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Abstract—This paper proposes a new method for fabric 
defect classification by incorporating the design of a wavelet 
frames based feature extractor with the design of an Euclidean 
distance based classifier. Channel variances at the outputs of the 
wavelet frame decomposition are used to characterize each 
nonoverlapping window of the fabric image. A feature extractor 
using linear transformation matrix is further employed to extract 
the classification-oriented features. With an Euclidean distance 
based classifier, each nonoverlapping window of the fabric image 
is then assigned to its corresponding category. Minimization of 
the classification error is achieved by incorporating the design of 
the feature extractor with the design of the classifier based on 
Minimum Classification Error (MCE) training method. The 
proposed method has been evaluated on the classification of 329 
defect samples containing nine classes of fabric defects, and 328 
nondefect samples, where 93.1% classification accuracy has been 
achieved. 

Keywords—Fabric inspection, defect classification, wavelet 
frames, minimum classification error 

I. INTRODUCTION 
Fabric Automatic Visual Inspection (FAVI) is becoming 

an attractive alternative to human vision inspection in modern 
textile industry. Based on the advances in image processing 
and pattern recognition, FAVI can potentially provide an 
objective and reliable evaluation on the fabric production 
quality. Most FAVI systems claims to be able to detect the 
presence of defects in fabric products, and precisely locate the 
defects. Moreover, classification of fabric defects to their 
original categories is also highly desired. The motivations 
behind the classification of fabric defect lie in the facts that the 
cause and effect of fabric defects are different from class to 
class. Based on fabric defect classification, the statistics of the 
occurrence of each type of defects can be obtained. According 
to the cause of each type of defects, the statistics may indicate 
malfunctions in certain components of the weaving machine, 
and enable on-line quality control of the weaving process. 
Referring to the effect (severity) of each type of defects, the 
statistics provide necessary information for the grading of 
fabric product, and give rise to appropriate actions on fabric 
product. Compared to fabric defect detection, which has 
already been commercially available, the classification of 

fabric defect is much more complex and still remains a 
research topic presently. The major obstacles in defect 
classification include [1]:  
� Enormous data throughout in the processing of fabric 

images, especially in on line fabric inspection. 
� Large number of defect classes. 
� Same class of defects may take different appearances in 

different factories and different fabric materials. 
� The diversity within each class of defects and the 

similarities among different classes of defects. 
� The changes in the weaving process may result in new 

classes of fabric defects.  
Previous works on defect classification can be divided into 

two categories. In the first category, defects are classified in 
terms of their shape characteristics [1,2]. From the cortical 
projection of the material image, Brzakovic et al. [1] extracted 
shape features of defect (roundness, orientation and overall 
shape) for the classification of defects in uniform web 
materials. Based on the detected defect region, Bradshaw [2] 
calculated the size and width-to-height ratio of the defect 
region to classify the defects in knitted fabric. The shape 
characteristics is useful for a rough classification of defects, 
e.g., horizontal defects, vertical defects and area defects, 
However, they are not able to provide enough discrimination 
to classify defects into their original categories. The second 
category is based on texture analysis. The fabric image has 
regular periodic texture pattern produced during 
manufacturing, while different classes of fabric defects locally 
cause different types of texture. Hence, the classification of 
defects can be formulated as a texture classification problem. 
To achieve that, autocorrelation function [3], local integration 
[4] and gray level difference method [5] have been used to 
extract statistical texture features for defect classification.  

In this paper, a new method based on texture analysis 
approach is proposed for classifying fabric defects into their 
original categories. Wavelet frame decomposition [6] is 
employed to characterize the texture property of a fabric 
image at multiscale and multiorientation. Compared to the 
single-scale statistical texture features, channel variances at 
the output of the wavelet frame decomposition are able to 
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provide more efficient discriminations among different class 
of defective fabric textures. Based on the recent development 
of a discriminative training method known as Minimum 
Classification Error (MCE) training [7], a feature extractor is 
designed in conjunction with the design of a classifier in a 
consistent way for minimizing the error rate in defect 
classification. The efficiency of this design strategy has been 
demonstrated in speech recognition [8,9,10] and optical 
character recognition [11,12]. Traditionally, the design of the 
feature extractor and the classifier in a defect classification 
system are loosely linked, which may not yield appropriate 
interactions between the feature extractor and the classifier. 
By using the MCE training based design strategy, features 
which are more suitable for the classifier are extracted and the 
inconsistency between the feature extractor and the classifier 
is alleviated. Consequently, better performance can be 
achieved in defect classification. The proposed fabric defect 
classification method has been evaluated on the classification 
of 329 defect samples containing nine classes of defects and 
328 nondefect samples, where 93.1% classification accuracy 
has been achieved. 

