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Abstract 

A fuzzy-neuro approach for the design of bang-bang 
controller is presented in this paper. The approach has 
been used with success for the time optimal bang-bang 
control of a heating system. The improved bang-bang 
controller suppresses the oscillations often observed at 
the output of an on-off controller. A fuzzy system is 
used for the implementation of the on-off control. An 
extension of the fuzzy control is provided by an equiv- 
alent neural network of the fuzzy system. A test ap- 
plication, that of a house heating with a two-state fur- 
nace, is developed and evaluated with standard hystere- 
sis switching, fuzzy control, and fuzzy-neuro control. 

1. Introduction 

There are many control applications which require 
a controller to output one of two states: “on” or 
“off ’. Examples include attitude control using an on/off 
thruster [3] and flow control valve operated in a bang- 
bang mode [ll]. These applications are not well suited 
to standard linear control design methodologies. A 
switching technique involving hysteresis is commonly 
used for these types of problems and this is adequate 
for many applications. The major drawback of this 
method is a lack of robustness, that is the dead zone is 
chosen to optimize performance for one nominal plant 
under one set of conditions. 

One of the recent control philosophies is fuzzy control. 
A fuzzy controller can be intuitively designed with rel- 
ative simplicity and it has the potential to be very ro- 
bust. In addition, the controller can be easily designed 
so that its output can be restricted to any range de- 
sired. Fuzzy control has the drawback that proof of 
stability is generally difficult. Also, it  is sometimes not 
so intuitive how to improve the performance of a fuzzy 
controller. 

Artificial neural networks (ANN) have also found use in 
control systems. One of the major drawbacks in using 
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an ANN for control is that there is so much freedom in 
structural implementation choice that it is often diffi- 
cult to decide how complex a structure is actually nec- 
essary for the desired control. Furthermore, the imple- 
mentation is not at all intuitive and the inner workings 
of the network are very much invisible to  the designer. 

An improvement can be made by integrating fuzzy con- 
trol with neural networks, which gives a fuzzy neu- 
ral network (FNN). A fuzzy controller is first obtained 
which is the “starting point” of the FNN. An ANN is 
then developed and its structure is completely defined 
by the pre-designed fuzzy controller. Performance can 
then be improved with real or simulated data. The 
structure is such that the internal workings are known 
to  the designer as they relate to fuzzy controller com- 
ponents. 

The paper is outlined as follows. Section 2 focuses on 
fuzzy-neuro control. Section 3 deals with the devel- 
opment of a specific on/off control application: house 
temperature control. This will be used to test the fuzzy 
and fuzzy-neuro control methodologies. Section 4 deals 
with the development of a fuzzy controller for the test 
application. The implementation details of the corre- 
sponding FNN are then detailed in Section 5 along with 
the methods used to improve controller performance. 

2. Fuzzy-Neuro Control 

There have been many papers on the modelling of 
fuzzy systems with ANN approaches. All techniques 
are based on the equivalence of specific classes of rule- 
based fuzzy systems and the type of neural network 
proposed [7]. Most models involve using a structured 
ANN which is functionally equivalent to  the original 
fuzzy system and using some sort of gradient descent 
(generally back propagation or some very similar vari- 
ant) method to  allow the network to learn with real 
data. Some approaches, like Jang [6], Berenji [2], 
Horikawa [4], and Ishibuchi et  al. [5] provide generalised 
methodologies which can be applied to  a wide range of 
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fuzzy systems. Other approaches, like the one proposed 
by Yamakawa 1131, are more efficient but work for a 
more specific class of systems - in this case systems 
which contain only triangular complementary member- 
ship functions. These approaches have been successful 
in producing workable fuzzy-neuro controllers but share 
a lack of intuitiveness in the resulting neural network. 

This section presents a method which allows the bene- 
fits of a neural network approach to be realized without 
sacrificing the intuitive nature of fuzzy control. The 
proposed model allows full access to the components 
of the fuzzy controller even after learning. This allows 
this type of setup to simultaneously share the benefits 
of both fuzzy control and neural network capabilities. 

2.1. Fuzzy Neural Network (FNN) 
The approach which will be described and used was 
first proposed by Wang and Kim [12]. The system is 
subdivided into three main functional layers connected 
in sequence: fuzzification, rule reasoning, and defuzzi- 
fication. Each of the three layers can be constructed 
and trained independently and the connections between 
the networks made afterward. This allows the different 
components of the fuzzy controller to be trained into 
the corresponding components of the FNN to produce 
a network which is practically identical to  the original 
controller. 

