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Abstract

Admissible Matrix Formulation is a patch test approach for efficient construction of multi-
field finite element models. In hybrid stress and strain elements, the formulation employs the patch
test patch to identify the constraints on, respectively, the flexibility and stiffness matrices which are
most detrimental to the element efficiency. Admissible changes are introduced to the matrices so as
to reduce the computational cost while the element accuracy remains virtually intact. In this paper,
a comprehensive review of Admissible Matrix Formulation is presented. Finite element techniques

seminal to the formulation are also discussed.
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1. Introduction

Since Pian's momentous paper on hybrid stress element formulation was published in 1964
[1], multi-field functionals have become one of the standard tools for designing and justifying
advanced finite element models. In this paper, the definition of hybrid elements given by Pian in a
recent keynote lecture is adopted, namely hybrid elements are formulated by multi-field variational
functionals, yet the only unknowns in the resulting global equation are still the nodal displacements
[2]. Owing to their multi-field nature which provides additional control over the element behaviour,
hybrid elements have gained remarkable success in circumventing the deficiencies of the
displacement elements. These deficiencies include membrane/shear locking, dilatational locking
[3,4], susceptibility to mesh distortion, complications in constructing C' displacement profile for C'
plate/shell models, poor performance in stress singularity and material discontinuity problems [5-7]
etc. However, this nature also give rises to new problems such as frame invariance, nodal
invariance (element symmetry) [8,9], optimal choice of the assumed stress/strain field, suppression
of deformation modes and high computational cost in condensing the assumed stress/strain field.
Only a few references are cited for the aforementioned issues as many of them would be addressed
separately by other contributors of this special journal issue on hybrid/mixed elements.

Admissible Matrix Formulation (4MF) which has been established as a tool for reducing the
computational cost of hybrid elements is expounded in this paper. For hybrid stress elements, AMF
employs the patch test to identify the constraints on the flexibility matrix. Changes admissible to the
identified constraints are introduced in the flexibility matrix to enhance the element efficiency.
AMF was first applied to lower order elements with incompatible displacement modes. After
realizing the computational burden incurred by the incompatible modes, AMF was then generalized
to lower order elements with no incompatible modes. Difficulties were then encountered in
extending AMF to higher order elements and a stabilization approach was adopted. In the approach,
the leverage matrix pertinent to the assumed higher order stress modes plays the role of stabilizing
the sub-integrated element. For some elements, if the assumed stress is strictly contravariant, the
leverage matrix can be made very simple and formed explicitly in the element subroutine.

In the comprehensive account of the SemilLoof elements [10] (whose complexity can be
significantly reduced by using the hybrid formulation [11,12]), the late Irons' wrote : no formulation
merges from a historical vacuum. AMF is not an exception. Seminal ideas leading to AMF will be

addressed. Among them, the orthogonal approach comes first.

2. Orthogonal Approach

Orthogonal Approach was first reported by Chen, Chow & Sze and submitted for reviewing
in 1989 [13]. Unfortunately, substantial delay was encountered in the editorial process of the
journal concerned. Since other papers by Chen & Cheung and Sze & Chow [14-17] rooted in the
approach have been published elsewhere, withdrawal of reference [13] was decided. As a result, the

manuscript has never been published.



The Orthogonal Approach starts with an extended elementwise Hu-Washizu functional
[13,15,17] :

1
ITe, :<—8TCS—GTDuq —GTDuK>—J'Stu§tds where <Duk>:0(1)
2

in which g is the assumed strain, C is the material stiffness matrix, ¢ is the assumed stress, D is the

strain-displacement 0perator,< > denotes the integration over the element domain and t is the

prescribed traction applied over the portion of element boundary denoted by St. Displacements u,
and u, are compatible and incompatible, respectively. Throughout this paper, the material
properties are assumed to be constant inside an element. Without sacrificng generality, the assumed

stress and strain can be partitioned into constant "c" and non-constant "n" modes :

6=0.+0,=B.+P,B, =[L P]{E} : =g+, =0 +Q,a, =L Q]{Z}

(2a,b)
and the discretized displacements are written as :

where I, is the identity matrix of order equal to dim.(g), q is the nodal displacement vector, a's,

B's and A are vectors of coefficients to be condensed in the element level. For <Duk> not equal to

zero, ¢’ Du, in Eqn.(1) should be replaced by o/ Du,. The assumed non-constant stress and

strain shape function matrices are often chosen to have the following uncoupled structure :

1
Pn: Icﬁ IcfZ Icfm > anjlcﬂ Icf2 Icfm

(4a,b)

where J is the Jacobian determinant, f;'s are simple polynomial terms of the natural coordinates
(&,m,8). The above choices of stress and strain are advantageous in simplifying some matrix
operations and probably inherent from the early works of Pian and his coworkers [18-20], Chen &
Cheung [21,22]. Moreover,

(/9)=[[ [\ faeandc=0  forallis, e (Q,)=0
(5a)



[ 1 deande = 7,8, = 73, (5b)

in which §; 1is the Kronecker delta. Substitutions of Eqn.(2), Eqn.(3), Eqn.(4) and Eqn.(5) into

Eqn.(1) result in :
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<P,,TDNq> <PnTDNk> A

If the Jacobian determinant is replaced by its mean in evaluating the stiffness matrix <Q,11r CQn>,

1e.
J o T[] deandg and v=(1)= [ "5 m,0) dednd (7a,b)

where " — " denotes "is changed to", the matrix becomes :

ML= e, dendc = L di e - 7] ®

< |

After replacing <Q,{ CQn> by M,,, the functional becomes :
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Noting that
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<PnTQn>l=diag-{f%Ic f—lml} : <P,,TQ,,>_1<PnT>: @Ic <f’">1 (10¢)

variations of a's and B's in the functional enforce :-

g B}
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and
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(11b)
where

B, - i< DN, )~ @<DN[1> and B, = fi< /DN, )

i Vfi i

After condensing B's and a's,
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e 21{q}T 1/{oN,) c(pN, ) 0 3

f q
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Hence, the generalized element stiffness matrix (inside the parenthesis) is the sum of a series. The
element stiffness matrix can be obtained by condensing A. The attraction of the orthogonal
approach as compared to the conventional hybrid formulation is attributed to the block-diagonal
nature of <PnTQn> and M, .



