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Abstract— This paper proposes some sufficient criteria based
on the computation of polynomial and piecewise polynomial
storage functions for checking passivity of discrete-time hybrid
systems in piecewise affine or piecewise polynomial form. The
computation of such storage functions is performed by means
of convex optimization techniques via the sum of squares
decomposition of multivariate polynomials.

Index Terms— Hybrid systems, passive systems, discrete-time
models, sum of squares decomposition.

I. INTRODUCTION

Passivity is a widely adopted tool for analyzing the stabil-
ity of interconnections of dynamical systems (see [23], [12],
[13]) and is used in several domains of engineering sciences,
such as in electrical circuit and mechanical system analysis
(see [2]), and even in the study of complex phenomena
(see [8]). In particular, passivity is exploited in robotics
as a key concept for stability analysis of human/machine
interactions involving haptic interfaces (see [15], [9], [11]).

Passivity analysis of interconnected systems hinges upon
the ability of characterizing the passivity properties of each
single dynamical system. For linear systems a solid theory
and analytical/numerical criteria are available, and theoreti-
cal characterizations were developed for smooth nonlinear
dynamical systems [13]. Although most of the passivity
characterizations were proposed for continuous-time models,
a few results were developed for discrete-time models [5],
and recently also for sampled-data systems [21].

In many practical applications, some of the system com-
ponents exhibit a heterogeneous dynamical discrete and
continuous nature that cannot be captured by smooth models
because of abrupt mode switches. The study of such hybrid
systems, that has massively emerged in the last few years,
was devoted to analyzing the dynamical interaction between
continuous and discrete signals in one common framework
(see [1]). Passivity analysis of hybrid models has received
little attention, with the contributions of [6], [14], [24] and
[18], in which notions of passivity for continuous-time hybrid
systems are formulated.

In this paper we address the passivity property of discrete-
time hybrid systems in piecewise affine (PWA) form [20] or
piecewise polynomial (PWP) form. Our motivating practical
reason for addressing hybrid passivity issues in discrete-time
stems from the need of studying haptic problems, where a
haptic device interacts with a naturally discrete-time virtual
environment (see [11], [9]). Indeed, in some typical haptic
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problems the virtual environment is often modeled as a
discrete-time equivalent of a suitable mechanical system (see
[9]), and its interaction with the haptic device can be modeled
by a hybrid discrete-time system, as briefly outlined in the
example section of this paper. A possible way of ensuring the
stability of the haptic loop (including the human) is to assess
the passivity of the dynamics relating the applied force and
the velocity of the end effector [15], [9], [11]. Therefore,
a criterion for investigating the passivity of discrete-time
hybrid systems is desirable.

Passivity of PWA systems employing quadratic and piece-
wise quadratic storage functions was addressed in [3], where
several LMI-based passivity tests were developed. In this
paper we propose a less conservative approach for proving
the passivity of a given PWA or PWP system by means of
polynomial or piecewise polynomial storage functions. Such
storage functions are constructed via semidefinite program-
ming by means of the sum of squares decomposition of
multivariate polynomials [17].

Sum of squares methods for the computation of piecewise
polynomial Lyapunov functions have been exploited for
analyzing stability of continuous-time hybrid and switched
systems [19]. In this paper we use a similar idea for passivity
analysis in discrete-time, although the approach can be easily
generalized to the continuous-time case.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider discrete-time systems of the form

xk+1 = fi(xk, uk)
yk = hi(xk, uk)

i ∈ I
if

[
xk

uk

]
∈ χi, (1)

where k ∈ T = {0, 1, . . .}, xk ∈ R
n is the state vector,

uk ∈ R
m is the system input, yk ∈ R

p is the output vector,
fi(x, u) : R

n+m → R
n and hi(x, u) : R

n+m → R
p are

suitable vector fields, and χi, i ∈ I is a partition of a given
subset X of R

n+m, being I = {1, . . . , s}. The set X in
which the state-input pair is defined is assumed to contain
the origin. Each element χi of the partition is referred to as
a cell. Let each cell be defined by