The advantage of this method is that it is very intuitive. 
The structure of the network represents the structure 
of a fuzzy controller and separate sub-networks cor- 
respond to the individual components of the original 
fuzzy controller. This means the membership functions 
(input and output) and rules can be retrieved from the 
FNN after training. 

3. Application to Temperature Regulation 

In this section, a model of the thermal characteristics 
of a typical house is developed. As with most system 
modelling, the model for a furnace/thermostat system 
in a house can be chosen with almost arbitrary complex- 
ity [lo]. The key is to choose a model that  is adequate 
for the problem at hand. The plant model includes the 
furnace itself (which can only have two states: “on” 
and “off”), along with a simple model of the tempera- 
ture change when the furnace is at either of these two 
“steady-state” operating points. Note that the model 
must also take into account heat loss, which depends 
on outside temperature and insulation. 

3.1. Furnace 
The “on” state furnace in a house can be modelled for 
control purposes as a constant gain. The input, which 
will be denoted as m(t), can be “0” or “1” and the gain 
simply converts the “1” value to the heat output of the 

furnace in a desired set of units (which will be energy 
per unit time). This gain, which will be denoted as Qp, 
will be a parameter which should be varied for different 
simulations to account for different furnace types. 

3.2. Heating Phenomena 
The model of adding heat to a fluid (air) is fairly com- 
mon and detailed in Roots [lo]. To make simulation 
manageable, the heating phenomenon will be modelled 
as a simple process, which can be represented by an or- 
dinary differential equation, which is of first or second 
order, linear and with constant coefficients. 

As a precursor to the development of a mathemati- 
cal expression for the heating process, some parameters 
needed by the model must be defined: 

0 O ( t )  - inside temperature 

0 Oa(t) - ambient (outside) temperature 

0 T - time delay from controller action to  effect 
seen at the controller temperature sensor 

0 Re - equivalent thermal resistance between tem- 
perature measurement point (e) and the outside 
(0,) 

0 C, - equivalent thermal capacitance (as above) 

0 T = R,C, - time constant related to insulating 
properties of house 

0 I’ = QfR,  - constant describing achievable equi- 
librium temperature difference between tempera- 
ture measurement point (@) and the outside (@,) 

0 m - this is the furnace input, that is “1” or “0” 

The differential equation which describes the heating 
process can be derived from the treatment given by 
Roots [lo]: 

~ e ( t )  + e( t )  = rm(t - T )  + e,@). (1) 

Note that this is the same as a standard electrical RC 
circuit where 0, represents the ground potential and 
I’ is the potential difference across the RC network. 
Taking the Laplace transform, the plant model can be 
written as: 

This model contains a pure time delay which cannot 
be represented in state-space form. Due to the im- 
plementation methodology for the fuzzy controller it is 
necessary to represent the system in state-space form. 
For this reason, the pure time delay (e-87) term is ap- 
proximated linearly by &, so the plant model now 
becomes: 
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1 Parameter I Units 1 

r 
T 

7.90 321.16 
5.51 198.72 

T I seconds I 
r 

Table 1: Units for model parameters 

“C 

This approximation may not actually be too bad since 
a real furnace will actually heat up gradually over a pe- 
riod of time, that is T is actually a combination of pure 
delay and the time for the furnace to reach the steady- 
state output value. This approximated time delay is 
modeled as an exponential rise over the delay time. 

3.3. Model Uncertainties 
It is clear that there are uncertainties inherent in the 
model. First, heat loss will depend on the actual house 
to be heated. The outside temperature is bound to 
fluctuate within a range of values for different seasons 
(and even times of day). As well, there will be a con- 
stant time delay based on the furnace start-up time and 
location of the heat source with respect to the tem- 
perature sensor. These are simple uncertainties. One 
could pursue even more complex uncertainties such as 
temperature gradients with rooms and the house as a 
whole. This controller design will attempt to minimize 
the effect of the simple uncertainties on temperature 
regulation. 

3.3.1 Parameter Ranges: The previous sec- 
tion elucidates parameters which can be different for ev- 
ery environment in which the proposed controller may 
be used. The thermal resistance and capacitance (Re 
and Ce), furnace heat output ( Q f ) ,  and time delay (T) 
are all uncertain model parameters. In addition, the 
ambient temperature (e,) is considered a disturbance 
so its curve will almost always be uncertain. It is clear 
at this point that the identified uncertainties are all 
structured sets, that is upper and lower bounds can be 
specified for each parameter. 