At the time reference [13] was completed, it was not understood : (Q1) why changing
<Q,{ CQn> to M, does not lead to patch test failure; (Q2) if the orthogonality between the constant

and non-constant assumed strain modes does not hold, i.e. <Qn> # 0, why the resulting element

fails the patch test after

ol oo mom] ¥l

(13)

(Q3) whether the same philosophy can be applied to elements based on the simpler Hellinger-

Reissner functional and its extensions.

3. Patch Test : a Tool for Designing Finite Element Models

The inspiration for answering (Q1) and (Q2) came from Bergan & Hanssen's work of using
the individual element test to design finite element models [23]. By using this special form of patch
test, linear constraints on the stiffness matrix of the assumed displacement element are identified.
These constraints serve as the clue in designing the nodal displacement interpolants which need not
be pointwisely compatible and form the foundation for free formulation [24,25].

With the notion of designing finite element models by patch test in mind, the author &
Chow employed the form C test (also known as the generalized patch test) to examine the
admissible changes in the flexibility and stiffness matrices of, respectively, the hybrid stress and
strain elements [14,16]. For an element assemblage, the form C test is performed by fixing the
minimal number of nodal displacement d.o.f.s ( for suppression of the rigid body motions) and
prescribing the natural boundary conditions at the remaining boundary d.o.f.s in accordance with
an arbitrary constant stress/strain state. The test is satisfied if the predicted stress/strain,
displacement and nodal forces are all exact [26]. To ensure the element stability, the one element
form C test should also be considered. In contrast to the individual element test, the one element
form C test can validate the element stability but not the pairwise cancellation of traction. Recently,
Militello & Felippa proved that individual element test together with the element stability would
secure the fulfillment of the form C test [27].

Let u represent an arbitrary displacement field such that the derived strain Du=¢ is a
constant (including zero) and qbe the element nodal displacement vector obtained by collocating
the nodal displacements with u. Moreover, the element boundary displacement interpolation is

denoted as :

v=Iq (14)



where T is the interpolation matrix. For an element model with stiffness K, the requirements of the
individual element test [23,24,27], form A, form B and form C patch tests [26], see Fig.1, can be

consolidated into :

(C1) essential boundary condition (e.b.c.) consistency :
when q is prescribed, all the computed stresses and strains are exact

(C2) natural boundary condition (n.b.c.) consistency :
Kq= &FT nds Ce  where J> ds denotes the closed boundary integration of the

element and n is the traction-stress matrix.

(C3) weak form of displacement compatibility :
J.Sz'um ngva ds = '[Sm anVb ds or jsm ng ',dsq, = ‘[S(W “1{ I',ds q,

for any pair of adjacent elements "a" and "b" where S, is their common
boundary (note : n, =-n, ).

(C4) stability :
besides the rigid body modes, the element does not possess any zero energy mode.

(C1) leads directly to the fulfillment of form A test. For the two adjacent elements under the same
constant stress, (C3) immediately implies the pairwise cancellation of traction [23,24,27]. Thus,
(C3) leads to the fulfillment of form B test whereas (C2) and (C3) lead to the fulfillment of the
individual element test. Finally, (C2) and (C4) leads to the fulfillment of the one element form C
test.

In an element assemblage containing more than one element and at least one internal nodes,

when the global displacement vector q¢ is set to q,; which is obtained by collocating q  with

u, we have

346K 4G = . 0q"Kq=.5q"§T " nds Ce
:zaquS rTndsc.€+28quS rTndSC§=25quS I''ndsCe

(15)

where K is the global matrix, Z denotes the summation over all the elements and S,,; denotes

the portions of element boundary common to the boundary of the assemblage. In the manipulation
of Eqn.(15), (C2) and (C3) have been incorporated. It can be seen that the global nodal force

vectors resulting from mulitiplying Ks with q; and assembling the boundary integrals over

Sex/'s (note : all S,,/'s constitute the entire boundary of the assemblage) are identical. In other words,



n.b.c consistency also holds for the assemblage. If the assemblage has been restrained from all rigid
body modes, the n.b.c. consistency of the assemblage and (C4) ensure that q. is the unique

solution of the restrained assemblage. Therefore, the element model also passes the form C test.

4. Patch Test Approach for Designing Displacement-Based Elements
Taking the displacement-based element as an example for the patch test approach of element

design, the element strains are expressed as :

8”=aq+8K , &,=B,q , g =B;A

(16a,b,c)

It should be remarked that B, and B; are not necessarily equal to D operated on some
displacement interpolation matrices. This allows us to include the assumed strain, B-bar, enhanced

strain methods, etc [28-32]. The functional used to formulate the element is :

4 <BTCB > <BTCBK>
me =14 e qT aU_qr T tds (17)
2 A sym. <BACBX> A

A is the vector of internal d.o.f.s (bubble displacements, incompatible displacements and enhance
strain modes) and will be condensed in the element level. Hence, n.b.c. cannot be prescribed via A

and the conjugate force of A must be zero as noted in the equation. Variation of A enforces :

<B{CBq>q+ <B{CBA>x - <B{Ca"> ~0 (18)
After condensing A,
el -
I = T(<BZCBq>—<BZCBA ><B{CBK> <B{CBq >jq—quStthds (19)

Consideration for (CI) : It is assumed that € € g" for any constant strain € . In other words, we
can always find q and A such that

g =B,q+B,A=¢ (20)

For the consistency of Eqn.(18) and owing to the arbitrary nature of ¢,

(B')ce=0 or  (B,)=0 (21a,b)



This is the well-known consistency criterion for incompatible internal d.o.f.s and the enhanced
strain modes [32,33].

Consideration for (C2) : For the validity of (C2) and by recalling Eqn.(18), Eqn.(19) and Eqn.(20),

we should have

§T7"nds Cé = (<B§CBq >— <BqTCBk ><B{CBK >_1<B{CBq >jq
- <BqTCBq >q+<B§CBA >7Z - <B§>C§ (22a)

or
$r" nds = (B!) (22b)

The condition always hold if B, is derived from a displacement interpolation matrix, i.e. B, =

DN, , and I" equals N, over the element boundary as a result of the divergence theorem.

Consideration for (C3) : Being a compatibility condition, (C3) depends purely on the choice of T'.
Since JSan I',dsq, = JSC n, ', ds q, is rather apparent, no further deduction will be attempted.