χi =
{
[xT uT ]T ∈ X : gir(x, u) ≥ 0, r = 1, . . . , ri

}
(2)

where gir(x, u) : R
n+m → R, r = 1, . . . , ri, i ∈ I are

suitable functions.
From the standard dissipativity notion for discrete-time sys-
tems (see [13],[5]) we have that system (1) is dissipative
with respect to a given supply function s(u, y) : R

m+p → R
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if there exists a nonnegative function V (x) : R
n → R with

V (0) = 0, called the storage function, such that

V (xk+1) − V (xk) ≤ s(yk, uk) ∀uk,∀k ∈ T. (3)

For p = m, system (1) is termed passive if it is dissipative
with respect to the supply function s(u, y) = yT u, i.e., if
there exists a storage function V (x) such that

V (xk+1) − V (xk) ≤ yT
k uk ∀uk,∀k ∈ T. (4)

Note that both the definitions of dissipativity and passivity
are well-posed under the standard assumption that all
state-input trajectories of the system satisfy [xT

k uT
k ]T ∈ X,

∀k ∈ T.

The standard approach to investigating passivity of gen-
eral nonlinear systems is to check inequality (4) against
storage functions of prescribed structure (see [13]). In the
following sections we illustrate a method for assessing the
passivity property of systems of the form (1) by means of
the computation of polynomial and piecewise polynomial
storage functions. The proposed approach is based on the
sum of squares decomposition of multivariate polynomials.
It is well-known that the sum of squares decomposition
provides a satisfactory relaxation for proving polynomial
positivity via semidefinite programming [17]. Specifically,
let p(x) be a polynomial. If there exist polynomials si(x),
i = 1, . . . , k such that

p(x) =

k∑
i=1

s2
i (x) (5)

then it clearly follows that p(x) is nonnegative. The existence
of such polynomials si(x) can be established through a
Linear Matrix Inequality (LMI) feasibility test, which is a
convex optimization problem for which powerful computa-
tional tools have been developed [10], [22]. This method
has been exploited in several areas of control system theory,
for example to construct Lyapunov functions for proving
stability of nonlinear systems [16] and uncertain systems
[7]. The standard approach is to parameterize the candidate
Lyapunov function V (x) as

V (x) = v0(x) +
m∑

i=1

civi(x) (6)

where vi(x) are multivariate monomials or polynomials of
suitable degree, and then to formulate positivity constraints
involving V (x) (e.g., for a discrete-time system, positive
definiteness of V (x) and negative definiteness of V (xk+1)−
V (xk)) by imposing that suitable polynomials which depend
affinely on the coefficients ci are sums of squares.
In the sequel, passivity conditions will be formulated in terms
of inequalities based on (4). In order to employ the convex
programming techniques mentioned above, such inequalities
will have to be interpreted in the sum of squares sense. This
implies that the following assumption will be enforced in
general.

Assumption 1: The vector fields fi(x, u) and hi(x, u) in
(1) and gir(x, u) in (2) are multivariate polynomials in x and
u. The resulting system is then termed piecewise polynomial
(PWP).

Remark 1: A very commonly employed and widely stud-
ied class of hybrid systems is the class of piecewise affine
(PWA) models. Such models are of the form

xk+1 = Aixk + Biuk + φi

yk = Cixk + Diuk + ψi

i ∈ I
if

[
xk

uk

]
∈ χi,

(7)

χi =
{
[xT uT ]T ∈ X : F x

i x ≥ fx
i , Fu

i u ≥ fu
i

}
(8)

where F x
i , fx

i , Fu
i , fu

i , i ∈ I are constant matrices/vectors.
Clearly, these models fall into the wider class of PWP
systems introduced in (1).
The most common way to investigate stability and passivity
of PWA systems is to look for piecewise quadratic Lyapunov
or storage functions. In [3], piecewise quadratic storage
functions have been used to assess passivity of PWA systems,
yielding a set of sufficient LMI criteria which may prove
to be quite conservative. It is worth to note that looking
for higher order piecewise polynomial storage functions may
significantly reduce conservatism of passivity tests for this
class of systems, as it will be clear from the examples
presented in this paper.

