacement-based elements which are different from the more 
popular λ-type incompatible elements [34-36]. In the simplest sense, free formulated elements 
employ :  
  
 Bq  = DNq     and  Γ = Nq       
 (23a,b) 
 
However, the displacement interpolation only satisfies (C3) and is not pointwise compatible. 
Bergan, Felippa and their coworkers have derived a number of lower order plate/shell elements 
based on the free formulation and its extensions [23-25,37,38].  
 
 
5.  AMF : The Patch Test Approach for Designing Hybrid Stress Elements 

 



 When AMF was first developed, it was termed free formulation as the former also employs 
the patch test to justify the admissible changes in the flexibility matrices [14]. Indeed, the original 
title of reference [16] was "Efficient hybrid/mixed elements using free formulation". The reviewer 
of the paper commented on the theoretical foundation and hybrid displacement nature of the free 
formulation [25] as opposed to AMF which employs a considerably different philosophy. Hence, 
the paper was renamed as "Efficient hybrid/mixed elements using admissible matrix formulation". 
In a Chicago conference back to 1991, the author submitted an abstract entitled " Derivation of 
accuracy and efficient elements by mixed method and free formulation" [39]. During the 
presentation, AMF was used in lieu of free formulation. It may be interesting to point out that 
Professor P.G.Bergan raised the question after the presentation on why free formulation was 
changed to AMF.  
 Consider the following elementwise extended Hellinger-Reissner functional in which σ, εu  
and v have been given in Eqn.(2b), Eqn.(16) and Eqn.(14) :  
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After the following replacement : 
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we have  
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Following the standard variational procedure,  
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Consideration for (C1) : Same as last section, existence of  q  and λ  is assumed such that 

Eqn.(20) is valid. (C1) requires that βc  = C ε  and βn  = 0  for ε λ εu
q= + =B q Bλ . From 

Eqn.(27a) and Eqn.(27b),  
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The constraints are : 
 
    ,   Hcc v= S H S Pcn n=  and     Bλ = 0    

 (28c) 
 
Furthermore, it can be checked that the consistency of Eqn.(27c) imposes no further constraint.  
 
Consideration for (C2) : For the validity of (C2) and by making use of Eqn.(27) and Eqn.(28),  
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which ends up to be the same constraint as Eqn.(22b).  
 
Consideration for (C3) : (C3) depends purely on the choice of Γ and does not concern Hcc , Hcn  
and Hnn . 
 
Consideration for (C4) : For a positive definite H and εu  possessing a proper kernal, it can be 

seen from Eqn.(27d) that a non-rigid body mode [ ]qNR
T

NR
T

T
λ  is a mechanism if and only if  
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which depends purely on the choice of the stress modes (note : ). Provided 

that  

B q B 0q NR NR+ λ λ ≠
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and εu  possesses a proper kernel, the constraints due to (C4) is that Hnn   does not render H non-
positive definite. This leaves a leeway to reduce the computational cost associated with H. 
 
 
6.  Patch Test Examination of the Orthogonal Approach 
 In this section, the Hu-Washizu counterpart of Eqn.(24) will be considered. Moreover, (Q1) 
and (Q2) raised in Section 2 will be answered. The functional to be considered is : 
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which includes With the expressions for ε, σ, εu  and v in Eqn.(2), Eqn.(16) and Eqn.(14) 
substituted, the functional will be : 
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The only undefined term is :  
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which will be assumed to be invertible. After the following replacements : 
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Eqn.(31b) becomes : 
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Following the standard variational procedure,  
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Consideration for (C1) : Same as last section, the existence of q  and λ  is assumed such that 

Eqn.(20) is valid. (C1) requires that αc = ε , βc = C ε  and αn = βn = 0 for ε λu
q= + =B q B ελ . 

From Eqn.(34a), Eqn.(34b) and Eqn.(34c),  
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Eqn.(35a) imposes no constraint but Eqn.(35b,c) imposes : 
 
    ,    Mcc v= C M C Qcn n=  ,    Bλ = 0      

 (36) 
 
Apparently, the consistency of Eqn.(34d) induces no further constraint.  
 