Consideration for (C4) : If €' has the proper kernal (i.e. € vanishes only for the rigid body
modes) and the strain energy is fully integrated, (C4) will be valid as C is positive definite. Full or
standard order of integration is defined as the least order of quadrature that can exactly evaluate the
highest order polynomial term in an integral when the element is regular in geometry. If the integral
is computed by using a lower order quadrature, it is said to be sub-integrated.

In particular, free formulation is commonly perceived as a methodology for designing a
special kind of incompatible displacement-based elements which are different from the more
popular A-type incompatible elements [34-36]. In the simplest sense, free formulated elements

employ :

B, =DN, and TI'=N,
(23a,b)

However, the displacement interpolation only satisfies (C3) and is not pointwise compatible.

Bergan, Felippa and their coworkers have derived a number of lower order plate/shell elements
based on the free formulation and its extensions [23-25,37,38].

5. AMEF : The Patch Test Approach for Designing Hybrid Stress Elements



When AMF was first developed, it was termed free formulation as the former also employs
the patch test to justify the admissible changes in the flexibility matrices [14]. Indeed, the original
title of reference [16] was "Efficient hybrid/mixed elements using free formulation". The reviewer
of the paper commented on the theoretical foundation and hybrid displacement nature of the firee
formulation [25] as opposed to AMF which employs a considerably different philosophy. Hence,
the paper was renamed as "Efficient hybrid/mixed elements using admissible matrix formulation".
In a Chicago conference back to 1991, the author submitted an abstract entitled " Derivation of
accuracy and efficient elements by mixed method and free formulation" [39]. During the
presentation, AMF was used in lieu of free formulation. It may be interesting to point out that
Professor P.G.Bergan raised the question after the presentation on why free formulation was
changed to AMF.

Consider the following elementwise extended Hellinger-Reissner functional in which o, &"
and v have been given in Eqn.(2b), Eqn.(16) and Eqn.(14) :

1
HGZ—E<GTSO'>+<O'T8 >—J.Sthtds (24a)
or
e =—Lp7 " S<P”> B+BT[G Gk] A q"[ 17 tds (24b)
° 2 | sym. <PnTSPn> ! A ¥
where

B= {B ‘} ,S=C" is the material compliance matrix

n

After the following replacement :

VS S<Pn >
S H= Hcc ch (25)
sym. <PnT SP, > sym. H,,

we have

.1
HG=—EBTHB+BT[G(1 Gk]{z}—qT'[StFTtds (26)

Following the standard variational procedure,

T T
HB=G,a+G,h .  GIp=(B,) B+(P/B,) B, =0,  GIH'(G,q+G,1)=0

(27a,b,c)



T
e l]q L q T T
I1 = _ _
c 2{)\’} [Gq Gx] H [Gq Gx]{}’} q JSIF tds

(27d)

Consideration for (CI) : Same as last section, existence of ¢q and A is assumed such that

Eqn.(20) is valid. (C1) requires that B = Ce and B, = 0 for ¢“=B, q+B; A =¢. From
Eqn.(27a) and Eqn.(27b),

H_ H_I|[Ce ~ I ~ vl | _ _
e Ha —G.§+G, A={| < |B.g+B, 1)) = g and <BT>Ca:0
Lym- HHO} AT <L’f }( A )> {<P"T >} k
(28a,b)

The constraints are :

(28¢)
Furthermore, it can be checked that the consistency of Eqn.(27¢) imposes no further constraint.
Consideration for (C2) : For the validity of (C2) and by making use of Eqn.(27) and Eqn.(28),
$T"nds Ce = (GgH’le - GgH’le(GiH’le)’lG{H’le)q
-G'H"(G,4, +G, 1) =G {Coé} - (B7)ce (29)
which ends up to be the same constraint as Eqn.(22b).

Consideration for (C3) : (C3) depends purely on the choice of I" and does not concern H.., H.,
and H,, .

Consideration for (C4) : For a positive definite H and € possessing a proper kernal, it can be

T
is a mechanism if and only if

seen from Eqn.(27d) that a non-rigid body mode |qh, A%z

T
G, Qg + G Ay = <[Ic Pn] (B,qx: + B, }"NR)> =0 (30a)



which depends purely on the choice of the stress modes (note : B, quz + B; Az # 0). Provided

that

T
<[IC Pn] (B,q+B, x)> £0 for all B,q+B, =0 (30b)

and € possesses a proper kernel, the constraints due to (C4) is that H,, does not render H non-

positive definite. This leaves a leeway to reduce the computational cost associated with H.

6. Patch Test Examination of the Orthogonal Approach
In this section, the Hu-Washizu counterpart of Eqn.(24) will be considered. Moreover, (Q1)

and (Q2) raised in Section 2 will be answered. The functional to be considered is :

1
;. = (67 Ce)—(o%e)+ (o'’ )~ | v7tas (3la)

which includes With the expressions for €, o, € and v in Eqn.(2), Eqn.(16) and Eqn.(14)

substituted, the functional will be :

e _1ja, | ve C<Q”> ¢ B. ' ¢ B. ' : T T
“Ge‘z{zn} o <QZCQn>{Zn}_{Bn} Wﬁj%ﬁﬁ © GKHS}_‘] lorteas O

The only undefined term is :

wo| (2,)
(/) (Fe,)

which will be assumed to be invertible. After the following replacements :

vC C<Qn>

wm. (Qicq,) %M{MCC M} >

sym. M

nn

Eqn.(31b) becomes :

T T T
et o e e o
2 an an Bn a‘n Bn ! )\’ 5



Following the standard variational procedure,

wiflo, el Wl emfe]

n

(34a,b)
T T
G?TB :<BK> Bc+<PnTB7»> Bn =0 ’ G;:W_TMW_I(Gq q+Gk )“)ZO
(34c,d)
T
e _1ljq T -T 4 q
I, = 2{;} [Gq Gx] W MW [Gq Gx]{k}

_ %qTGg W’T(M _ MW’IGX(G{W’TMW’IGX)’1G§W’TM)W’1GLI q-q"[ 7 tds

(34e)

Consideration for (C1) : Same as last section, the existence of q and A is assumed such that

Eqn.(20) is valid. (C1) requires that a. = &, B. = Ce and o, =B, =0 for &"=B,q+B, A =¢.
From Eqn.(34a), Eqn.(34b) and Eqn.(34c),

<;I;’> <1<,?(;i>_{i}—[Gq Gx]{g}=<[lc pn]T(Bq(HBx X)>=[<;IT>} (35a)

n

I <Qn> T{cg}_{mw MHa} . G, <Pank>]{(;§}=0 (35b.c)

(1) (i)

Eqn.(35a) imposes no constraint but Eqn.(35b,c) imposes :

M, =vC Mm=C<Q,,> : <Bx>=0

(36)
Apparently, the consistency of Eqn.(34d) induces no further constraint.