It is necessary to determine the ranges for each of the 
model parameters which would be considered a reason- 
able representations of all situations the controller will 
face. Table 1 shows the units of model parameters and 
variables used for this example. With a well-defined 
set of units, it is now possible to investigate the ranges 
of the given parameters. The source of this informa- 
tion is the American Society of Heating, Refrigerating, 
and Air Conditioning Engineers (ASHRAE) 1985 F’un- 

1 Parameter I Lower Bound 1 Upper Bound 
13000 44000 

27225 
120 900 

Table 2: Summary of parameter bounds 

damentals Handbook [l]. It  should be noted that most 
parameter limits are assumed worst cases and these are 
not directly stated in any source. Table 2 shows a sum- 
mary of the calculated parameter bounds. 

3.3.2 Nominal and Perturbed Plant Trans- 
fer Functions: The nominal plant is chosen to be as 
“average” as possible, that  is an average sized house 
with a mid-size furnace and fairly good insulation. The 
extremes are chosen as just that: the fastest and slowest 
heating houses from the calculated parameter ranges. 
The nominal plant transfer function is chosen as: 

(4) 
66.15 

(41.4s + 1)(300s + 1) pnom = 

3.4. On/Off Switching Control Law 
Most thermostats today use a simple on/off switching 
technique based directly on the error signal, that is 
when the temperature is at the desired temperature (or 
even slightly below) switch the furnace off. When the 
temperature difference of the house and the reference is 
beyond a specified threshold turn the furnace on. This 
can be written as a conditional statement: 

If (furnace off AND error > on threshold) 

Elseif (furnace on AND error < off threshold) 

End 

Turn furnace on 

Turn furnace off 

This is probably the simplest control law to state but it 
is nonlinear so analysis is not as simple a task as with 
linear controllers. 

4. Fuzzy Controller Design 

This section deals with the design of a fuzzy controller 
for the test application of temperature control. A num- 
ber of different schemes for fuzzy control were tried but 
for the sake of brevity, only the results of the best fuzzy 
scheme will be given. It should be mentioned that all 
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results using a fuzzy controller were considerably bet- 
ter than with on/off switching. The choice of rules and 
membership functions was based mostly on intuition 
and rules of thumb, along with “tweaking” once ac- 
ceptable performance was achieved. 

The simulation of the fuzzy temperature control sys- 
tem was accomplished with MEDAL [9], a MATLAB like 
software package which includes built-in fuzzy logic and 
expert system constructs. 

4.1. Membership Functions 
All attempted schemes involved defining the tempera- 
ture error and the controller output as linguistic vari- 
ables. The most sophisticated scheme also defined the 
change in temperature from the previous time step as a 
linguistic variable to  act as an indicator of the heating 
rate. 

The temperature error linguistic variable is associated 
with fuzzy numbers called small, medium, and large. 
The temperature change linguistic variable is associated 
with fuzzy numbers called negative, small, medium, and 
large. The output linguistic variable is associated with 
fuzzy numbers on, mid, and off. 

The mid membership function represents a case where 
it is not clear whether the furnace should be on or off. 
This was chosen to represent the decision a human op- 
erator would face when he or she is not sure of what to 
do. The defuzzified value will lie in [O, 11 and is used to 
determine the value of m(t) at each time step. 

4.2. Rules 
The fuzzy rules used were as follows: , 

IF (TempErr i s  small AND DeltaTemp is  negative) 
THEN Output i s  o f f  

IF (TempErr is small AND DeltaTemp i s  small) 
THEN Output i s  mid 

IF (TempErr i s  small AND DeltaTemp is  medium) 
TEEN Output i s  o f f  

I F  (TempErr is  small AND DeltaTemp i s  large) 
THEN Output is  off 

IF (TempErr is medium AND DeltaTemp i s  negative) 
THEN Output i s  mid 

IF (TempErr i s  medium AND DeltaTemp i s  small) 
THEN Output i s  on 

IF (TempErr i s  medium AND DeltaTemp i s  medium) 
THEN Output i s  mid 

IF (TempErr i s  medium AND DeltaTemp i s  large) 
TEEN Output i s  o f f  

I F  (TempErr is  large AND DeltaTemp is  negative) 
THEN Output i s  on 

IF (TempErr is large AND DeltaTemp i s  small) 
THEN Output is  on 

IF (TempErr i s  large AND DeltaTemp i s  medium) 

TEEN Output is  on 
I F  (TempErr i s  large AND DeltaTemp is  large) 

TEEN Output i s  mid 

4.3. 0 bservat ions 
In essence, the control law looks like hysteresis loops 
which have separate thresholds for abrupt changes and 
regulation, and the loop thresholds expand or contract 
based on the relative speed of the plant in terms of 
temperature change. This allows overshoot to be min- 
imized and good regulation to be achieved. These two 
objectives conflicted with each other in the on/off con- 
troller design attempt. 

