
To appear in International Journal of Software Engineering and Knowledge Engineering

An Integrated Classification-Tree Methodology

for Test Case Generation ∗†

T.Y. Chen ‡

School of Information Technology

Swinburne University of Technology

Hawthorn 3122, Australia

tychen@it.swin.edu.au

P.L. Poon

Department of Accountancy

The Hong Kong Polytechnic University

Hung Hom, Hong Kong

acplpoon@inet.polyu.edu.hk

T.H. Tse § ¶

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract

This paper describes an integrated methodology for the construction of test cases from functional speci-

fications using the classification-tree method. It is an integration of our extensions to the classification-

hierarchy table, the classification tree construction algorithm, and the classification tree restructuring

technique. Based on the methodology, a prototype system ADDICT, which stands for AutomateD test

Data generation system using the Integrated Classification-Tree method, has been built.

Keywords: Black Box Testing, Classification-Hierarchy Table, Classification Tree, Test Data Generator,

Test Case Selection

∗ c©2000 International Journal of Software Engineering and Knowledge Engineering. This material is presented to ensure

timely dissemination of scholarly and technical work. Personal use of this material is permitted. Copyright and all rights therein

are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and

constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission

of the copyright holder. Permission to reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works

must be obtained from International Journal of Software Engineering and Knowledge Engineering.
† This research is supported in part by the Hong Kong Research Grants Council.
‡ Part of the work was carried out when Chen was with the Vocational Training Council, Hong Kong.
§ Contact author.
¶ Part of the work was carried out when Tse was on leave at the Vocational Training Council, Hong Kong.

1

1 Introduction

Software testing is the most commonly used technique to reveal the presence (albeit not the absence) of faults

in software. Even if testing does not reveal any fault, it still provides more confidence in the correctness of

the software [3, 16, 21]. In relation to this, Goel [11] and Musa [17, 18] proposed to guide software testing

by means of an operational profile, which is a quantitative characterization of how the software will be used.

In this way, the most frequently used functions of the software will receive the most testing and hence the

reliability level will be maximized within the testing constraints such as budget and time. In addition, Iyer

and Lee [15] pointed out that the operational profile should be generated when the software is operational

rather than in its development phase, so as to further improve on the reliability. We should note, however,

that undetected faults may exist even after extensive testing has been performed. In order to maximize the

chance of uncovering faults, testing should be well planned, organized, and exercised.

A critical component of testing is the construction of test cases, since this has a direct impact on the

scope and therefore the comprehensiveness of testing [2, 4, 10, 12, 14, 20]. The importance of test case

construction motivated Ostrand and Balcer to develop the category-partition method [4, 20] in order to

assist software testers to construct test cases effectively from the functional specifications (referred to as

the “specifications” in this paper). Numerous studies have been performed by other researchers [1, 2, 12,

19] based on Ostrand and Balcer’s work. Among these, Grochtmann and Grimm [12, 13] extended the

concept of the category-partition method, resulting in their classification-tree method. This method helps

the identification of test cases via the construction of classification trees. However, their tree construction

method is rather ad hoc. This results in the variation of the classification trees constructed from one software

tester to the next, according to his/her personal experience and expertise.

This problem was later alleviated by Chen and Poon via the notion of the classification-hierarchy

table [8]. The table helps construct classification trees by capturing the hierarchical relation for each pair of

classifications. They also identified some properties of the hierarchical operators used for the construction

of the classification-hierarchy table [8]. Subsequently, they observed that there is an effectiveness aspect

associated with a classification tree [7]. They argued that the quality of a classification tree should be

determined by its effectiveness in identifying the set of legitimate test cases. Based on this observation, they

defined a metric to measure the effectiveness, and proposed a tree restructuring technique to improve on the

quality.

We propose that Chen and Poon’s classification-tree construction and restructuring methods can be

further improved using an integrated approach. The following are the major features of the new approach:

(a) We have developed techniques for consistency checking and automatic deduction of hierarchical

operators. With these, the correctness and efficiency of constructing the classification-hierarchy table

can be improved.

(b) We have enhanced the classification-hierarchy table in order to build an effective test data generation

system.

(c) We have designed an algorithm that integrates the tree construction process with the tree restructuring

process. As a result, the effectiveness of the classification trees can be improved without resorting to

a separate restructuring process as in the earlier approach [7].

2

This paper presents the integrated classification-tree methodology and illustrates its feasibility through

a prototype system ADDICT, which stands for AutomateD test Data generation system using the Integrated

Classification-Tree method.

The integrated classification-tree methodology is a black-box testing technique. It refers to program

testing based on software specifications whereas a white-box technique refers to that based on information

from the source code of the developed systems. It has been shown [5] that neither black-box techniques

nor white-box techniques are sufficient for comprehensive software testing. Readers interested in white-box

techniques may like to consult our other papers such as [5].

The rest of this paper is structured as follows. Section 2 gives an overview of the classification-hierarchy

table, the tree construction algorithm, and the tree restructuring technique. Section 3 discusses our integrated

methodology for the construction of classification trees by extending and incorporating the classification-

hierarchy table, the tree construction algorithm, and the tree restructuring technique developed by Chen

and Poon [7, 8]. Section 4 describes the major features of a prototype system ADDICT. Finally, Section 5

concludes the whole paper.

2 Previous Work on Classification Trees

2.1 Grochtmann and Grimm

By extending Ostrand and Balcer’s category-partition method [4, 20], Grochtmann and Grimm [12, 13]

developed the classification-tree method in order to assist software testers to construct test cases from

specifications via the construction of classification trees. They define classifications as the different criteria

for partitioning the input domain of the program to be tested, and classes as the disjointed subsets of values

for each classification. A classification tree organizes the classifications and classes into a hierarchical

structure according to the specification. Consider, for example, a program that calculates the sum of the

square roots of two real numbers M and N. The numbers M and N are two possible classifications and each

of them has three possible classes “< 0”, “= 0”, and “> 0”. Consider another example where a program

calculates the square root of the sum of two real numbers M and N. We can have one classification “M +N”

with three possible classes “< 0”, “= 0”, and “> 0”.