Consideration for (C2) : For the veracity of (C2) and by making use of Eqn.(34), Eqn.(35) and
Eqn.(35),

fT nds Cz = Ggw—T(M - MW‘IGK(GfW‘TMW‘le)‘lGfW‘TM)W‘le(]
q

= GIW MW (G,+G, 4) = GT{COS} - (B} )Cs

(37)



The constraint is the same as Eqn.(22b) and Eqn.(29).

Consideration for (C3) : (C3) depends purely on the choice of T" and does not concern M., M., and
M,, .

Consideration for (C4) : For a positive definite M and € possessing a proper kernal, it can be

T
deduced from Eqn.(34e¢) that a non-rigid body mode [qI{,R KJT\,R] is a mechanism if and only if

T
G, + Gy Ay = <[Ic Pn] (B,qxz + B, )"NR)> =0 (38a)

which depends purely on the choice of the stress modes (note : B, quz +Bj Az # 0). Provided

that

<[1€ Pn]T(Bq q+B, x)> £0 for all B,q+B, A %0 (38b)

and " possesses a proper kernel, the constraints due to (C4) is that M,,, does not render M non-
positive definite. This deduction offers the solutions to (Q1) and (Q2) raised in Section 2 and leaves

a leeway to reduce the computational cost associated with M.

7. AMF for Lower Order Elements with Internal Displacement D.O.F.s

AMF was first applied to lower order elements with internal d.o.f's, i.e. A [14,16]. For these
elements, considerable improvement in efficiency are yielded by using a similar simplification as in
the orthogonal approach. The answer to (Q3) raised in Section 2 is affirmative. In Eqn.(2a), the
stress modes are only decomposed into constant modes, I. B, , and non-constant modes, P, B,,. In
the subsequent discussion, the non-constant modes are further decomposed into the higher order
modes, Py By, and non-constant lower order modes P; B; . Moreover, the lower order modes, P, B,

is defined as the union of the constant modes and non-constant lower order modes. Symbolically,

_ Bl _ Bc
Pn n P PH 5 PL . = Ic P
B [P ] {BH} B [ 1] {Bz}

(39)

After taking Eqn.(28c) into account, Eqn.(26) can be expanded as :



o s s o] B0 )
H§=—E B, H, Hy, [P, +1B, <P,TBq> <PZTBX> {;}—qTIStTTtdS
BH sym. HHH BH BH _<P,_T,Bq> <P§Bx>_

(40a)

It will be assumed for lower order elements that they contain only lower order non-constant stress

modes. The functional of the elements is :
T T
He:_;{sc} s sle) {s}{s} (B,)  (B) {q} e
2B | sym. wm, |B B <P1TBq> <P,TBK> A St
(40b)

In particular, if

P=[Lf, Lf, - Lf] (41a)

in which

<f,.>:0 foranyJ <fl.fj>=0 for i#j and J being a constant
(41b)

and Hy is taken to be :

H, =diag.{(f2)S - (f2)S] (41c)
we have
e = % {?}T( % PBK?BK g}z) ﬁ([}Pqu( >P,TBZ<]TC[>PITB(/< >PITBA<]H?}—qT [.G" tds
(42)

Comparing the generalized element stiffness matrix (inside the parenthesis) with that in Eqn.(12),

the present AMF should be more efficient than the orthogonal approach.

8. AMF for Lower Order Elements with no Internal D.O.F.s
A drawback of the orthogonal approach and AMF for lower order elements with A is the

condensation cost incurred by A. When A does not exist, Eqn.(40b) reduces to :



I =

T
4 %qTG<B§ >C<Bq>+<Pqu> HZ,1<P1TBq>]q—qT [,T7 tds (43)

A necessity condition for the stability of a hybrid stress element is :
dim.(B) = dim.(q) + dim.(A) - number of rigid body modes (44)

which is the well-known LBB condition [40,41]. Taking the 8-node brick as an example, a stable
element in the absence of internal d.o.f.s requires a minimum of 18 stress modes to secure its
stability. When 9 internal d.o.f.s are introduced [14,16,17], the minimal dim.(f) increases to 27. A
total of 36 (9 in A and 27 in PB) internal coefficients have to be condensed instead of 18 in the
element with no internal d.o.fs.

The application of AMF to Pian & Tong's 8-node brick [20,42,43] is demonstrated. In this
and the subsequently introduced elements, B, = DN, and I' = N, where N, 1is the standard
displacement interpolation matrix. The non-constant stress modes of Pian & Tong's 8-node brick in

the natural coordinates (&,1,C) contain the following uncoupled modes :
G =MEME; 64, =68C8 ; o =&M,En; 6, =& ; 6 =M O =G (45a)

The non-constant Cartesian stress o, = [6,, ©, o, o, o, cxy],T =P; B, is obtained
T . . . .
from [6,. o©,, Oy, O, Oy O] Vvia the contravariant stress transformation matrix To

evaluated at the element origin, i.e.

T
Pl = flPI f2P2 f3P3 f4T1 f5T2 f6T3 H Bl = BIT B; Bg B4 BS B()
(45b)

where
Pi=[T, T T4], P,=[Tz3 T, Ts5], P;=[T) T, Tg]
[Ty T T; T4 Ts Te]=Ts(E=n=C=0)

The original and the two possible sets of f;'s [42-45] that satisfied the criteria laid down in
Eqn.(41Db) are :

original :  f, =&, f,=m, f3=C.f4 =nC, f5=C&, fs=2&n

Ist orthogonal choice
Hh=8lJd,h=n/J, f3=C/J,fy=nC/J, fs=C&/J, fe=EnlJ

2nd orthogonal choice :  f; =§—<§>/v,f2 =n—<n>/v,f3:§—<q>/v



fo=ni-(nd)/v, fi=ce-(ce)/v, f=tn-(en) /v

By retaining only the terms which do not vanish for constant J's in <P,T SP,> , it becomes