This paper is organized as follows. In the next section, the 
proposed defect classification method is presented. The 
feature extraction module and classification module in the 
defect classification are first described. Then we describe how 
to incorporate the design of the feature extractor with the 
design of the classifier parameters by using MCE training 
method, for achieving the objective of minimum error rate in 
the defect classification. The evaluation results of the 
proposed method are reported in Section 3. Section 4 
concludes this paper. 

 

II. FABRIC DEFECT CLASSIFICATION USING WAVELET 
FRAMES AND MCE TRAINING 

Fig. 1 illustrates the block diagram of the proposed fabric 
defect classification method. The defect classification consists 
of a feature extraction module and a classification module. In 
the feature extraction module, feature vectors consisting of 
channel variances at the outputs of the wavelet frame 
decomposition are extracted to characterize each 
nonoverlapping window of the fabric image. A feature 
extractor, which is implemented by using a linear feature 
transformation matrix, is then employed to extract suitable 
wavelet features for the classification of defect. In the 
classification module, an Euclidean distance based classifier is 
used. Minimization of the classification error is achieved by 
using the MCE training method, which is illustrated in Fig. 1 
using dashed lines. In the MCE based design framework, 
defect classification on a set of training images is evaluated by 
using a loss value that is consistent with the classification 
error probability. The loss value is then minimized by the 
design of the feature extractor in the feature extraction module 
and the design of the classifier parameters in the classification 
module. 

A.  Feature Extraction Based on Wavelet Frame 
Decomposition 

Fig. 2 illustrates the filter bank implementation of 2-
dimensional wavelet frame decomposition, where H(z) and 
G(z) denote the z-transform of the low-pass filter h[n] and 
high-pass filter g[n] respectively. I(x,y) denotes an image and 
(x,y) is the spatial indices. {Wr

1(x,y),Wr
2(x,y),Wr

3(x,y)} denote 
the wavelet coefficients at scale r, with diagonal, horizontal 
and vertical orientation respectively, and Rr(x,y) represents the 
residue signal at scale r.  

The fabric image is divided into nonoverlapping windows 
with size Nw×Nw, and the defect classification is performed on 
each image window. To characterize each image window, 
channel variances [6] at the outputs of the wavelet frame 
decomposition are used. As it is shown in [6], channel 
variances are able to provide efficient discriminations among 
different types of textures. Therefore, these features are 
employed here for the discrimination of different classes of 
defective fabric textures and the nondefect fabric texture. 
Corresponding to a window in the fabric image, the channel 
variances are estimated as the mean energy of the wavelet 
coefficients in the window 
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The channel variances at each channel of the wavelet 
frame decomposition form a D-dimensional feature vector to 
characterize the image window 
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where I is the depth of the wavelet frame decomposition, and 
D is equal to 3I. 

In general, the feature representation of the raw wavelet 
features F may not be appropriate for the classification. 
Therefore, a feature extractor is further employed to extract 
salient features of each class from the raw wavelet features F. 
For simplicity, a D×D linear transformation matrix 
U={Uij}1≤i,j≤D is used as the feature extractor, which yields a 
new feature vector V=UF. 

B. Classification Algorithm 
Based on the Euclidean distance similarity measure, the 

discriminant function gl(F,T) for class Cl is given as follows. 
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where l=1,..,J-1 denotes J-1 classes of defects and l=J denotes 
the nondefect class. Λ={ml}l=1,..,J are the reference vectors 
representing each class, and T={U,Λ} denotes the trainable 
parameters in the feature extractor and the classifier. Vi, mli, 
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and Fj represent the ith and jth component of V, ml and F 
respectively. 

The decision rule of the classifier is  

 qC∈F     if   ( )TF;minarg l
l

gq = . (4) 

That is,  an image window with feature vector F is classified 
as class q if the discriminant function gq(F,T) is the smallest 
among all the classes. 

C. The Design of the Feature Extractor and the Classifier 
using MCE Training 

A discriminative training method, called Minimum 
Classification Error (MCE) training method, has been 
proposed by Juang and Katagiri [7] for the design of the 
classifier. Since the decision rule for classification is directly 
incorporated into the objective criterion in MCE training, the 
classifier is trained in a manner which is more consistent with 
the objective of minimum classification error rate than the 
traditional training methods. To achieve appropriate 
interactions between the front-end feature extractor and the 
back-end classifier, A. Biem et al. [9] and H. Watanabe et al. 
[10] further extended the MCE training method from the back-
end classifier to the front-end feature extractor for the design 
of the overall pattern recognizer. In our approach, MCE based 
design strategy is used to jointly design the feature extractor 
and the classifier, such that error rate in the defect 
classification is minimized. In the defect classification shown 
in Fig. 1, the adjustable parameters of the feature extractor are 
the transformation matrix U, and the adjustable parameters of 
the Euclidean distance based classifier are the reference 
vectors Λ. The total set of adjustable parameters in the defect 
classification is T={U,Λ}. MCE training on the parameter set 
T={U,Λ} is implemented as follows [7, 8]. 