III. MAIN RESULTS

A. Passivity analysis via common polynomial storage func-
tions

It is easily seen that passivity of system (1) is ensured if
there exists a common storage function satisfying inequality
(4) for each subsystem defined by (fi(x, u), hi(x, u), i ∈
I). Therefore, the following sufficient condition is readily
obtained.

Theorem 1: Consider system (1). If there exists a polyno-
mial V (x) such that V (0) = 0 and

V (x) > 0 ∀x �= 0
V (fi(x, u)) − V (x) − hT

i (x, u)u ≤ 0 ∀(x, u), ∀i ∈ I
(9)

then system (1) is passive with storage function V (x).
Note that if system (1) is PWA and V (x) = xT Px is
quadratic, the above condition boils down to a set of LMIs
derived from the application of the KYP Lemma to each of
the subsystems. Nevertheless, computing a common storage
function of higher degree is in general a less conservative test
for affine systems. It is not difficult to single out systems for
which a common quadratic storage functions cannot be found
and that can be proven to be passive via a higher order V (x).
It is also clear that the common storage function test turns out
to be particularly conservative for switched systems, since
the switching mechanism is completely disregarded.
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B. Passivity analysis via piecewise polynomial storage func-
tions

A piecewise polynomial (PWP) candidate storage function
for system (1) is a function V (x) : X → R defined as

V (x) = Vi(x) ∀[xT uT ]T ∈ χi, i ∈ I, (10)

where Vi(x), i ∈ I are polynomials.
Let us define the set of index pairs

S =
{
(i, j) : ∃x ∈ R

n, u, w ∈ R
m : [xT uT ]T ∈ χi,

[fi(x, u)T wT ]T ∈ χj , i, j ∈ I
}

(11)
i.e., the set of ordered pairs of indices corresponding to all
transitions from cell χi at time k to cell χj at time k + 1
which are actually allowed to occur along all possible sys-
tem trajectories. The following sufficient passivity condition
holds.

Theorem 2: Consider system (1). If there exist polynomi-
als Vi(x), i ∈ I, such that Vi(0) = 0 and

Vi(x) > 0 ∀x �= 0, ∀i ∈ I
Vj(fi(x, u)) − Vi(x) − hT

i (x, u)u ≤ 0 ∀(x, u), ∀(i, j) ∈ S
(12)

then system (1) is passive with storage function (10).
The above result easily follows from the fact that the
feasibility of the sum of squares problem in (12) ensures
that the dissipation inequality (4) holds for a suitable V (x)
of the form (10) along all system trajectories.

Remark 2: The set of allowed transitions S is in general
quite difficult to compute for an arbitrary PWP system.
Nevertheless, the above result can be applied successfully
in the case of PWA systems, since the related set S can be
computed by means of reachability analysis using linear pro-
gramming (see [4]). Otherwise, a more conservative version
of Theorem 2 is readily obtained by replacing S with the
cartesian product Sall = I × I.

C. Relaxed PWP passivity test

A certain amount of conservatism can be removed from
the PWP passivity test in Theorem 2. First, we observe that
each Vi(x) need not be positive in the whole state space but
only within the associated cell χi. To account for this fact,
by recalling the definition (2) of χi, positive definiteness of
each Vi(x) can be replaced with the relaxed condition