H,=diag.{H,,H,,H,, H,, H,, H.} (46)
where
Sh Sk Sk Shs S S Sk S|
H, =<f12 >\‘ 3 S;J . H, :<f22>t S SlsJ . Hy =< 32>\‘ A S;)J
sym S sym. Sis sym. St

H4:<f42>S1*1’H5 <f5> 22’ 6:<f62>S;3 >
$*=[8;1=T,(6=n=(=0)ST,(6=n=(=0)

With the above Hy, Eqn.(43) can be expanded as :

=L { L {w2)eln, )« S rmp e m,)« S s, )

i=1 i=1

—q’ _[St T’ tds
(47)

Thus, only three 3x3 symmetric matrices have to be inverted instead of a 18x18 symmetric matrix
in the parent model of Pian & Tong. Moreover, the sparsity in H; also significantly reduces the
number of arithmetic operations. To construct the present element, only 82% of the CPU time
required to construct QS8, the standard 8-node displacement-based element, is consumed [43]. As
revealed by a number of numerical examples, the accuracy of the element is only marginally lower
than that of its parent element [42,43].

A selective scaling technique has also been developed within the context of AMF to
circumvent the locking problems encountered by this brick element in thin plate/shell analysis
[42,44,45]. The scaled element in some problems is even more accurate than Bathe & Dvorkin's
MITC4 4-node assumed natural strain shell element [30]. Table 1 lists the central deflections of a
clamped circular plate subjected to a central point load, see Fig.2 for the employed meshes. The
tabulated deflections have been normalized by the analytical result given by Timoshenko [46]. The
AMF shell element is a 4-node (5 d.o.f. per node) hybrid stress element making use of the
transverse shear strain field of MITC4 and it is less stiff than MITC4 [47]. Obviously, the present

AMF solid element is close to the AMF shell element in accuracy.

mesh density Q8 QMo6-3/D [34] | Pian & Tong [20] | AMF solid [43] | AMF shell [47]




N=3 0.006 0.116 0.517 0.846 0.890

N=12 0.020 0.579 0.869 0.947 0.967
N =48 0.072 0.926 0.983 0.989 0.991 |
Table 1 Normalized deflections for clamped circular plate subjected to central point load, see
Fig.2

9. Issues to be Resolved on Extending AMF to Higher Order Elements
In Eqn.(40a), the legitimate counterpart of the submatrix formed by H;, Hjy and Hyy  is

<PnTSPn > . For a lower order element, it contains only a small number of non-constant stress modes
and its J is a low order polynomial. Therefore, the practice of cancelling the entries in <PnT SP, >
that vanish when J is constant induces only minor change in <PnTSPn> and thus the element

accuracy. For higher order elements, a number of issues have to be resolved :

e alarge number of stress modes have to be determined and condensed.

the adopted practice of simplifying <PnT SPn> for lower order elements does not yield

satisfactory computational saving.

e due to the higher order nature of J, the adopted practice of simplifying <PnTSPn > for lower

order elements sometimes results in peculiar predictions.
e making use of the Gram-Schmidt scheme to achieve additional stress orthogonality is possible

but cumbersome .

10. Rhiu & Lee's Hybrid Stabilization

The idea for a satisfactory way of extending AMF to higher order element came from Rhiu
& Lee's approach for improving the computational efficiency of hybrid strain element [48,49]. The
approach has been employed to design higher order elements for plate/shell analysis [48,50,51] and

is based on the strain-version of the Hellinger-Reissner functional :

I =—%<8TCs>+<sTqu>—ISthtds (48)

€

As given previously in Eqn.(16b) and Eqn.(14), €, = B, q and v = I'q. By partitioning the assumed

strain into the lower and higher order modes :

€=¢, + &, (49)

and applying the standard order of integration, Eqn.(48) becomes :



e 1/ ¢ 1/ 7 T T T T T
Hg——5<8LC8L>L—5<8HC8H>H—<8HC8L>L+<8LCBq>Lqe+<8HCBq>Hq—q [T tds
(50)

where < > and < > indicate that the integrations are performed by using the lower (sub-) and
L H

higher (full) order quadratures, respectively. Rhiu & Lee take €, to be the interpolated €, at the
sub-integration points whereas the higher order strain modes are explicitly assumed, i.e.
SLZZNqu(i)q ) ey =Quay
i=1

(5D

in which n; is the number of sub-integration points, N; is the interpolation function (polynomial
of the natural coordinates) for the i-th sub-integration point and N; (j) = §;. The index inside the
parenthesis indicates that the preceded quantity is evaluated at the corresponding sub-integration

point. Substitution of Eqn.(51) into Eqn.(50) gives :

e_1 r/or L 7/ar T T T [ 17
IT; :Eq <BqCBq>Lq—EG,H<QHCQH>HG,H+GH <QHCBq>H—<QHCBq>L q—q jStl" tds

(52)

Variation of ooy enforces,

co-lofco,) (orem,), -{oren) ) o

H
and the element stiffness matrix is derived as :
k= (wjcn,) +([ojcs,) ~(ojcn,) ) (eica,) ((efen,), ~{ajen,), ) 59

Finally, the element stress is computed by consolidating Eqn(49), Eqn.(51) and Eqn.(53) :

Ce=C3 NB, (i) q+ CQH<QZCQH>;(<QZCBq>H _ <Q,T,CBq>L) q (55)

i=1

It can be seen in Eqn.(54) that the row vectors in <Q1T1CBq> _<QIT_1CBq> play the role of
H L

stabilizing the sub-integrated element <B;CBq> . The method of using an explicitly assumed
L



stress/strain to derive stabilization vectors will be termed Aybrid stabilization and is different from
the well-known j-stabilization in the sense that the central theme of the latter is to obtain some -
vectors or p-stabilization vectors by means of the Gram-Schmidt scheme. After being
orthogonalized with respect to the linear or even quadratic displacement field, the cross products of
the j~vectors are added to the sub-integrated element [52-54].