Although Grochtmann and Grimm’s classification-tree method is effective for the construction of test

cases from classification trees, the construction of the trees themselves may be difficult, since it is only based

on ad hoc techniques.

2.2 Chen and Poon

The problem in the original classification-tree method triggered Chen and Poon [8] to develop a method-

ology for the construction of classification trees from the given sets of classifications and their associated

classes via the notion of a classification-hierarchy table.

The intuition of the classification-hierarchy table is to capture the hierarchical relation for each pair of

classifications. Suppose there are w classifications. The dimension of the classification-hierarchy table is

w×w.

Classifications are defined formally as sets of associated classes. Thus, classifications are denoted by

letters in upper case, and classes by letters in lower case. For example, let X be a classification and x and x′

3

be the associated classes. Then we write X = {x,x′}. When the classification X takes the class x, we write

class(X) = x.

Given a pair of classifications X and Y , their hierarchical relation (denoted by X 7→ Y) was defined by

Chen and Poon in terms of one of the hierarchical operators “⇒”, “∼”, and “⊗” as follows:

(1) X is said to be an ancestor of Y , denoted by X ⇒Y , if and only if the following conditions are satisfied:

(a) There exist some x ∈ X and y∈Y such that class(X) = x and class(Y) = y are part of a legitimate

input.

(b) There exists some x′ ∈ X such that, for any y∈Y , we cannot have class(X) = x′ and class(Y) = y

in any legitimate input.

(2) X is said to be incompatible with Y , denoted by X ∼ Y , if and only if for any x ∈ X and y ∈ Y , we

cannot have class(X) = x and class(Y) = y in any legitimate input.

(3) X is said to have other relations with Y , denoted by X ⊗Y , if and only if X is neither an ancestor of Y

nor incompatible with it.

Since the conditions for “⇒”, “∼”, and “⊗” are exhaustive and mutually exclusive, the hierarchical

operator for X 7→ Y is well defined. It should be noted that the hierarchical operator for X 7→ X is “⊗”.

Some properties of the hierarchical operators are as follows:

• Property 1: If X ⇒ Y , then Y ⊗X .

• Property 2: If X ∼ Y , then Y ∼ X .

• Property 3: If X ⊗Y , then Y ⇒ X or Y ⊗X .

The proofs of these properties are straightforward.1

After determining the hierarchical relations for all pairs of classifications, the classification tree can be

constructed using Chen and Poon’s tree construction algorithm. The algorithm comprises the following

steps:

(1) Construct subtrees using the parent-child or ancestor-descendent hierarchical relation. For the parent-

child relation, a classification is directly placed under one or more classes of another classification.

For the ancestor-descendent relation, a classification is indirectly placed under one or more classes of

another classification.

(2) Rearrange the related subtrees formed in step (1).

(3) Construct subtrees for stand alone classifications.

(4) Integrate all the subtrees formed in steps (2) and (3) to produce the final classification tree.

Please refer to [8] for details.

1These proofs assume a constraint in Grochtmann and Grimm’s classification-tree method. See Section 3.2 for details.

4

Example 1

Suppose a software tester is given the following specification of a program arith-sum:

(1) arith-sum has nine input variables A, B, C, D, E, F , G, H, and I.

(2) H has three possible values (denoted by h1, h2, and h3), whereas each of the remaining

variables has two possible values (denoted, for example, by a1 and a2 for A).

(3) The input domain of arith-sum may contain any combination of possible values from some

of these variables, except the following:

(i) (A is a2) and (B is b1 or b2)

(ii) (A is a2) and (C is c1 or c2)

(iii) (A is a2) and (D is d1 or d2)

(iv) (A is a1) and (E is e1 or e2)

(v) (B is b2) and (C is c1 or c2)

(vi) (B is b2) and (D is d1 or d2)

(vii) (B is b1 or b2) and (E is e1 or e2)

(viii) (C is c2) and (D is d1 or d2)

(ix) (C is c1 or c2) and (E is e1 or e2)

(x) (C is c1 or c2) and (F is f2)

(xi) (C is c2) and (G is g2)

(xii) (C is c1 or c2) and (H is h1, h2, or h3)

(xiii) (D is d1 or d2) and (E is e1 or e2)

(xiv) (D is d1 or d2) and (F is f2)

(xv) (D is d1 or d2) and (H is h1, h2, or h3)

(xvi) (E is e1 or e2) and (G is g1 or g2)

(xvii) (F is f2) and (G is g1 or g2)

(xviii) (F is f1) and (H is h1, h2, or h3)

(xix) (G is g1 or g2) and (H is h1, h2, or h3)

(4) arith-sum calculates the arithmetic sum of those variables entered.

Suppose we simply define the classifications as the input variables and the associated classes as the

possible values. For example, A is taken as a classification with a1 and a2 as its two associated classes. Then

Table 1 shows the classification-hierarchy table for arith-sum.

Let ti j denote the element at the ith row and the jth column of Table 1. The hierarchical operator for t12

is “⇒” because

5

A B C D E F G H I

A ⊗ ⇒ ⇒ ⇒ ⇒ ⊗ ⊗ ⊗ ⊗

B ⊗ ⊗ ⇒ ⇒ ∼ ⊗ ⊗ ⊗ ⊗

C ⊗ ⊗ ⊗ ⇒ ∼ ⊗ ⊗ ∼ ⊗

D ⊗ ⊗ ⊗ ⊗ ∼ ⊗ ⊗ ∼ ⊗

E ⊗ ∼ ∼ ∼ ⊗ ⊗ ∼ ⊗ ⊗

F ⊗ ⊗ ⇒ ⇒ ⊗ ⊗ ⇒ ⇒ ⊗

G ⊗ ⊗ ⊗ ⊗ ∼ ⊗ ⊗ ∼ ⊗

H ⊗ ⊗ ∼ ∼ ⊗ ⊗ ∼ ⊗ ⊗

I ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Table 1: Classification-Hierarchy Table for arith-sum

• any legitimate input that contains class(A) = a1 also contains class(B) = b1 or b2, and

• any legitimate input that contains class(A) = a2 does not contain class(B) = b1 or b2.