Consideration for (C2) : For the veracity of (C2) and by making use of Eqn.(34), Eqn.(35) and 
Eqn.(35),  
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The constraint is the same as Eqn.(22b) and Eqn.(29).  
 
Consideration for (C3) : (C3) depends purely on the choice of Γ and does not concern Mcc, Mcn and 
Mnn  . 
 
Consideration for (C4) : For a positive definite M and εu  possessing a proper kernal, it can be 

deduced from Eqn.(34e) that a non-rigid body mode [ ]qNR
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which depends purely on the choice of the stress modes (note : ). Provided 

that  

B q B 0q NR NR+ λ λ

 

 [ ]I P B q B 0c n
T

q( λ)+ λ ≠      for all     (38b) B q B 0q + ≠λ λ

 
and εu  possesses a proper kernel, the constraints due to (C4) is that Mnn   does not render M non-
positive definite. This deduction offers the solutions to (Q1) and (Q2) raised in Section 2 and leaves 
a leeway to reduce the computational cost associated with M. 
 
 
7.  AMF for Lower Order Elements with Internal Displacement D.O.F.s 
 AMF was first applied to lower order elements with internal d.o.f.s, i.e. λ [14,16]. For these 
elements, considerable improvement in efficiency are yielded by using a similar simplification as in 
the orthogonal approach. The answer to (Q3) raised in Section 2 is affirmative. In Eqn.(2a), the 
stress modes are only decomposed into constant modes, Ic βc  , and non-constant modes, Pn βn . In 
the subsequent discussion, the non-constant modes are further decomposed into the higher order 
modes, PH βH , and non-constant lower order modes Pl βl . Moreover, the lower order modes, PL βL, 
is defined as the union of the constant modes and non-constant lower order modes. Symbolically,  
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After taking Eqn.(28c) into account, Eqn.(26) can be expanded as : 
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            (40a) 
 
It will be assumed for lower order elements that they contain only lower order non-constant stress 
modes. The functional of the elements is : 
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In particular, if  
 
         (41a) [P I I Il c c c mf f f= 1 2 ]
in which  
 
   fi = 0      for any J  ,  f fi j = 0   for    i ≠ j   and   J  being a constant  
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and Hll  is taken to be :  
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            (42) 
 
Comparing the generalized element stiffness matrix (inside the parenthesis) with that in Eqn.(12), 
the present AMF should be more efficient than the orthogonal approach.  
 
 
8.  AMF for Lower Order Elements with no Internal D.O.F.s 
 A drawback of the orthogonal approach and AMF for lower order elements with λ is the 
condensation cost incurred by λ. When λ does not exist, Eqn.(40b) reduces to : 
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A necessity condition for the stability of a hybrid stress element is : 
 
 dim.(β)  dim.(q) + dim.(λ) - number of rigid body modes   (44) ≥
 
which is the well-known LBB condition [40,41]. Taking the 8-node brick as an example, a stable 
element in the absence of internal d.o.f.s requires a minimum of 18 stress modes to secure its 
stability. When 9 internal d.o.f.s are introduced [14,16,17], the minimal dim.(β) increases to 27. A 
total of 36 (9 in λ and 27 in β) internal coefficients have to be condensed instead of 18 in the 
element with no internal d.o.f.s.  
 The application of AMF to Pian & Tong's 8-node brick [20,42,43] is demonstrated. In this 
and the subsequently introduced elements, Bq = DNq  and Γ = Nq  where Nq  is the standard 
displacement interpolation matrix. The non-constant stress modes of Pian & Tong's 8-node brick in 
the natural coordinates (ξ,η,ζ) contain the following uncoupled modes : 
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The non-constant Cartesian stress  σl  = [ ]  = Pσ σ σ σ σ σxx yy zz yz zx xy l
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evaluated at the element origin, i.e.  
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where  
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 [ T1  T2  T3  T4  T5  T6 ] = Tσ(ξ=η=ζ=0) 
 