4.4. f izzy  Control Sirnulation 
The operation of the fuzzy control system is as follows: 

1. execute rules with current temperature error and 

2. defuzzify output linguistic variable 
3. if output 2 0.5, then the furnace will be on for 

4. simulate system for next time step 
5. return to step 1 

temperature change from last time step 

the next time step, otherwise it will be off. 

A MEDAL m-file was written to perform the simulation. 

5. Fuzzy-Nemo Controller Design and Results 

This section deals with the implementation of a fuzzy- 
neuro controller for the test application of temperature 
control. The fuzzy controller described in the previous 
section is used as the basis for this FNN. 

5.1. Architectural Implementation 
The section details the specific implementation of the 
fuzzy controller described in the previous section as an 
FNN. The implementation was written in the C pro- 
gramming language. A MATLAB m-file was written to 
perform the simulations. The fuzzy-neuro thermostat 
is structured using the guidelines detailed in section 
2. This involves two sub-networks in the fuzzification 
layer, 12 sub-networks in the rule reasoning layer, and 
the two sub-layers in the defuezification layer. 

5.1.1 Fuzzification Layer: The fuzzification 
layer contains two sub-networks which were trained 
with the membership functions for the input variables. 
Each sub-network consists of a single neuron input 
layer, contains two hidden layers with seven neurons 
each, and an output layer with three (temperature er- 
ror) or four (temperature change) neurons in the neuron 
output layer. Three of the output neurons in each out- 
put layer correspond to the small, medium, and large 
membership values. The fourth output neuron in the 
temperature change sub-network output layer corre- 
sponds to the negative membership value. The use of 
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two hidden layers is an arbitrary design choice which 
allows a reasonably complex mapping to be trained. 

5.1.2 Rule Reasoning: The 12 rules used in 
the original fuzzy controller are implemented with 12 
rule reasoning sub-networks. In fact only one sub- 
network was actually initially trained with a product 
AND function and its weights and thresholds copied to 
the other 11 sub-networks. 

These sub-networks are composed of two input layer 
neurons, two hidden layers each with seven neurons, 
and one output layer neuron. The choice of hidden 
layers is again arbitrary and was used to allow rela- 
tively complex functions to be represented by the sub- 
network. The sub-networks are initially trained to  re- 
turn the product of the two inputs (which are in the 
range [0,1]). Hence, the output is also in the [0,1] in- 
terval. 

5.1.3 Defuzziftcation Layer: The [0,1] range 
of the universe of discourse of the output variable is 
divided into 21 discrete points. The weights are the 
membership values (pi) at each of the 21 discrete out- 
put values. It is interesting to note that with the 12 
rules there are 12 sets of 21 weights in the fuzzy con- 
trols sub-layer and each of these sets can change inde- 
pendently. When the initial weight entry is made, there 
is much redundant information in the weights but this 
will change when the entire FNN is trained. 

5.2. Network Training 
The purpose of converting the fuzzy controller to  an 
FNN was to  tune the controller with numerical data. 
The FNN was trained to reduce the amount of over- 
shoot and improvements have been made. Figure 1 
shows the input membership functions of the FNN af- 
ter training. Robustness test was carried out as fol- 
lows. Since the outside temperature can have an effect 
on the model behaviour, simulations with P,,, were 
performed where the ambient temperature rises during 
the simulation time (figure 2). Figure 3 shows the tem- 
perature change when there is a drop in the reference 
temperature. 

6. Conclusions 

In summary, the objective was to  show that fuzzy- 
neuro control is a viable control strategy for special 
control problems. It was found that a standard ap- 
proach (on/off switching) for two-state systems is ac- 
ceptable but improvements were noticed with a very 
simple fuzzy controller. The FNN allowed some im- 
provement in an already excellent fuzzy controller per- 
formance and could be tuned to any situation with case 
study data. This indicates that fuzzy and FNN control 

are powerful design techniques in certain control prob- 
lems and, coupled with the ease of implementation, very 
practical methodologies. 
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Figure 1. Input membership functions aft er training 
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Figure 2. P,, with ambient temperature change 

Pnom with FNN (train step 2) 

Figure 3. P,, with ambient and reference temperature change 
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