By similar reasoning, the hierarchical operator “⇒” is also applicable to t13, t14, t15, t23, t24, t34, t63, t64, t67,

and t68.

The hierarchical operator for t25 is “∼” because any legitimate input that contains class(B) = b1 or b2

cannot contain class(E) = e1 or e2. By similar arguments, the hierarchical operator “∼” is also applicable

to t35, t38, t45, t48, t52, t53, t54, t57, t75, t78, t83, t84, and t87.

Obviously, the hierarchical operator of all the remaining elements is “⊗”.

From Table 1, the corresponding classification tree (denoted by Tarith−sum in Figure 2.2) can then be

produced using Chen and Poon’s tree construction algorithm.

2.3 Test Case Construction Technique and Effectiveness of Classification Trees

A small circle at the top of a classification tree, as shown in Figure 2.2, is the general root node. It represents

the whole input domain. The classifications directly under the general root node, such as A, F , and I in

Figure 2.2, are called the top-level classifications. In general, a classification X may have a number of

classes x directly under it. X is known as the parent classification and x is known as a child class. In

Figure 2.2, for example, A is the parent classification of a1 and a2, whereas a1 and a2 are the child classes

of A. Similarly, a class x may have a number of classifications Y (6= X) directly under it. Then x is known as

the parent class and Y is known as a child classification. In Figure 2.2, for example, f1 is the parent class of

C and G, whereas C and G are the child classifications of f1. From the classification tree, test cases can be

expressed in the test case table using the following steps:

(1) Draw the grids of the test case table under the classification tree. The columns of the table correspond

to the terminal nodes of the classification tree. The rows correspond to potential test cases.

6

(12) P(14)

P(15) P(16)

P(1) P(2)

P(3)

P(4) P(5) P(6)

P(7) P(8)

P(9) P(10) P(11) P(13)P

e1 e2 c1

d1 d2

b1 b2

c1 c2

d1 d2

a1 f 1

g2g1c2

C

h1
h2 h3

H

f 2
i 1

A F I

i 22

2

Note: Only part of the test case table is shown

3

4

1

5

a

E

D

B

C

D

G

T
es

t
C

as
e

T
ab

le
C

la
ss

if
ic

at
io

n
 T

re
e

Figure 1: Tarith−sum and Part of its Test Case Table

(2) Construct a test case in the test case table by selecting a combination of classes in the classification

tree as follows:

(a) Select one and only one child class of each top-level classification.

(b) For every child classification of each selected class, recursively select one and only one child

class.

A test case constructed in this manner is known as a potential test case. For example, row 3 of the test case

table in Figure 2.2 represents a potential test case for which class(A) = a1, class(B) = b1, class(C) = c2,

class(F) = f1, class(G) = g2, and class(I) = i2.

Each path from the general root node of the classification tree to a terminal node is known as a feasible

path. Given n terminal nodes in a classification tree, we will use Pi (where 1 ≤ i ≤ n) to denote a feasible

path. For example, P3 in Figure 2.2 denotes the feasible path A—a1—B—b1—C—c2. Obviously, every

potential test case constructed from the classification tree corresponds to a set of feasible paths. For instance,

the potential test case in row 3 corresponds to the set of feasible paths {P3, P9, P11, P16}.

Occasionally, some constraints among the classifications may not be reflected by a classification tree.

Hence, all the potential test cases expressed in the test case table have to be checked against the specification,

in order to identify and remove those not complying with the specification. The potential test cases removed

due to such inconsistencies are referred to as illegitimate test cases, whereas those remaining after the

removal process are referred to as legitimate test cases. For example, rows 3 and 5 of the test case table in

Figure 2.2 represent two illegitimate test cases, since the former contains both c2 and g2 (which contradicts

constraint (3)(xi) of the specification), and the latter contains both d1 and d2 (which should be disjointed).

7

Only part of the test case table for arith-sum is shown in Figure 2.2. The complete test case table

produces a total of 108 potential test cases. Out of these, 80 are found to be illegitimate after checking with

the specification. Hence, only 28 legitimate test cases should remain for subsequent testing.

Since the ultimate purpose for the construction of a classification tree T is to generate a set of legitimate

test cases, Chen and Poon [7] argued that the quality of T is closely related to the effectiveness in identifying

such test cases. Given Nl legitimate test cases and Np potential test cases, they define the effectiveness metric

as

ET =
Nl

Np

For example, ETarith−sum
is calculated to be 28

108
= 0.26. Obviously, a small value of ET is undesirable

since more effort is required to identify all the illegitimate test cases. Furthermore, the manual process of

identifying illegitimate test cases is more prone to human errors when Np is large. This may in turn affect the

comprehensiveness (and hence the quality) of testing if some legitimate test cases are somehow mistakenly

classified as illegitimate and hence not being used in testing.

2.4 Classification Tree Restructuring Technique

It would not be sufficient just to know the value of the effectiveness metric ET . The key idea is to improve on

T whenever possible. In [7], Chen and Poon observed that a major reason for the occurrence of illegitimate

test cases is the duplication of subtrees (or classifications) under different top-level classifications in T . In

Tarith−sum of Figure 2.2, for instance, the classification D is duplicated under the top-level classifications A

and F . As a result, both the disjointed classes d1 and d2 may be selected in a single test case, leading to a

contradiction and hence illegitimacy.