The original and the two possible sets of fi 's [42-45] that satisfied the criteria laid down in 
Eqn.(41b) are : 
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By retaining only the terms which do not vanish for constant J's in P SPl
T

l , it becomes  
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With the above Hll , Eqn.(43) can be expanded as :  
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Thus, only three 3x3 symmetric matrices have to be inverted instead of a 18x18 symmetric matrix 
in the parent model of Pian & Tong. Moreover, the sparsity in Hll  also significantly reduces the 
number of arithmetic operations. To construct the present element, only 82% of the CPU time 
required to construct Q8, the standard 8-node displacement-based element, is consumed [43]. As 
revealed by a number of numerical examples, the accuracy of the element is only marginally lower 
than that of its parent element [42,43].  
 A selective scaling technique has also been developed within the context of AMF to 
circumvent the locking problems encountered by this brick element in thin plate/shell analysis 
[42,44,45]. The scaled element in some problems is even more accurate than Bathe & Dvorkin's 
MITC4 4-node assumed natural strain shell element [30]. Table 1 lists the central deflections of a 
clamped circular plate subjected to a central point load, see Fig.2 for the employed meshes. The 
tabulated deflections have been normalized by the analytical result given by Timoshenko [46]. The 
AMF shell element is a 4-node (5 d.o.f. per node) hybrid stress element making use of the 
transverse shear strain field of MITC4 and it is less stiff than MITC4 [47]. Obviously, the present 
AMF solid element is close to the AMF shell element in accuracy. 
 

mesh density Q8 QM6-3/D [34] Pian & Tong [20] AMF solid [43] AMF shell [47]

 



N = 3 0.006 0.116 0.517 0.846 0.890 
N = 12 0.020 0.579 0.869 0.947 0.967 
N = 48 0.072 0.926 0.983 0.989 0.991 

Table 1  Normalized deflections for clamped circular plate subjected to central point load, see 
Fig.2 

 
 
9.  Issues to be Resolved on Extending AMF to Higher Order Elements 
 In Eqn.(40a), the legitimate counterpart of the submatrix formed by Hll , HlH   and HHH  is 

P SPn
T

n . For a lower order element, it contains only a small number of non-constant stress modes 

and its J is a low order polynomial. Therefore, the practice of cancelling the entries in P SPn
T

n  

that vanish when J is constant induces only minor change in P SPn
T

n  and thus the element 

accuracy. For higher order elements, a number of issues have to be resolved : 
 
• a large number of stress modes have to be determined and condensed. 
• the adopted practice of simplifying P SPn

T
n  for lower order elements does not yield 

satisfactory computational saving.  
• due to the higher order nature of J, the adopted practice of simplifying P SPn

T
n  for lower 

order elements sometimes results in peculiar predictions. 
• making use of the Gram-Schmidt scheme to achieve additional stress orthogonality is possible 

but cumbersome .  
  
 
10.  Rhiu & Lee's Hybrid Stabilization 
 The idea for a satisfactory way of extending AMF to higher order element came from Rhiu 
& Lee's approach for improving the computational efficiency of hybrid strain element [48,49]. The 
approach has been employed to design higher order elements for plate/shell analysis [48,50,51] and 
is based on the strain-version of the Hellinger-Reissner functional : 
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      (48) 

 
As given previously in Eqn.(16b) and Eqn.(14), εq = Bq q and v = Γq. By partitioning the assumed 
strain into the lower and higher order modes : 
 
           (49) ε ε ε= +L

 
and applying the standard order of integration, Eqn.(48) becomes :  
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where 

L
 and 

H
 indicate that the integrations are performed by using the lower (sub-) and 

higher (full) order quadratures, respectively. Rhiu & Lee take εL  to be the interpolated εq  at the 
sub-integration points whereas the higher order strain modes are explicitly assumed, i.e.  
    