Given a set of N training samples Γ={F(n)}n=1,..,N where the 
class of each sample is labeled, a misclassification measure 

nd  [13] is defined for each training sample F(n) as 
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where η is a positive number which controls the contributions 
of the competing classes. When η approaches ∞, the 
misclassification measure becomes 
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According to the classification decision rule defined in (4), 
dn≤0 indicates a correct classification while dn>0 indicates 
otherwise. By incorporating the decision rule in this 
misclassification measure, dn enumerates how likely the 
sample F(n) is misclassified. 

Based on the misclassification measure, a loss function is 
then used to evaluate the classification performance on 
training sample F(n). The loss function is defined as the 
smoothed zero-one function of the misclassification measure  
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where α>0. For the total set of training samples Γ, the 
empirical average cost is defined as 
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By minimizing this empirical average cost with respect to 
the set of parameters T={U,Λ}, both the feature extractor and 
the classifier are designed for the minimum error rate in the 
defect classification. The steepest gradient descent algorithm 
is normally employed by the MCE training to minimize the 
empirical average cost. To perform the optimization more 
efficiently, Quasi-Newton optimization method [14] is used 
instead. The calculation of the gradient of the empirical 
average cost L with respect to the parameter set T={U,Λ}, as 
required by the Quasi-Newton method, is given as follows: 
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where 
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III. EVALUATIONS 

A. Data Collection 
The proposed defect classification method has been 

evaluated on the classification of nine types of typical fabric 
defects on plain, twill fabrics, as shown in Fig. 3. Fabric 
without defect should be classified into the nondefect class. 
Totally eighty-three fabric images containing nine types of 
defects were used for the evaluation. Feature vectors were 
extracted to characterize the nonoverlapping image windows 
of size 32x32 pixels. Fourty-two fabric images were used for 
training, where 336 defect samples and 336 nondefect samples 
were collected. The remaining fourty-one fabric images were 
used for test, where 329 defect samples and 328 nondefect 
samples were collected.  

B. Evaluation Conditions 
1) The selection of the wavelet basis 

In wavelet frame decomposition, the selection of the 
wavelet basis determines the wavelet filters H(z) and G(z). In 
our evaluation, Haar wavelet basis is selected since it yields 
wavelet coefficients with good spacial localization. This 
property was shown to be closely relevant to texture 
classification [6]. 

2) Decomposition depth of the wavelet transform  
When the decomposition depth of the wavelet transform is 

increased, the feature vector F includes more features which 
are extracted from the channels at the increased scales of the 
wavelet transform. In our evaluation, wavelet transform with 
decomposition depth 3 were investigated, where 3 scales 
features (9 features) of the wavelet transform were used for 
defect classification.  

3) The selection of η and α in the MCE training 
In the definition of the misclassification measure dn, η 

controls the contributions of the competing classes. In the 
definition of the loss function ln, α controls the loss value of 
the training sample. To evaluate the impact of η and α on the 
performance of the classification method, different η and α 
were used in the MCE training, and the corresponding 
classification performance are illustrated in Fig. 4. As shown 
in Fig. 4, α of value 5 always yields better classification 
performance than α with other values when η is greater than 1. 
The best performance is obtained when α and η equal to 5 and 
10 respectively.  

 

4) The effect of using different window size 
The wavelet features are calculated in each nonoverlapping 

window of the fabric image. As a result, the size of the 
window affects the discriminating power of the wavelet 
feature in the classification of defects. A suitable window size 
should well preserve the texture property of defective fabric 
textures and the nondefect fabric texture. Obviously, the 
selection of window size is determined by the resolution of the 
fabric image. Based on our fabric images, MCE training was 
performed on image windows with size 16×16, 32×32 and 
64×64 respectively. The corresponding classification accuracy 
of the test samples are summarized in Table I. The results 
shown in Table I indicate that window of size 32×32 is a 
suitable choice. 

5) Initialization in the MCE training 
Since the implementation of MCE is based on gradient 

descent optimization (Quasi-Newton method), the 
performance of the classification method using MCE training 
depends on the initialization of the parameter set T={U,Λ}. 
The transformation matrix U was initialized using an identity 
matrix. U is then fixed and the MCE training is performed to 
initialize the reference vectors Λ of the classifier. That is, 
corresponding to the initial feature extractor, the classifier 
parameters were initialized for the minimum error rate in the 
classification. The MCE training on the classifier also needed 
reasonable initialization on Λ, which was implemented by 
maximum likelihood method (using class-dependent mean 
vectors). 