Based on this observation, Chen and Poon [7] developed a tree restructuring technique for the reduction

of illegitimate test cases. This is done by suppressing the occurrence of duplicated subtrees under different

top-level classifications. However, their tree restructuring technique may sometimes introduce incompatible

classes, thereby converting some legitimate test cases into illegitimate ones. After the restructuring process,

therefore, a reformatting procedure has to be performed to convert these illegitimate test cases into legitimate

ones. Readers may refer to [7] for details.

3 An Integrated Classification-Tree Methodology

3.1 An Overview

In view of the significance of the above techniques, we propose an integrated methodology that supports (a)
the construction of the classification-hierarchy table, (b) the construction of the classification tree, (c) the

restructuring of the classification tree, and (d) the construction of the set of potential test cases. Some of

these techniques have been extended or combined to allow for a full integration. A prototype system has

been developed.

Basically, our integrated classification-tree methodology consists of the following three phases:

8

(1) Construction of Classification-Hierarchy Table

A constraint of the classification-tree method is that the parent-child or ancestor-descendent hier-

archical relation must be anti-symmetric for any pair of classifications. In order to facilitate the

detection of symmetric parent-child or ancestor-descendent hierarchical relations between any pair

of classifications, we propose to refine the original set of hierarchical operators in [8].

Obviously, the effort of defining all the w×w hierarchical relations is substantial, especially when

w is large. In order to improve on the correctness and efficiency of constructing the classification-

hierarchy table, we have developed techniques for (a) the consistency checking of known hierarchical

relations and (b) the automatic deduction of new hierarchical relations from the known ones. In addi-

tional, Chen and Poon’s classification-hierarchy table [8] has been enhanced to make the subsequent

tree construction phase more efficient.

(2) Construction of Classification Tree

A suboptimization process for the effectiveness metric ET has been built into the construction of the

classification tree, so that the quality of the latter can be improved. To accomplish this, Chen and

Poon’s tree construction algorithm [8] has been extended substantially.

(3) Construction of Potential Test Cases

Because of the suboptimization process in step (2), there is no need for tree restructuring as proposed

in [7]. As a result, the production of potential test cases from the classification tree has become a

straightforward process. Hence, minor details for this part of the methodology will not be presented

in this paper.

3.2 Construction of Classification-Hierarchy Table

A constraint of Grochtmann and Grimm’s classification-tree method [12, 13], even though it is not discussed

in the paper, is that the parent-child or ancestor-descendent hierarchical relation must be anti-symmetric for

any pair of classifications. Otherwise a classification tree cannot be constructed. In other words, X ⇒ Y

must imply Y 6⇒ X . Software testers may need to redefine the original set of classifications and classes in

order to meet this constraint while preserving the requirements of the target system. The following example

illustrates this point.

Example 2

Suppose we are given two classifications M and N, where M is associated with two classes m1 and m2, and

N is associated with another two classes n1 and n2. Suppose, further, that there are only three legitimate

inputs:

(a) class(M) = m1

(b) class(N) = n1

(c) class(M) = m2 and class(N) = n2

Obviously, M or N or both must be top-level classifications. In this situation, only three types of classifica-

tion trees are possible:

9

• Type (1): Classification trees having both M and N as their top-level classifications.

• Type (2): Classification trees having M as their only top-level classification, and N as child classifi-

cation(s) of M.

• Type (3): Classification trees having N as their only top-level classification, and M as child classifi-

cation(s) of N.

None of these types of classification trees, however, can generate all the valid combinations of classes above,

because:

• Combinations (a) and (b) cannot be constructed from Type (1).

• Combination (b) cannot be constructed from Type (2).

• Combination (a) cannot be constructed from Type (3).

The root cause of this problem is that the parent-child hierarchical relations between M and N are

symmetric. In other words, M is a parent classification of N while N is also a parent classification of M,

hence resulting in a loop rather than a tree structure. M and N (and their associated classes) should be

redefined before a classification tree can be constructed correctly.

The hierarchical operators introduced by Chen and Poon [8] and described in Section 2.2 simply assume

that symmetric parent-child or ancestor-descendent hierarchical relations do not exist for any pair of clas-

sifications. We would like, however, to help software testers identify such unwarranted situations, thereby

providing them with an opportunity to review and improve on the classifications and classes. This can be

achieved by refining the hierarchical operators as follows:

(1) We define X to be a loose ancestor of Y , denoted by X ⇔ Y , if and only if the following conditions

are satisfied:

(a) There exist some x ∈ X and y∈Y such that class(X) = x and class(Y) = y are part of a legitimate

input.

(b) There exists some x′ ∈ X such that, for any y′ ∈Y , we cannot have class(X) = x′ and class(Y) =
y′ in any legitimate input.

(c) There exists some y′′ ∈Y such that, for any x′′ ∈X , we cannot have class(X) = x′′ and class(Y) =
y′′ in any legitimate input.

(2) We define X to be a strict ancestor (or simply an ancestor) of Y , denoted by X ⇒Y , if and only if the

following conditions are satisfied:

(a) There exist some x ∈ X and y∈Y such that class(X) = x and class(Y) = y are part of a legitimate

input.

(b) There exists some x′ ∈ X such that, for any y′ ∈Y , we cannot have class(X) = x′ and class(Y) =
y′ in any legitimate input.

10

Given Deduced or Defined

Y ⇒ X Y ∼ X Y ⊗X

X ⇒ Y Not applicable Not applicable Deduced

X ∼ Y Not applicable Deduced Not applicable

X ⊗Y Can be defined Error Can be defined

Table 2: Deduction and Constraints on Y 7→ X from a Given X 7→ Y

(c) There does not exist any y′′ ∈ Y such that, for any x′′ ∈ X , we cannot have class(X) = x′′ and

class(Y) = y′′ in any legitimate input.

(3) We define X to be incompatible with Y , denoted by X ∼ Y , if and only if for any x ∈ X and y ∈ Y , we

cannot have class(X) = x and class(Y) = y in any legitimate input.