    ,         
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in which nL  is the number of sub-integration points, Ni  is the interpolation function (polynomial 
of the natural coordinates) for the i-th sub-integration point and Ni (j) = δij . The index inside the 
parenthesis indicates that the preceded quantity is evaluated at the corresponding sub-integration 
point. Substitution of Eqn.(51) into Eqn.(50) gives : 
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Variation of αH  enforces,  
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and the element stiffness matrix is derived as : 
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Finally, the element stress is computed by consolidating Eqn(49), Eqn.(51) and Eqn.(53) : 
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It can be seen in Eqn.(54) that the row vectors in Q CB Q CBH

T
q

H
H
T

q
L

−  play the role of 

stabilizing the sub-integrated element B CBq
T

q
L

. The method of using an explicitly assumed 

 



stress/strain to derive stabilization vectors will be termed hybrid stabilization and is different from 
the well-known γ-stabilization in the sense that the central theme of the latter is to obtain some γ-
vectors or γ-stabilization vectors by means of the Gram-Schmidt scheme. After being 
orthogonalized with respect to the linear or even quadratic displacement field, the cross products of 
the γ-vectors are added to the sub-integrated element [52-54].  
 As a simple illustration of Rhiu & Lee's hybrid stabilization, the 9-node plane element of 
dimension 2x2 is considered, see Fig.3. For the sake of stabilizing the sub-integrated (by 2nd order 
quadrature) element, the assumed higher order strain is determined with reference to the element's 
mechanisms :  
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where φi 's are linear combinations of the nodal displacements. The derived strain is :  
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The last mode is suppressed automatically when two or more elements are used in a mesh, i.e. it is 
non-commutable. The higher order assumed strains chosen by Lee & Rhiu [49] are : 
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where Tε  is their employed strain transformation matrix. 
 
 
11.  AMF version of Hybrid Stabilization  
 The relation between the assumed strain and the displacement-derived strain is 
conventionally obtained by variational enforcement. This is different from the direct intervention in 
Eqn.(51). However, Rhiu & Lee's idea is seminal in circumventing the unresolved issues outlined in 
Section 9.  
 Instead of using orthogonal constant and non-constant stress modes in AMF, orthogonal 
lower and higher order modes are employed, i.e. 
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Moreover, the legitimate counterpart of Hll  is employed. Since internal (displacement) d.o.f.s are 
rarely employed in higher order elements, they will be discarded for the subsequent discussions. 
Thus, Eqn.(40a) reduces to : 
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where  PL  equals [ Ic   Pl  ]  as noted in Eqn.(39). The variational enforcements of β's are : 
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are the lower and higher order stiffness matrices, respectively. After solving q, the stress can be 
computed as :  
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To reduce the cost incurred by the lower order stiffness matrix, the lower order stress modes are 
chosen such that  is identical to the sub-integrated element [55]. First of all, we note that the 

sub-integrated element matrix and its element stress at the sub-integration points can be expressed 
as :  

K L
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 w(i) is the weighting factor for the i-th sub-integration point 
 
On the other hand,  
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and the element stress at the sub-integration points is : 
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The most straightforward choice of  PL  is to employ the same set of nL  least order uncoupled 
polynomial terms for every stress components. Similar derivation was first given by Malkus & 
Hughes [56]. 
 The last issue to be resolved is how to select the higher order stress modes which are 
orthogonal to the lower order ones without resorting to the Gram-Schmidt scheme. It will be seen 
from the following two illustrations that the proposed procedure is indeed straight forward.  
 

 



11.1  Nine-Node Plane Element  It can be checked that the following assumed lower order stress 
shape function results in an invertible P : 
 
 PL  = [ I3   ξI3   ηI3   ξηI3 ]       
 (66) 
 
For the 9-node plane element, the strain derived from the mechanisms of the sub-integrated element 
has been given in Eqn.(57). The two commutable mechanisms can be stabilized by either : 
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In reference [55], the last assumed contravariant stress field is adopted as it is simpler and does not 
involve any shear terms which are detrimental to the element's bending response. The Cartesian 
stress is obtained as : 
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(67b) 
 