C. Evaluation Results 
The MCE training procedure for the design of the feature 

extractor and the classifier is divided into three steps. At each 
step, the classification performance is evaluated. 

Step 1: Initialization of the transformation matrix U with 
identity matrix. The reference vectors Λ of the 
classifier are obtained by using maximum 
likelihood method, where the reference vector for 
each class is calculated as the class-dependent 
mean vectors. 

Step 2: MCE training on the reference vectors Λ. 
Step 3: MCE training on T={U,Λ}. 
Learning curves of the MCE training is illustrated in Fig. 

5. At each step of the training, classification rates of training 
samples and test samples are summarized in Table II. In step 
1, the poor classification performance indicates that the 
reference vectors estimated using the class-dependent mean 
vectors cause large decision bias. In step 2, the decision bias 
caused by the estimation of the classifier parameters Λ was 
alleviated by using MCE training, which resulted in a 19.1% 
improvement in the classification of test samples. In step 3, 
both the feature extractor and the classifier were designed by 
using the MCE training method for the objective of minimum 
error rate. This design method extracts classification-oriented 
features and yields appropriate interactions between the 
feature extractor and the classifier, which further achieves a 
8.1% improvement in the classification of test samples.  
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Corresponding to the overall classification rate of 93.1%, 
detailed classification performances on each class of defect 
and the nondefect class are summarized in Table III. It can be 
observed that the performance on the classification of Wrong 
Draw is poor. This is due to the weak wavelet response of this 
defect. Improvements to the results can be obtained by 
specially designing a wavelet basis [15] for Wrong Draw. 
Also, wavelet packet frames [16] can be used for feature 
extraction to enhance the performance on Wrong Draw. Using 
the designed feature extractor and classifier, Fig. 6 illustrates 
the classification results of the fabric images shown in Fig. 3.  
In Fig. 6, dark region denotes the image windows which are 
correctly classified. Grey region denotes these image windows 
that are falsely classified into the indexed defective classes, 
and white region denotes the image windows classified as 
nondefect class.  Note that, in the classification of defect 
ThinBar Type B, the boundary of the defect region is 
classified as ThinBar, which is due to the similarity of these 
two classes of defects. 

In comparison with results by other researchers, Brzakovic 
et al. [1] gave a classification accuracy of 85% for uniform 
web material inspection.  The same classification accuracy 
was given by Bradshaw [2] in his classification of defects into 
four categories: vertical, horizontal, local and slubs.  Tolba et 
al. [3] reported on a 100% accuracy, but the result was based 
on classification into only three categories (vertical, horizontal 
and area defects).  Also, only 22 test samples were used.  
Karayiannis et al. [5] gave an  85% classification accuracy 
over eight classes of defects (light vertical, dark vertical, light 
horizontal, dark horizontal, light area, dark area, wrinkle and 
nondefect) but the number of test samples is not mentioned. 

IV. CONCLUSIONS 
In this paper, a new method which incorporates the design 

of a wavelet frames based feature extractor with the design of 
an Euclidean distance based classifier has been proposed for 
fabric defect classification. By using MCE training method, 
features suitable for the classification are extracted and 
appropriate interactions between the feature extractor and the 
classifier are achieved. The evaluation results have 
demonstrated the efficiency of our method for fabric defect 
classification. 
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TABLE I. THE  EFFECT OF WINDOW SIZE ON THE PERFORMANCE OF 
DEFECT CLASSIFICATION 

Window size Classification Rate (%) 
16x16 90.9 
32x32 93.1 
64x64 87.7 

 

TABLE II. CLASSIFICATION PERFORMANCE IN THE MCE TRAINING 

Classification Rate (%) MCE  
Training 

procedure Train Test 

Step 1 73.3 65.9 
Step 2 93.6 85.0 
Step 3 97.1 93.1 

 

TABLE III. CLASSIFICATION PERFORMANCE OF  EACH CLASS  

Defect Class Classification rate (%) 

Broken End 100 
Slack End 100 
Dirty Yarn 88.8 

Wrong Draw 46.8 
Netting Multiples 75.0 

Thin Bar 100 
Mispick 100 

Thick Bar 78.5 
Thick Bar B 100 
Nondefect 96.0 

Overall 93.1 
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Figure 1. The proposed fabric defect classification method.
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Figure 2. Filter bank implementation of 2-Dimensional wavelet frame decompostion.

 

Figure 3. Fabric images containing defects: Upper row (from left to right): Broken End, Slack End, Dirty Yarn, Wrong
Draw and Netting Multiples; Lower row: Thin Bar, Mispick, Thick Bar and Thick Bar Type B.
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Figure 5.  Learning curves of MCE training.
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Figure 4.  The effect of  η and α on the performance of the defect
 classification using the MCE training method.

 

Figure 6. Classification results of the fabric images shown in Fig. (3).
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