(4) We define X to have other relations with Y , denoted by X ⊗Y , if and only if X is neither a loose

ancestor nor a strict ancestor of Y , and is not incompatible with it.

Given the refined hierarchical relations, whenever X ⇔ Y is being defined, we know that a symmetric

parent-child or ancestor-descendent hierarchical relation occurs between two classifications X and Y . Soft-

ware testers should be alerted to redefine X and Y (and their associated classes) so as to prevent a loop in

the classification tree.

We accept that the hierarchical operators “⇒” and “⊗” defined here are different from those defined

by Chen and Poon, particularly for the situation where X ⇔ Y for some classifications X and Y . However,

our algorithm for constructing the classification-hierarchy table will ensure that X ⇔ Y does not occur for

any pair of classifications. As a result, the “⇒” and “⊗” operators here are equivalent to those of Chen and

Poon. Hence, the three properties presented in Section 2.2 are still applicable. This explains why we prefer

to reuse the symbols for the three operators of Chen and Poon despite the slight semantic difference.

Using these three properties, it may be possible to deduce some hierarchical relations. For example, if

we know that X ⇒ Y , then Y ⊗X can be deduced automatically. In this way, not all the w×w hierarchical

relations have to be independently defined.

From these properties, we have constructed Table 3.2 showing the validity of various combinations of

X 7→ Y and Y 7→ X . We find that X ⊗Y and Y ∼ X should not coexist in the classification-hierarchy table.

Thus, errors of the hierarchical operators in the classification-hierarchy table can be identified.

Each element ti j in the classification-hierarchy table is classified as a defined element if it is manually

defined, or a deduced element if it is automatically deduced. An element M is said to be a parent element of

another element N if N is deduced from M. The element-type table is used to indicate whether a particular

element ti j is defined or deduced, so as to ease the removal of inconsistent hierarchical operators from the

classification-hierarchy table.

Basically, the element-type table has the same dimension (namely w × w) as its corresponding

classification-hierarchy table. Each element ei j (where 1 ≤ i, j ≤ w) may take a value of “−1”, “0”, or

“1”, indicating whether the corresponding element ti j is defined, unassigned, or deduced, respectively.

The principles of our algorithm for constructing the classification-hierarchy table are:

11

• To perform automatic deduction instead of manual definition for each unassigned ti j whenever possi-

ble.

• To perform consistency checking after every manual definition of ti j.

The following is the algorithm build table for constructing the classification-hierarchy table, in which

the techniques for (a) identifying any symmetry in the parent-child or ancestor-descendent hierarchical

relations, (b) consistency checking (check operator()), and (c) automatic deduction (deduce operator())
are incorporated:

Algorithm build table for Building the Classification-Hierarchy Table

procedure build table();

foreach ei j do /* initialize the element-type table */

ei j := “0”;

end foreach;

foreach tii do /* define diagonal elements */

tii := “⊗”;

eii := “−1”;

end foreach;

while number of unassigned ti j’s > 0 do

input action flg; /* users should set action flg to 1 if normal processing is required,

or to −1 to delete an incorrect hierarchical relation */

if action flg = 1 then /* normal processing */

symmetry flg := 0;

de f ine next element(symmetry flg);

if symmetry flg = 1 then /* symmetric parent-child or ancestor-descendent

hierarchical relations are detected */

stop;

end if;

else /* users wish to delete an incorrect hierarchical relation */

input R; /* R is a stack containing one or more elements to be removed

from the classification-hierarchy table */

remove operator(R);

deduce operator();

end if;

end while;

/* The following steps convert every “⇒” (representing both the parent-child and

ancestor-descendent hierarchical relations) in the classification-hierarchy table into

either “>” (for the parent-child relation) or “≫” (for the ancestor-descendent

relation) */

12

foreach tik = “⇒” do

if there exist ti j = (“⇒” or “≫”) and t jk = (“⇒” or “≫”) then

tik := “≫”;

end if;

end foreach;

foreach ti j = “⇒” do

ti j := “>”;

end foreach;

procedure de f ine next element(symmetry flg);

define next unassigned ti j; /* manual definition */

if ti j = “⇔” then

output (i, j), ti j; /* alert users about elements with symmetric parent-child

or ancestor-descendent hierarchical relations */

symmetry flg := 1;

else

ei j := “−1”;

chk flg := 0; /* chk flg will be set to 1 if an inconsistency is detected */

check operator(i, j, chk flg);

if chk flg = 1 then

output (i, j), ti j, (j, i), t ji; /* alert users about inconsistent elements */

input R; /* if ti j, t ji, or both are to be removed, R is a stack

containing (i, j), (j, i), or both, respectively */

remove operator(R);

end if;

deduce operator(); /* automatic deduction is only possible after at least one

ti j has been defined */

end if;

procedure check operator(i, j, chk flg);

/* Consistency checking of a pair ti j and t ji based on Table 2 */

if ti j = “∼” and t ji = “⊗” then

chk flg := 1;

end if;

procedure remove operator(R);

while R 6= empty do

pop (i, j) from R;

begin case

case ei j = “−1”: /* ti j is a defined element */

ei j := “0”;

13

if e ji = “1” then /* t ji is deduced from ti j and hence should also be removed */

e ji := “0”;

end if;

case ei j = “1”: /* ti j is deduced from t ji, which is a defined element.

Both should be removed */

ei j := “0”;

e ji := “0”;

end case;

end while;

procedure deduce operator();

/* Property 3 mentioned in Section 2.2 is not used because, given X ⊗Y , it is not

deterministic whether Y ⇒ X or Y ⊗X */

foreach defined ti j do

begin case

case ti j = “⇒”: /* X ⇒ Y */

if e ji = “0” then

t ji := “⊗”; /* use Property 1 */

e ji := “1”;

end if;

case ti j = “∼”: /* X ∼ Y */

if e ji = “0” then

t ji := “∼”; /* use Property 2 */

e ji := “1”;

end if;

end case;

end foreach;

In the above algorithm, it should be noted that:

(a) Whenever the hierarchical operator “⇔” is being defined in de f ine next element() for any pair of

classifications, the execution of build table will be stopped and software testers will be asked to

redefine the classifications and classes.