Again, Tσ denotes the contravariant stress transformation matrix. The reciprocal of J is included to 
ensure the orthogonality between PH   and the PL  given in Eqn.(66). Using the above procedure, 
PH  also vanishes at the sub-integration points. This simplifies Eqn.(65c) to :  
 
          (68) σ( ) ( )i q= CB q

 
As sub-integration points are often the super-convergent stress points, it is very common to simply 
interpolate/extrapolate the stress values at these points in computing the element stress. Under this 
practice, an additional advantage of the current procedure is that there is no need to compute any 
stress coefficients in calculating the element stress. 
 CPU time comparison for various 9-node plane elements is presented in Table 2. The 
present element (AMF plane) is more efficient than Lee & Rhiu's element. This is apparent in view 
of the different complexity for the stabilization matrices in En.(54) and Eqn.(61b). 
  

methods of formulation Lee et al's comparison [49] Sze's et al's comparison [4]
displacement, 3x3 integration points 1.00 1.00 

 



displacement, 2x2 integration points 0.53 0.44 
hybrid strain formulation, see Eqn.(49) 1.95 - n.a. - 
Lee & Rhiu's hybrid stabilization [49] 0.89 - n.a. - 

AMF plane [4,55] - n.a. - 0.62 
Table 2  CPU time comparison for various 9-node plane elements 

 
 Fig.4 shows the popular cantilever problem for 9-node plane elements. The cantilever is 
subjected to a distributed end shear. The end deflection and the bending stress at the second order 
quadrature point B are computed. The results listed in Table 3 have been normalized by the 
analytical solutions given in the text of Timoshenko & Goodier [57]. All the advanced elements 
yield accurate predictions. The element "SQ9" [58] will be discussed in a later section.  
 

  Mesh 1 Mesh 2 Mesh 3 
L/b elements deflect. stress deflect. stress deflect. stress 

 displacement, 3x3 0.954 1.141 0.791 0.687 0.737 0.797 
 displacement, 2x2 1.006 1.000 1.075 7.060 0.955 0.964 

10 hybrid strain [49] 0.990 1.000 0.975 0.914 0.960 0.923 
 Lee & Rhiu [49]  0.995 1.022 1.014 1.085 0.986 0.981 
 AMF plane [56] 0.991 1.000 1.019 0.908 0.941 0.919 
 SQ9 [58] 0.991 - n.a. - 0.920 - n.a. - 0.955 - n.a. - 
 displacement, 3x3 0.939 0.193 0.758 0.679 0.441 0.501 
 displacement, 2x2 1.002 1.000 1.071 1.060 0.951 0.964 

20 hybrid strain [49] 0.985 1.000 0.967 0.900 0.956 0.923 
 Lee & Rhiu [49] 0.990 1.022 0.991 1.005 0.983 0.993 
 AMF plane [56] 0.989 1.000 1.013 0.897 0.937 0.920 
 SQ9 [58] 0.986 - n.a. - 1.013 - n.a. - 0.937 - n.a. - 

Table 3  Normalized predictions for 9-node plane elements, see Fig.4 
 
11.2  Twenty-Node Brick Element  In this illustration, the more complicated 20-node brick is 
considered [59,60]. The displacement space of the element is generated by : 
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An alternative basis is : 
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After some algebraic manipulations, six commutable mechanisms are identified : 
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where φi 's are linear combinations of the nodal displacements. The derived covariant strain is : 
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The mechanisms can be suppressed by the following contravariant stress :  
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The shape function matrix for the assumed lower order Cartesian stress that constitutes an invertible 
P  is chosen to be : 
 
 PL  = [ I6   ξI6   ηI6   ζI6   ηζI6   ζξI6   ξηI6   ξηζI6 ]   
 (73) 
 
The higher order Cartesian stress, which vanishes at the sub-integration points, is obtained from 
Eqn.(72) by using the constant contravariant stress transformation matrix evaluated at the element 
origin, i.e.  
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Again, the reciprocal of J is employed to yield the required orthogonality between PL  and PH . To 
form the higher order stiffness matrix, see Eqn.(61b), it is necessary to compute the inverse of the 