As a simple illustration of Rhiu & Lee's hybrid stabilization, the 9-node plane element of
dimension 2x2 is considered, see Fig.3. For the sake of stabilizing the sub-integrated (by 2nd order

quadrature) element, the assumed higher order strain is determined with reference to the element's

mechanisms :
2 2 2 ¢
{“&} _ {(3& -G 1) 0 G- | (56)
Uy 0 (&7 -DGn* 1) -3 -1 0,
where ¢; 's are linear combinations of the nodal displacements. The derived strain is :
Oty 65(3n° ~1) 0 Gn* =1 |6,
Oty ¢=| 0 6MBE -1 - =D f¢, (57)

Ot +0zu, | | 6N(3E” —1) 653" —1) 0 s

The last mode is suppressed automatically when two or more elements are used in a mesh, i.e. it is

non-commutable. The higher order assumed strains chosen by Lee & Rhiu [49] are :

€1 en’ 0
SH: 8yy :Ts O n&z G‘H (58)
2e,, y 0 0

where T, is their employed strain transformation matrix.

11. AMF version of Hybrid Stabilization

The relation between the assumed strain and the displacement-derived strain is
conventionally obtained by variational enforcement. This is different from the direct intervention in
Eqn.(51). However, Rhiu & Lee's idea is seminal in circumventing the unresolved issues outlined in
Section 9.

Instead of using orthogonal constant and non-constant stress modes in AMF, orthogonal

lower and higher order modes are employed, i.e.



<PLT PH> =0 or equivalently, <P1T PH> =0 and <PH> =0 (59a,b)

Moreover, the legitimate counterpart of H; is employed. Since internal (displacement) d.o.f.s are
rarely employed in higher order elements, they will be discarded for the subsequent discussions.
Thus, Eqn.(40a) reduces to :

[P s sl ol ] ()
Mg =-—1B, <P1TSP1> 0 1B, +9B <P1TBq> q—qTIStFTtds
2
BH Sym. H,, BH BH _<P1LTIBq>_
(60a) _ _
or
) 8, | [(P’sp,) o [(g,] [B,] <PTBq>
HG:_%{B;} < . > . {B;}JF{B;} <P},Bq> q —qTIS,FTtds
(60b)

where P; equals[I. P; ] asnotedin Eqn.(39). The variational enforcements of B's are :

-1

B.=(Prsp,) (P[B,)a . B, =H,(PB,)a (612)
.1

HG:EqTU(L+KH)q —qﬂ;rTuh (61b)

where

T -1 T
K, :<PLTBq> <PLTSPL> <PLTBq> : KH:<P{,Bq> H;;H<P§Bq>

are the lower and higher order stiffness matrices, respectively. After solving q, the stress can be

computed as :
-1
c=P B, +P,B, =P, <PLTSPL> <PLTBq>q+ PHH;IIH<P§Bq>q (62)

To reduce the cost incurred by the lower order stiffness matrix, the lower order stress modes are
chosen such that K, is identical to the sub-integrated element [55]. First of all, we note that the

sub-integrated element matrix and its element stress at the sub-integration points can be expressed
as :



CB, (1)

<B§ CBq>L _ gw(i)J(i)BqT ()CB,()=B'S'B . lq. =S"Bq (63)
"~ CBq (nL)
where
w()J(D)B, (1)
B- : , S = diag. {w(l)J(l)S w(nL)J(nL)S}
w(ng)J(n, )Bq (n,)
w(i) is the weighting factor for the i-th sub-integration point
On the other hand,
<PLT Bq> = S w@)JOPI()B, () =P B <P{ SPL> = 3 w(i)JG)P! ())SP, (i) = P'SP
L Loz
(64)
where
R LAOIE ACY

If P isinvertible,
-1 I _1_ . _ _ _
B, =<PLTSPL> <PLTBq>q=(PT P) P'Bq=P 'S"'Bq (65a)

T -1 e N
K, =<PLTBq> <PLTSPL> <PLTBq>=BTP(PTSP) PTBzBTs“B=<B§CBq> (65b)
L

and the element stress at the sub-integration points is :
o(1) P.()
D= D B
o(n;) P (n;)

Py (D CB,(1) Py (D)
: By = : q+ : H};H<P]§Bq>q(65c)

Py(n,) CBq(”L) Py(n,)

The most straightforward choice of P; is to employ the same set of n; least order uncoupled
polynomial terms for every stress components. Similar derivation was first given by Malkus &
Hughes [56].

The last issue to be resolved is how to select the higher order stress modes which are
orthogonal to the lower order ones without resorting to the Gram-Schmidt scheme. It will be seen

from the following two illustrations that the proposed procedure is indeed straight forward.



11.1 Nine-Node Plane Element It can be checked that the following assumed lower order stress

shape function results in an invertible P :

P, =[Ii &Iz nl; &nls]
(66)

For the 9-node plane element, the strain derived from the mechanisms of the sub-integrated element

has been given in Eqn.(57). The two commutable mechanisms can be stabilized by either :

Cee E(3n’ - 1) 0 Cee E(3n° - 1) 0
O = 0 n(3&2 )| By or S = 0 n(3&2 -1 By
Oy, |NGE-D EGnT-1) O 0 0

(67a)

In reference [55], the last assumed contravariant stress field is adopted as it is simpler and does not
involve any shear terms which are detrimental to the element's bending response. The Cartesian

stress is obtained as :

Ou| Sl EGn° -1 0
Oy = T6=n=01oy =—T(g=n=0) 0 G -D|By=PyBy
S, Sen ), 0 0

(67b)

Again, T denotes the contravariant stress transformation matrix. The reciprocal of J is included to
ensure the orthogonality between Py and the P,  given in Eqn.(66). Using the above procedure,

Py also vanishes at the sub-integration points. This simplifies Eqn.(65c) to :
o(i) = CB,(i)q (68)

As sub-integration points are often the super-convergent stress points, it is very common to simply
interpolate/extrapolate the stress values at these points in computing the element stress. Under this
practice, an additional advantage of the current procedure is that there is no need to compute any
stress coefficients in calculating the element stress.

CPU time comparison for various 9-node plane elements is presented in Table 2. The
present element (AMF plane) is more efficient than Lee & Rhiu's element. This is apparent in view

of the different complexity for the stabilization matrices in En.(54) and Eqn.(61b).

methods of formulation Lee et al's comparison [49] | Sze's et al's comparison [4]

displacement, 3x3 integration points 1.00 1.00



displacement, 2x2 integration points
hybrid strain formulation, see Eqn.(49)
Lee & Rhiu's hybrid stabilization [49]
AMF plane [4,55]

0.53
1.95
0.89

-n.a. -

0.44
-n.a. -
-n.a. -

0.62

Table 2 CPU time comparison for various 9-node plane elements

Fig.4 shows the popular cantilever problem for 9-node plane elements. The cantilever is

subjected to a distributed end shear. The end deflection and the bending stress at the second order

quadrature point B are computed. The results listed in Table 3 have been normalized by the

analytical solutions given in the text of Timoshenko & Goodier [57]. All the advanced elements

yield accurate predictions. The element "SQ9" [58] will be discussed in a later section.