(b) The removal of inconsistent hierarchical relations operates in an interactive mode so that software

testers are able to select one or more inconsistent elements whose hierarchical operators are to be

removed. For example, suppose X ⊗Y and Y ∼ X are detected as inconsistencies according to the

constraints in Table 3.2. Software testers can decide whether (i, j), (j, i), or both of them are to be

included in R (which is subsequently passed to remove operator() as a parameter). In the situation

where a fully automated mode is required, the removal mechanism can be modified to achieve the

same purpose by storing the inconsistent elements (that is, the elements included in the second output

statement of de f ine next element()) in R without any user intervention.

14

A B C D E F G H I

A ⊗ ⇒

B ⊗ ⊗

C ⊗

D ⊗

E ⊗

F ⊗

G ⊗

H ⊗

I ⊗

Table 3: Classification-Hierarchy Table after Step (5) of Example 3

(c) There may be a situation where the hierarchical operator of a ti j is incorrectly defined but not detected

as an inconsistency in check operator(). For example, suppose X ∼ Y and Y ∼ X are correct but

somehow incorrectly defined as X ⊗Y and Y ⊗X . These mistakes would not be detected as incon-

sistencies via Table 3.2, because X ⊗Y and Y ⊗X are a possible combination. By setting action f lg

to −1 manually, however, software testers are allowed to initiate the execution of remove operator()

for the deletion of such incorrect hierarchical relations.

Example 3 below illustrates how to apply build table for (a) constructing the classification-hierarchy

table and the element-type table and (b) removing the incorrectly defined or deduced elements from the

classification-hierarchy table.

Example 3

Refer to the specification of arith-sum in Example 1.

(1) Every ei j is initialized to “0”.

(2) The hierarchical operator of every tii (that is, A 7→ A, B 7→ B, . . ., I 7→ I) is set to “⊗” and the

corresponding eii to “−1”.

(3) t12 (A 7→ B) is the next unassigned element whose hierarchical operator is to be defined. The software

tester defines it to be A ⇒ B according to the specification. Consequently, e12 is set to “−1”.

(4) Consistency checking is performed for t12 and t21. There is obviously no inconsistency because t21 is

unassigned.

(5) Once A ⇒ B is defined, the hierarchical operator for t21 (B 7→ A) is deduced as “⊗”. Then e21 is set to

“1” accordingly.

Tables 3 and 3 show the classification-hierarchy table and the element-type table, respectively, after this

step.

(6) The construction process is continued from left to right and top to bottom, except those elements that

are deduced automatically. Suppose t49 (D 7→ I) is the next unassigned element. The software tester

15

A B C D E F G H I

A −1 −1 0 0 0 0 0 0 0

B 1 −1 0 0 0 0 0 0 0

C 0 0 −1 0 0 0 0 0 0

D 0 0 0 −1 0 0 0 0 0

E 0 0 0 0 −1 0 0 0 0

F 0 0 0 0 0 −1 0 0 0

G 0 0 0 0 0 0 −1 0 0

H 0 0 0 0 0 0 0 −1 0

I 0 0 0 0 0 0 0 0 −1

Table 4: Element-Type Table after Step (5) of Example 3

A B C D E F G H I

A ⊗ ⇒ ⇒ ⇒ ⇒ ⊗ ⊗ ⊗ ⊗

B ⊗ ⊗ ⇒ ⇒ ⊗ ⊗ ⊗ ⊗ ⊗

C ⊗ ⊗ ⊗ ⇒ ∼ ⊗ ⊗ ∼ ⊗

D ⊗ ⊗ ⊗ ⊗ ∼ ⊗ ⊗ ∼ ⊗

E ⊗ ∼ ∼ ⊗

F ⊗

G ⊗

H ∼ ∼ ⊗

I ⊗

Table 5: Classification-Hierarchy Table after Step (6) of Example 3

defines it to be D⊗ I according to the specification. Since t94 (I 7→ D) has not yet been defined, the

system cannot detect any inconsistency between t49 and t94, nor deduce any hierarchical operator for

t94.

Table 3 shows the classification-hierarchy table after this step and Table 3 shows the element-type table.

(7) The next element to consider is t52 (E 7→ B). Suppose that, instead of setting B ∼ E according to the

specification, the software tester has defined t25 as B⊗E by mistake. As a result, the system has not

deduced any hierarchical operator immediately from B⊗E. In such a case, the software tester defines

E ∼ B according to the specification. Thus, e52 is set to “−1”.

(8) Consistency checking is performed for t52 and t25. At this point, an inconsistency is detected because

E ∼ B and B⊗E should not coexist according to Table 3.2. The software tester is informed of this

inconsistency via the second output statement in de f ine next element().

(9) Suppose the software tester realizes that t25 (B⊗E) has been incorrectly defined and hence should be

removed. Thus, (2,5) is entered into R through the “input R” statement in de f ine next element(), to

be passed to remove operator() as a parameter.