6x6 matrix P SPH
T

H
H

. To reduce the computing time, the matrix is replaced by a diagonal Hll 

[59,60]. CPU time ratio required to form displacement-based elements evaluated by the second 
order quadrature H20(8), the fourteen-point rule H20(14), the third order quadrature H20(27) and 
the present hybrid stabilized element is obtained [59,60] :  
 
 H20(8) : H20(14) : H20(27) : hybrid stabilized = 1.00 : 1.79 : 2.25 : 1.75   
 (75) 
 
It is worth noting that the present element consumes less cpu time than H20(14). The relative 
accuracy for the 20-node elements are illustrated by the hemispherical shell problem depicted in 
Fig.5. Diametrical point loads of equal magnitude and alternating at 900  intervals are applied. 
Owing to its symmetry, only one quarter of the shell is modelled. Three NxN meshes are 
considered. Deflections at loaded point in the direction of the applied force are normalized by the 
reference solution of MacNeal & Harder [61] and listed in Table 4. Both the sub-integrated and the 
hybrid stabilized element are far better than the fully integrated elements. 
 

mesh density H20(8) H20(14) H20(27) hybrid stabilized [59,60] 
2 x 2 0.163 0.001 0.001 0.104 
4 x 4 0.777 0.021 0.021 0.675 
6 x 6 0.972 0.098 0.097 0.945 

Table 4  Normalized deflections of 20-node elements in the hemispherical shell problem, see Fig.5 
 
 
12.  Explicit Hybrid Stabilization 
 For the two elements introduced in the last section, the employed contravariant stress 
transformation matrices are taken at the element origin and the orthogonality between PL  and PH  
is strictly valid. In the 8-node brick element equipped with Allman's rotations [62-64], the true 
transformation matrix Tσ(ξ,η,ζ) can be adopted without upsetting the patch test [65]. For the 
element, the lower order stress shape function is the same as the one given in Eqn.(73) and the 
commutable mechanisms are the same as the sub-integrated 20-node brick. In contrast to Eqn.(74), 
the higher order stress is chosen to be :  
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It can be checked that P P 0L

T
H H

≠  but  

 

 



   PH = 0    ,   [ ]P P I I I I I I I P 0l
T

H
L

T
H

L
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 (77) 
 
Hence, the effect of ignoring P Pl

T
H

H
 should be small. On the other hand, the displacement-

derived strain can be expressed as : 
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where  
 u = [ u  v  w ]T    ,    x = [ x  y  z ]T 

 
 
are the displacement and position vectors, respectively. From Eqn.(76) and Eqn.(78),  
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The stabilization vectors presented as the row vectors in P BH
T

q  turn out to be some very simple 

expressions of the nodal coordinates and can be programmed explicitly instead of resorting to 
numerical integration loops. Moreover,  
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After J and Tσ(ξ,η,ζ) are, respectively, replaced by Jo =J(ξ=η=ζ=0) and [ T1  T2  T3  T4  T5  

T6 ] = Tσ(ξ=η=ζ=0), the resulting admissible version of P SPH
T

H
H

 is : 
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where  

 [ ] [ ]S T T T 0 S T T T 0= = × ×[ ]Sij
T

1 2 3 6 3 1 2 3 6 3  

 
Unlike the previous hybrid stabilization, higher order integration rule needs not be used in 
programming the explicit hybrid stabilization vectors. This further enhances the computational 
efficiency of the elements.  
 The two-element cantilever problem shown in Fig.6 is examined. Point moments are applied 
to the four end nodes. The average end deflections and the bending stresses at point B, the centre of 
the element face, are computed and normalized by the analytical solutions [57]. The results with 
varying degree of mesh distortion ( characterized by "e" ) are shown in Fig.7. HEX8RX is the 
STIF73 element in the commercial finite element code ANSYS [63]. Displacement of the "present 
element" are supplemented with the following bubble (internal) displacement d.o.f.s [65] : 
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for enforcing the homogenous equilibrium condition in the assumed stress [66]. Meanwhile, three 
incompatible displacement modes are employed in HEX8RX. Mechanisms of HEX8RX are 
suppressed by generalizing MacNeal's perturbation stabilization schemes [67]. Despite of the 
employed small perturbation parameter, HEX8RX is more susceptible to mesh distortion.  
 