Mesh 1 Mesh 2 Mesh 3
L/b elements deflect. stress deflect. stress deflect. stress
displacement, 3x3 0.954 1.141 0.791 0.687 0.737 0.797
displacement, 2x2 1.006 1.000 1.075 7.060 0.955 0.964
10 hybrid strain [49] 0.990 1.000 0.975 0.914 0.960 0.923
Lee & Rhiu [49] 0.995 1.022 1.014 1.085 0.986 0.981
AMF plane [56] 0.991 1.000 1.019 0.908 0.941 0.919
SQI [58] 0.991 -n.a. - 0.920 -n.a. - 0.955 -n.a. -
displacement, 3x3 0.939 0.193 0.758 0.679 0.441 0.501
displacement, 2x2 1.002 1.000 1.071 1.060 0.951 0.964
20 hybrid strain [49] 0.985 1.000 0.967 0.900 0.956 0.923
Lee & Rhiu [49] 0.990 1.022 0.991 1.005 0.983 0.993
AMF plane [56] 0.989 1.000 1.013 0.897 0.937 0.920
SQ9 [58] 0.986 -n.a. - 1.013 -n.a. - 0.937 -n.a. -

Table 3 Normalized predictions for 9-node plane elements, see Fig.4

11.2 Twenty-Node Brick Element In this illustration, the more complicated 20-node brick is

considered [59,60]. The displacement space of the element is generated by :

{1, &, &nG, C&, En, &7, m%, 67, Eng, mE?, CE%, G, En’, EG7, G, neE?, CEn’, inf;z}

(69a)

An alternative basis is :

{1’ é’ n, C, nC, C@, ﬁn, ‘22, nz, C.>2’ &ng 11(3&2 - 1), C.>(3§2 - 1)’ C(31’I2 - 1)’ §(31‘I2 - 1),




EGC7 - D067 - D, MEGET ), GEGN” -1, &nGLT -] (69b)

After some algebraic manipulations, six commutable mechanisms are identified :

Uy 30’ - 1) 0 —E(3C° -1 CEGn’ -1 0 —nEGL* -1 | |9,

u,p=|-nG& -1 G- 0 ~In(&’-1)  &n(3E’ - 1) 0 :

U 0 ~{G3n*-D0  ¢B3E’ -1 0 —ELGN -1 MEGE 1) || 9
(70)

where ¢;'s are linear combinations of the nodal displacements. The derived covariant strain is :

B, TJd’}l
[&iué Ou, O, O +0u, O +0u, Ou,+ 8§un] :LO J : (71)
oo,
where
(ERES)) 0 -3¢’ -1 ¢Bn*-) 0 -n(3* - 1)
P, =-(3¢-1) (- 0 -’ -1 &G’ - 0
0 -Gn*-1) (3’ - 0 -EGBn° -1 n@Ge*-D

The mechanisms can be suppressed by the following contravariant stress :

U

— H

O Om O¢ On O Gan]H = L }BH (72)
3x6

The shape function matrix for the assumed lower order Cartesian stress that constitutes an invertible

P is chosen to be :

P, =[Ig &g nls Cls nCle CEls &nlg  EnCle ]
(73)

The higher order Cartesian stress, which vanishes at the sub-integration points, is obtained from
Eqn.(72) by using the constant contravariant stress transformation matrix evaluated at the element

origin, i.e.

T

1
Gxx ny Gzz Gyz sz nyHz HBH=7T0(§=T]=C=O)|:

Pr }BH (74)

3x6



Again, the reciprocal of J is employed to yield the required orthogonality between P, and Py To

form the higher order stiffness matrix, see Eqn.(61b), it is necessary to compute the inverse of the

6x6 matrix <P,§SPH> . To reduce the computing time, the matrix is replaced by a diagonal Hj
H

[59,60]. CPU time ratio required to form displacement-based elements evaluated by the second
order quadrature H20(8), the fourteen-point rule H20(14), the third order quadrature H20(27) and
the present hybrid stabilized element is obtained [59,60] :

H20(8) : H20(14) : H20(27) : hybrid stabilized = 1.00: 1.79 : 2.25 : 1.75
(75)

It is worth noting that the present element consumes less cpu time than H20(14). The relative
accuracy for the 20-node elements are illustrated by the hemispherical shell problem depicted in
Fig.5. Diametrical point loads of equal magnitude and alternating at 90° intervals are applied.
Owing to its symmetry, only one quarter of the shell is modelled. Three NxN meshes are
considered. Deflections at loaded point in the direction of the applied force are normalized by the
reference solution of MacNeal & Harder [61] and listed in Table 4. Both the sub-integrated and the

hybrid stabilized element are far better than the fully integrated elements.

mesh density | H20(8) H20(14) H20(27) | hybrid stabilized [59,60]

2x2 0.163 0.001 0.001 0.104
4x4 0.777 0.021 0.021 0.675
6x6 0.972 0.098 0.097 0.945

Table 4 Normalized deflections of 20-node elements in the hemispherical shell problem, see Fig.5

12. Explicit Hybrid Stabilization

For the two elements introduced in the last section, the employed contravariant stress
transformation matrices are taken at the element origin and the orthogonality between P, and Py
is strictly valid. In the 8-node brick element equipped with Allman's rotations [62-64], the true
transformation matrix Ts(§,m,C) can be adopted without upsetting the patch test [65]. For the
element, the lower order stress shape function is the same as the one given in Eqn.(73) and the
commutable mechanisms are the same as the sub-integrated 20-node brick. In contrast to Eqn.(74),

the higher order stress is chosen to be :

T

1 P
GH:[GXX ny O Gyz O ny - PHBszTc(&anaC){ "

H

:lBH (76)

3x6

It can be checked that <PLT PH>H #0 but



<PH>=0 ) <PITPH>L =<[E.>I6 nlg Clg nCly CElg  &nlg nc&lé]TPH> =0

L

(77)

Hence, the effect of ignoring <P,T PH> should be small. On the other hand, the displacement-
H

derived strain can be expressed as :