16

A B C D E F G H I

A −1 −1 −1 −1 −1 −1 −1 −1 −1

B 1 −1 −1 −1 −1 −1 −1 −1 −1

C 1 1 −1 −1 −1 −1 −1 −1 −1

D 1 1 1 −1 −1 −1 −1 −1 −1

E 1 0 1 1 −1 0 0 0 0

F 0 0 0 0 0 −1 0 0 0

G 0 0 0 0 0 0 −1 0 0

H 0 0 1 1 0 0 0 −1 0

I 0 0 0 0 0 0 0 0 −1

Table 6: Element-Type Table after Step (6) of Example 3

A B C D E F G H I

A ⊗ ⇒ ⇒ ⇒ ⇒ ⊗ ⊗ ⊗ ⊗

B ⊗ ⊗ ⇒ ⇒ ⊗ ⊗ ⊗ ⊗

C ⊗ ⊗ ⊗ ⇒ ∼ ⊗ ⊗ ∼ ⊗

D ⊗ ⊗ ⊗ ⊗ ∼ ⊗ ⊗ ∼ ⊗

E ⊗ ∼ ∼ ∼ ⊗

F ⊗

G ⊗

H ∼ ∼ ⊗

I ⊗

Table 7: Classification-Hierarchy Table after Step (10) of Example 3

(10) In remove operator(), the following steps are performed:

(a) Pop (2,5) from R.

(b) Since e25 is “−1”, t25 is a defined element, and so e25 is set to “0”. This is equivalent to deleting

the hierarchical operator “⊗” from t25. Since e52 is “−1”, t52 is also a defined element, and

hence t52 remains unchanged.

Tables 3 and 3 show the classification-hierarchy table and the element-type table, respectively, after this

step.

(11) From E ∼ B, we deduce that B ∼ E and set e25 to “1”.

(12) We continue the construction process until hierarchical operators have been assigned for all the ti j’s.

The classification-hierarchy table after this step is depicted in Table 1.

(13) For t12 (A⇒B) and t13 (A⇒C) in Table 1, since t23 is defined with the hierarchical relation B⇒C, the

hierarchical operator for t13 is changed from “⇒” to the symbol “≫” to indicate that it is an ancestor-

descendent relation. Similarly, the hierarchical operators for t14, t24, and t64 are also changed from

“⇒” to “≫”. This leaves the hierarchical operator “⇒” for t12, t15, t23, t34, t63, t67, and t68 unchanged.

17

A B C D E F G H I

A −1 −1 −1 −1 −1 −1 −1 −1 −1

B 1 −1 −1 −1 0 −1 −1 −1 −1

C 1 1 −1 −1 −1 −1 −1 −1 −1

D 1 1 1 −1 −1 −1 −1 −1 −1

E 1 −1 1 1 −1 0 0 0 0

F 0 0 0 0 0 −1 0 0 0

G 0 0 0 0 0 0 −1 0 0

H 0 0 1 1 0 0 0 −1 0

I 0 0 0 0 0 0 0 0 −1

Table 8: Element-Type Table after Step (10) of Example 3

A B C D E F G H I

A ⊗ > ≫ ≫ > ⊗ ⊗ ⊗ ⊗

B ⊗ ⊗ > ≫ ∼ ⊗ ⊗ ⊗ ⊗

C ⊗ ⊗ ⊗ > ∼ ⊗ ⊗ ∼ ⊗

D ⊗ ⊗ ⊗ ⊗ ∼ ⊗ ⊗ ∼ ⊗

E ⊗ ∼ ∼ ∼ ⊗ ⊗ ∼ ⊗ ⊗

F ⊗ ⊗ > ≫ ⊗ ⊗ > > ⊗

G ⊗ ⊗ ⊗ ⊗ ∼ ⊗ ⊗ ∼ ⊗

H ⊗ ⊗ ∼ ∼ ⊗ ⊗ ∼ ⊗ ⊗

I ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Table 9: Classification-Hierarchy Table after Step (13) of Example 3

We then change the hierarchical operators for the remaining elements from “⇒” to the symbol “>”

to indicate that they are parent-child relations. In this way, we can distinguish between parent-child

and ancestor-descendent relations, thus avoiding the redundant construction and pruning of subtrees

as presented in [7].

The final classification-hierarchy table is shown in Table 3.2.

3.3 Construction of Classification Tree

From the classification-hierarchy table, the corresponding classification tree can be constructed using the

following algorithm:

18

x1 x1 x2 x1 x2

Before Merging After Merging

X X X X

U Y Z U Y Z

Figure 2: An Example of Step (2)(a) of build tree

Algorithm build tree for Constructing the Classification Tree

(1) Construction of Subtrees with Parent-Child Hierarchical Relation

Form subtrees for all the ti j’s with the parent-child operator “>”, thus:

Suppose X >Y . Select all the classes x ∈ X such that any legitimate input containing class(X) = x

also contains class(Y) = y for some y ∈ Y . For each of these classes x, form a subtree with X as the

root, x as the only child class of X , and Y as the only child classification of x.

(2) Merging of Related Subtrees

(a) Merge together all the subtrees from step (1) having X as their roots, to form a new subtree

whose root is still X . The child classes of X in the new subtree are all the classes of the merged

subtrees without duplications (see Figure 3.3).

(b) For each pair of subtrees with roots X and Y , if Y appears as a terminal node of the subtree with

root X , combine the two subtrees to form a new one by replacing the terminal node Y with the

subtree with root Y (see Figure 3.3).

(c) For all the subtrees remaining after step (2)(b), add all the child classes for each classification.

(3) Pruning of Duplicated Subtrees

Let τi (where i ≥ 1) denote a subtree formed in step (2)(c) above and SX
τi

denote a subtree within τi,

with the classification X as its root. In order to distinguish between the two kinds of subtrees, we

will refer to τi as a top-level subtree. It should be noted that there may be more than one subtree SX
τi

with identical classifications and classes within a given top-level subtree τi. Let τ′i denote the top-level

subtree after pruning all the identical SX
τi

’s from τi, and N(τi) denote the total number of combinations

of classes for τi.