Vi(x) −

ri∑
r=1

air(x, u)gir(x, u) > 0 ∀(x, u), x �= 0 (13)

for some positive polynomials air(x, u). In fact, since
gir(x, u) ≥ 0 ∀[xT uT ]T ∈ χi, if air(x, u) > 0, then (13)
implies Vi(x) > 0 ∀[xT uT ]T ∈ χi.
The same reasoning can be applied to obtain a relaxation
of the second inequality in (12). For all (i, j) ∈ S, let us
introduce the set χ̃

j
i ⊆ χi defined as

χ̃
j
i =

{
[xT uT ]T ∈ χi : ∃w : [fi(x, u)T wT ]T ∈ χj

}
(14)

i.e., the subset of state-input pairs in cell χi at time k which
are allowed to evolve into cell χj at time k +1. Suppose χ̃

j
i

can be expressed in the form

χ̃
j
i =

{
[xT uT ]T ∈ X : gijr(x, u) ≥ 0, r = 1, . . . rij

}
(15)

where gijr(x, u), r = 1, . . . rij are suitable polynomials.
Then, the second inequality in (12) can be replaced by the
relaxed condition

Vj(fi(x, u)) − Vi(x) − hT
i (x, u)u

+
∑rij

r=1 bijr(x, u)gijr(x, u) ≤ 0
∀(x, u), ∀(i, j) ∈ S

(16)
for some positive polynomials bijr(x, u). Summing up, we
have the following result.

Theorem 3: Consider system (1). If there exist polynomi-
als Vi(x), i ∈ I, air(x, u) > 0, r = 1, . . . , ri, i ∈ I and
bijr(x, u) > 0, r = 1, . . . , rij , (i, j) ∈ S such that Vi(0) = 0
and

Vi(x) −
∑ri

r=1 air(x, u)gir(x, u) > 0 ∀(x, u), x �= 0

Vj(fi(x, u)) − Vi(x) − hT
i (x, u)u

+
∑rij

r=1 bijr(x, u)gijr(x, u) ≤ 0
∀(x, u), ∀(i, j) ∈ S

then system (1) is passive with storage function (10).
Remark 3: Unfortunately, a parameterization of the sets

χ̃
j
i of the form (15) seldom exists or can be computed easily.

Nevertheless, for some important classes of systems such as
PWA models this task is readily accomplished. Consider the
PWA model defined by (7),(8). The set χ̃

j
i turns out to be

the polytope

χ̃
j
i ={
[xT uT ]T :
F x

i x ≥ fx
i , Fu

i u ≥ fu
i , F x

j (Aix + Biu + φi) ≥ fx
j

}

(17)
which can be expressed in the form (15).
When a parameterization of the sets χ̃

j
i of the form (15) is

not available, then a more conservative result can be obtained
by relaxing the second inequality in (12) with respect to the
condition [xT uT ]T ∈ χi ⊇ χ̃

j
i in place of [xT uT ]T ∈ χ̃

j
i .

Corollary 1: Consider system (1). If there exist polyno-
mials Vi(x), i ∈ I and air(x, u) > 0, r = 1, . . . , ri, i ∈ I
such that Vi(0) = 0 and

Vi(x) −
∑ri

r=1 air(x, u)gir(x, u) > 0 ∀(x, u), x �= 0

Vj(fi(x, u)) − Vi(x) − hT
i (x, u)u

+
∑ri

r=1 bir(x, u)gir(x, u) ≤ 0
∀(x, u), ∀(i, j) ∈ S

then system (1) is passive with storage function (10).

IV. EXAMPLES

Example 1: Consider the piecewise linear system with
state vector xT = [x1 x2]

T , scalar input u and scalar output
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Fig. 1. Example 1: state space partition

y of the form (1) described by two subsystems defined by

f1(x, u) =

[
0.5x1 + 0.4899x2 + 0.5477u

0.9x2 + 0.8944u

]

g1(x, u) =
[
−0.5477x1 + 0.8944x2 + 3u

]

f2(x, u) =

[
0.6x1 + 0.4290x2 + 0.6325u

0.96x2 + 0.6782u

]

g2(x, u) =
[

0.6325x1 + 0.6782x2 + u
]

and the state space partition

χ1 =
{
[xT u]T ∈ R

3 : x1 <= 1
}

χ2 =
{
[xT u]T ∈ R

3 : x1 > 1
}

(see Fig. 1). The set of allowed transitions turns out to be
S = I × I.
For this system, neither a common quadratic nor a common
quartic storage function that prove passivity is found. By
means of the relaxed passivity test in Theorem 3, not even
a piecewise quadratic storage function is found. Indeed, a
piecewise quartic storage function can be computed as