 
13.  Closure 

 



 In this paper, the evolution of AMF has been reviewed. Several sample elements are 
used to illustrate how the technique can be applied to lower and higher order elements with 
and without internal displacement d.o.f.s. Although only AMF hybrid stress elements are 
discussed, the technique can readily be extended to hybrid strain elements which are sometimes 
deemed to be more suitable for nonlinear analysis. Besides the AMF elements presented in 
references [14,16,42-45,47,55,58-60,64,65], there still remains a large number of practical 
element configurations that AMF can be applied.  
 Explicit hybrid stabilization vectors have also been derived for the 9-node Lagrangian shell 
element [58]. The explicit form of the vectors are given in reference [68]. The element, designated 
as SQ9, passes the patch test only if the mesh are sub-parametric (the element central node locates 
at the parametric origin defined by the four corner nodes and the edge nodes are mid-edge nodes). 
This is because PH H

 equals zero only when the element is sub-parametric despite of the general 

vanishing nature of PH L
 . The predictions of SQ9 for the benchmark test depicted in Fig.4 have 

been listed in Table 3.  
 As a matter of fact, if one sticks to sub-parametric elements, explicit stabilization vectors 
can also be derived for the 20-node brick expounded in Section 11.2 and many other higher order 
elements. It should be remarked that the so-derived explicit stabilization vectors can still suppress 
the mechanisms but will slightly destroy the element consistency. Whether the users would accept 
sub-parametric elements or not depends very much on their finite element know-how. In the recent 
text of MacNeal [69], he mentioned that a sub-parametrically formulated 6-node membrane element 
once available in MSC/NASTRAN was not popular with users. It was probably because most users 
well perceive the geometric discretization error but remain relatively unaware of the substantial 
drop in element accuracy when the element ediges are curved (illustrations can be found in 
reference [70,71]). Nevertheless, we know that most 6-node and 9-node shell elements only pass the 
plate bending patch test when the elements are sub-parametric and they have been being used in 
many commercial codes for decades.  
 Since every mesh becomes practically sub-parametric after successive refinement, 
stabilization vectors with sub-parametric consistency should be acceptable. For all the examined 
curved shell problems reported in reference [58], SQ9 yields close predictions to, if not more 
accurate than, the γ−φ stabilized element [54] which passes the plate bending patch test even if the 
mesh is not sub-parametric. Moreover, there exist a large number of elements (especially, 
plate/shell elements) in the open literature that only exhibit sub-parametric consistency. Except for 
curved shells, only a very small portion of the elements in finite element meshes for infinitesimal 
strain problems are not sub-parametric. For large deformation analyses, the distorted edges are 
often straightened in the remeshing process so as to maintain the element accuracy, see e.g. 
reference [71]. Of course, further investigations should be carried out to compare the relative 
efficiency and accuracy of the stabilization vectors which are strictly consistent and the stabilization 
vectors which are only sub-parametric consistent.  
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Fig.1  Graphical descriptions of Form A, Form B and Form C Tests  
 
 
 

 
Fig.2  Meshes for clamped circular plate 

 
 
 

 
 

Fig.3  Commutable mechanisms of nine-node membrane elements 

 



 
Fig.4  Cantilever tests for 9-node elements, Poisson's ratio equal to 0.3 

 
 

 
Fig.5  Hemispherical shell problem, for 20-node brick elements 

 



 
 

 
 

Fig.6  Two-element cantilever problem for 8-node bricks with rotational degrees of freedom 
and three bubble displacement modes 
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Fig.7  Normalized end defections and bending stresses at point B, see Fig.6 for  

8-node elements with rotational d.o.f.s 
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