T

XX »y zz vz zx Xy

_ u u u u u u
€, = [8 e, €, 2&, 2t 2 o m

T
_m-T| .u u u u u u
=T [séé € € 28nc 28 28&]]

T

(78)

T T T T T T T T
p ’i ’E: X’T] u,n X’C u,g X’T] u’C+X’C u,n X,Q u,§+x,§ u,C X’E; u,n+x,n ll,g

where

u=[u v w] , x=[x y z]'

are the displacement and position vectors, respectively. From Eqn.(76) and Eqn.(78),

(31’ - Dx,; 8; —(3* - Dx,,, 9,
(3¢ - Dx,, 8, - (30 = D), &,
, apsp] (387 =Dx, 0, - (3% = Dx,. 0;
BH<P B> < > Bl LI BN =), 8 — GG = 1)x, 0, |
&G0~ 1)x,y 0, —EGN’ — D, O, |
| n(3E” = 1), 8, - (367 = D, 0
BN =Dy, 0~ (& =13,y 0y G =Dz 0 (8 ~ Dz, 0,
(G2 =13, 0y =G> =Dy, 8, (3C2 =1z, 0, — (30> — )z, &,
(82 =1y, 0, (L =Dy 0, (382 =1z, 8, (367 ~ 1)z, 0
LGN =Dy 0 ~GGE” = 1)y, 0, | GO = 1)z, 8, ~G(3E> = 1)z, 0,
636 = D3y 0y —EGN” =Dy O EGE =Dz, 0, ~EGN Dz 8,
N(3E> — )y, 0~ N> =Dy, 8, | N(3E> — Dz, 0, - (3~ Dz, 0

v b dedndg

(79)

The stabilization vectors presented as the row vectors in <P§B q> turn out to be some very simple

expressions of the nodal coordinates and can be programmed explicitly instead of resorting to

numerical integration loops. Moreover,



e, - o s B

1
J 03><6 3x6

}dédndC (80)

After J and Ts(E,n,0) are, respectively, replaced by J, =J(E=m=C=0) and [ T, T, T3 Ts Ts
Tes ] = To(E=m=C=0), the resulting admissible version of <P,§SPH> is
H

_ _J--%—IJ'+1J-+1]T)T d(idndg

5 811 +8, -85 -8
= 15/ x diag. Sy +S =S8y Si+8y S +S; Su+S)
? sym. S33+ 5y
(81)

where

~ T
:[Sg/]:Tl Tz T3 06><3] S[Tl Tz T3 06><3

Unlike the previous hybrid stabilization, higher order integration rule needs not be used in
programming the explicit hybrid stabilization vectors. This further enhances the computational
efficiency of the elements.

The two-element cantilever problem shown in Fig.6 is examined. Point moments are applied
to the four end nodes. The average end deflections and the bending stresses at point B, the centre of
the element face, are computed and normalized by the analytical solutions [57]. The results with
varying degree of mesh distortion ( characterized by "e" ) are shown in Fig.7. HEX8RX is the
STIF73 element in the commercial finite element code ANSYS [63]. Displacement of the "present

element" are supplemented with the following bubble (internal) displacement d.o.f.s [65] :

A

u, =(1-)(1-n)(1-&%) LA, (82)
A

for enforcing the homogenous equilibrium condition in the assumed stress [66]. Meanwhile, three
incompatible displacement modes are employed in HEX8RX. Mechanisms of HEX8RX are
suppressed by generalizing MacNeal's perturbation stabilization schemes [67]. Despite of the

employed small perturbation parameter, HEX8RX is more susceptible to mesh distortion.

13. Closure



In this paper, the evolution of AMF has been reviewed. Several sample elements are
used to illustrate how the technique can be applied to lower and higher order elements with
and without internal displacement d.o.f.s. Although only AMF hybrid stress elements are
discussed, the technique can readily be extended to hybrid strain elements which are sometimes
deemed to be more suitable for nonlinear analysis. Besides the AMF elements presented in
references [14,16,42-45,47,55,58-60,64,65], there still remains a large number of practical
element configurations that AMF can be applied.

Explicit hybrid stabilization vectors have also been derived for the 9-node Lagrangian shell
element [58]. The explicit form of the vectors are given in reference [68]. The element, designated
as SQ9, passes the patch test only if the mesh are sub-parametric (the element central node locates
at the parametric origin defined by the four corner nodes and the edge nodes are mid-edge nodes).
This is because <PH>H equals zero only when the element is sub-parametric despite of the general

vanishing nature of <PH>L . The predictions of SQ9 for the benchmark test depicted in Fig.4 have
been listed in Table 3.

As a matter of fact, if one sticks to sub-parametric elements, explicit stabilization vectors
can also be derived for the 20-node brick expounded in Section 11.2 and many other higher order
elements. It should be remarked that the so-derived explicit stabilization vectors can still suppress
the mechanisms but will slightly destroy the element consistency. Whether the users would accept
sub-parametric elements or not depends very much on their finite element know-how. In the recent
text of MacNeal [69], he mentioned that a sub-parametrically formulated 6-node membrane element
once available in MSC/NASTRAN was not popular with users. It was probably because most users
well perceive the geometric discretization error but remain relatively unaware of the substantial
drop in element accuracy when the element ediges are curved (illustrations can be found in
reference [70,71]). Nevertheless, we know that most 6-node and 9-node shell elements only pass the
plate bending patch test when the elements are sub-parametric and they have been being used in
many commercial codes for decades.

Since every mesh becomes practically sub-parametric after successive refinement,
stabilization vectors with sub-parametric consistency should be acceptable. For all the examined
curved shell problems reported in reference [58], SQ9 yields close predictions to, if not more
accurate than, the y—¢ stabilized element [54] which passes the plate bending patch test even if the
mesh is not sub-parametric. Moreover, there exist a large number of elements (especially,
plate/shell elements) in the open literature that only exhibit sub-parametric consistency. Except for
curved shells, only a very small portion of the elements in finite element meshes for infinitesimal
strain problems are not sub-parametric. For large deformation analyses, the distorted edges are
often straightened in the remeshing process so as to maintain the element accuracy, see e.g.
reference [71]. Of course, further investigations should be carried out to compare the relative
efficiency and accuracy of the stabilization vectors which are strictly consistent and the stabilization

vectors which are only sub-parametric consistent.
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