V (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.014439x2
1 − 0.024275x1x2

+0.016245x2
2 − 0.00047535x3

1

+0.0014345x2
1x2 − 0.00071509x1x

2
2

−0.00010131x3
2 + 0.0052423x4

1

−0.015458x3
1x2 + 0.017766x2

1x
2
2

−0.0096066x1x
3
2 + 0.002019x4

2

[xT u]T ∈χ1

0.013508x2
1 − 0.021421x1x2

+0.01439x2
2 + 0.00059256x3

1

−0.0012252x2
1x2 + 0.00069647x1x

2
2

+0.000083209x3
2 + 0.0057838x4

1

−0.01679x3
1x2 + 0.018783x2

1x
2
2

−0.0098604x1x
3
2 + 0.0020399x4

2

[xT u]T ∈χ2

Example 2: Consider the simple haptic model in Fig. 2.
The idea of modelling the interaction between the haptic
device and the virtual environment with a sampled-data
equivalent of a spring-mass-damper system is quite standard
(see [9]). Clearly, the virtual environment is a computer-
simulated model and hence a pure discrete-time system. On

Fast system Slow system

b

Fext
m x

K

Fig. 2. Haptic model

the contrary, the haptic device dynamics is continuous-time.
A possible approach to analyzing passivity of the overall
model, where the input u is the external force Fext applied
to the haptic device and the output y is the velocity ẋ of the
end effector, is to derive a discrete-time multi-rate model
in which different sampling times nTs and Ts (n > 1) are
used for the simulated environment and the haptic device
dynamics, respectively. Let the virtual environment (slow
system) be the discrete-time equivalent (with sampling time
nTs) of a spring system with stiffness K and the haptic
device dynamics (fast system) be the discrete-time equivalent
(with sampling time Ts) of a mass m and damping b. In order
to analyze the passivity property in discrete-time, the usual
ZOH equivalent is not suitable and it is necessary to employ
the method described in [3] which preserves the passivity
property of linear systems under discretization. The overall
multirate system can be modeled using a discrete-time PWA
description. Due to space limitations, the details are omitted
here and we refer the interested reader to http://www.
dii.unisi.it/˜hybrid/passivity. The two affine
subsystems defining the PWA model are reported in Table
I, where all constants are suitable functions of the physical
parameters K,m, b and of the sampling time. The related
state space partition is reported in Table II and is depicted
in Fig. 3. The input u is the external force and the output
y is the mass velocity. For the sake of clarity, the set S is
expressed as the one-step reachability matrix shown in Table
III.
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Fig. 3. Example 2: state space partition

The parameter values used for conducting passivity anal-
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TABLE I

EXAMPLE 2: PWA MODEL

Cell System Matrices

χ1 A1 =

"
ad11

ad12
−Kbd1

0

ad21
ad22

−Kbd2
0

1 0 0 0

0 0 0 0

#
B1 =

"
bd1

bd2

0

0

#
φ1 =

»
0

0

0

1

–

C1 = [ cd1
cd2

−Kdd 0 ] D1 = dd ψ1 = 0

χ2 A2 =

"
ad11

ad12
−Kbd1

0

ad21
ad22

−Kbd2
0

0 0 1 0

0 0 0 1

#
B2 =

"
bd1

bd2

0

0

#
φ2 =

»
0

0

0

1

–

C2 = [ cd1
cd2

−Kdd 0 ] D2 = dd ψ2 = 0

TABLE II

EXAMPLE 2: STATE SPACE PARTITION

Cell

χ1 x4 ≥ n

χ2 x4 < n

ysis of the model are shown in Table IV. For these values,
a piecewise quartic storage function proving the passivity of
the system is computed via the relaxed test in Theorem 3.
The same test fails if a piecewise quadratic storage function
is looked for.

Example 3: Consider a haptic model similar to the one
in the previous example, in which an additional coulombian
friction term with coefficient c acts on the end effector, i.e.,

Fc = c sgn (ẋ)

(Fig. 4). The overall multirate system is described by the
PWA model in Table V. The related state space partition is
reported in Table VI and depicted in Fig. 5. The one-step
reachability matrix is shown in Table VII.

With the parameter values shown in Table VIII, a piece-
wise quartic storage function which proves the passivity of
the system is computed via the relaxed test in Theorem 3.
Also in this case, no piecewise quadratic storage function
can be computed.

TABLE III

EXAMPLE 2: ONE STEP REACHABILITY MATRIX

may reach χ1 may reach χ2

χ1 no yes

χ2 yes yes

TABLE IV

EXAMPLE 2: PARAMETER VALUES

parameter value

m 1

b 5

K 3

Ts 10
−4

n 10

TABLE V

EXAMPLE 3: PWA MODEL

Cell System matrices

χ1 A1 =

"
ad11

ad12
−Kbd1

0

ad21
ad22

−Kbd2
0

1 0 0 0

0 0 0 0

#
B1 =

"
bd1

bd2

0

0

#
φ1 =

"
−bd1

c

−bd2
c

0

1

#

C1 = [ cd1
cd2

−Kdd 0 ] D1 = dd ψ1 = −ddc

χ2 A2 =

"
ad11

ad12
−Kbd1

0

ad21
ad22

−Kbd2
0

0 0 1 0

0 0 0 1

#
B2 =

"
bd1

bd2

0

0

#
φ2 =

"
−bd1

c

−bd2
c

0

1

#

C2 = [ cd1
cd2

−Kdd 0 ] D2 = dd ψ2 = −ddc

χ3 A3 =

"
ad11

ad12
−Kbd1

0

ad21
ad22

−Kbd2
0

1 0 0 0

0 0 0 0

#
B3 =

"
bd1

bd2

0

0

#
φ3 =

"
bd1

c

bd2
c

0

1

#

C3 = [ cd1
cd2

−Kdd 0 ] D3 = dd ψ3 = ddc

χ4 A4 =

"
ad11

ad12
−Kbd1

0

ad21
ad22

−Kbd2
0

0 0 1 0

0 0 0 1

#
B4 =

"
bd1

bd2

0

0

#
φ4 =

"
bd1

c

bd2
c

0

1

#

C4 = [ cd1
cd2

−Kdd 0 ] D4 = dd ψ4 = ddc

TABLE VI

EXAMPLE 3: STATE SPACE PARTITION

Cell

χ1 x2 ≥ 0
V

x4 ≥ n

χ2 x2 ≥ 0
V

x4 < n

χ3 x2 < 0
V

x4 ≥ n

χ4 x2 < 0
V

x4 < n

TABLE VII

EXAMPLE 3: ONE STEP REACHABILITY MATRIX

m. reach χ1 m. reach χ2 m. reach χ3 m. reach χ4

χ1 no yes no yes

χ2 yes yes yes yes

χ3 no yes no yes

χ4 yes yes yes yes

TABLE VIII

EXAMPLE 3: PARAMETER VALUES

parameter value

m 1

b 5

c 0.2

K 4

Ts 10
−4

n 10
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Fig. 4. Example 3: haptic model with coulombian friction
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Fig. 5. Example 3: state space partition

V. CONCLUSION

This paper has proposed sufficient passivity analysis cri-
teria for discrete-time hybrid systems in piecewise affine or
piecewise polynomial form. Such criteria are based on com-
puting piecewise polynomial storage functions by exploiting
sum of squares decomposition techniques and semidefinite
programming. The proposed approach appears particularly
encouraging in the analysis and design of haptic systems,
which is a subject of current investigation by the authors.
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