Suppose there are two or more top-level subtrees τ1, τ2, . . . , τn containing duplicated subtrees

SX
τ1

, SX
τ2

, . . ., SX
τn

, respectively. Select a top-level subtree τk (where 1 ≤ k ≤ n) such that, if we prune

19

x
1 x

2
x

n
x

1 x
2

x
n

After MergingBefore Merging

X Y

Y

X

Y

Figure 3: An Example of Step (2)(b) of build tree

all the subtrees SX
τ1

, SX
τ2

, . . ., SX
τk−1

, SX
τk+1

, . . ., SX
τn

from τ1, τ2, . . . , τk−1, τk+1, . . . , τn, respectively, it

yields the smallest value of

(

k−1

∏
j=1

N(τ′j)

)

×N(τk)×

(

n

∏
j=k+1

N(τ′j)

)

Replace the top-level subtrees τ1, τ2, . . . , τk−1, τk+1, . . . , τn by τ′1, τ′2, . . . , τ′k−1, τ′k+1, . . . , τ′n,

respectively, but leave the selected top-level subtree τk unchanged.

Repeat this step until there are no duplicated subtrees SX
τ j

and SX
τk

across any pair of distinct top-

level subtrees τ j and τk. Note, however, that SX
τk

is allowed to occur more than once within a top-level

subtree τk.

(4) Identification of Stand Alone Classifications

For every X that does not appear in any remaining top-level subtree, form a top-level subtree with X

as the root and add all its child classes.

(5) Integration of All Subtrees

Use the general root node (denoted by a small circle) to link up all the top-level subtrees formed in

steps (3) and (4).

The algorithm calculate combination is based on the formulae from [7], as listed in Appendix 1. It can

be used for the computation of N(τk) and N(τ′j) in step (3) of build tree.

The intuition of step (3) of build tree is to prevent the occurrence of duplicated subtrees under different

top-level classifications (corresponding to the top-level subtrees τi’s of step (3)). Otherwise these duplicated

subtrees would lead to the occurrence of illegitimate test cases, resulting in a smaller ET . This may be

20

2 b1 c1 f 1 f 1 f 2

t12 t15 t23 t34 t63 t67 t68

a

H

A A B C F F F

a1

B E C D C G

Figure 4: Subtrees Formed in Step (1) of Example 4

prevented by pruning the duplicated subtrees from all but one τi. In this process, the identification of the

duplicated subtrees to be pruned is guided by minimizing the value of

(

k−1

∏
j=1

N(τ′j)

)

×N(τk)×

(

n

∏
j=k+1

N(τ′j)

)

The intuition is to reduce the value of Np (and hence improve on the value of ET) of the final classification

tree.

Our integrated classification-tree algorithm differs from that of Chen and Poon [8] in the following:

• Subtrees with parent-child or ancestor-descendent hierarchical relations are formed in step (1) of Chen

and Poon’s tree construction algorithm, whereas only those with parent-child hierarchical relations are

formed in step (1) of our algorithm. Thus, the redundant processes of forming and subsequent pruning

of those subtrees with ancestor-descendent hierarchical relations (as in Chen and Poon’s algorithm)

do not exist in our algorithm.

• Our approach to the construction of classification trees is guided by the effectiveness metric ET (and

hence subsequent tree restructuring is not required), whereas Chen and Poon’s approach considers the

effectiveness aspect only after the construction phase.

Now, let us illustrate how to construct a classification tree in Example 4 and how to construct the set of

legitimate test cases from that classification tree in Exampl 5.

Example 4

Refer to the classification-hierarchy table for arith-sum in Table 3.2.

(1) Construction of Subtrees with Parent-Child Hierarchical Relation

In Table 3.2, the elements with the hierarchical operator “>” are t12, t15, t23, t34, t63, t67, and t68. For

t12, when class(A) = a1, class(B) = b1 or b2. Hence, a subtree is formed with A as its root, a1 as A’s

unique child class, and B as a1’s unique child classification. Subtrees for t15, t23, t34, t63, t67, and t68

are formed in a similar way. Figure 4 depicts all the subtrees formed in this step.

21

1 a2 f 1 f 2 b1 c1a

D

A F B C

B E C G H C

Figure 5: Subtrees Formed in Step (2)(a) of Example 4

1 a2 f1 f2

c1b1

c1

a

D

A F

B E C G H

C D

Figure 6: Subtrees Formed in Step (2)(b) of Example 4

(2) Merging of Related Subtrees

(a) Since both the subtrees corresponding to t12 and t15 have A as their roots, they are merged

together to form a single subtree with root A. Similarly, the subtrees corresponding to t63, t67,

and t68 are merged together to form another single subtree with root F . It should be noted that,

although f1 appears in both the subtrees corresponding to t63 and t67 before the merging process,

f1 appears only once in the newly formed subtree after the merging process. Figure 4 depicts the

two newly formed subtrees after the merging processes, together with the subtrees corresponding

to t23 and t34, which are left intact throughout the merging processes.

(b) Let τX denote the subtree with classification X as its root. The subtrees in Figure 4 are merged

as follows:

(i) Combine τF and τC to form a new subtree by replacing the terminal node C of τF with τC.

(ii) Combine τB and τC to form a new subtree (denoted by τ′B) by replacing the terminal node C

of τB with τC.

(iii) Combine τA and the newly formed τ′B to form a new subtree by replacing the terminal node

B of τA with τ′B.

Figure 4 depicts the resultant subtrees after these merging processes.

22

1 a2

e1 e2b2b1

c1 c2

d1 d2

d1 d2

c1 c2 g1 2g

f 1 f 2

h1 h 2

a

h

A F

B E C G H

C D

D

3

Figure 7: Subtrees Formed in Step (2)(c) of Example 4

(c) The two subtrees in Figure 4 are the only ones remaining after step (2)(b). After all the classes

of every classification in these two subtrees have been added, the resultant subtrees are depicted

in Figure 4.

(3) Pruning of Duplicated Subtrees

Let τ1 and τ2 denote the two top-level subtrees in Figure 4 with A and F as their roots, respectively.

They contain the duplicated subtrees SC
τ1

and SC
τ2

, respectively. Figure 4 depicts the resultant top-level

subtree τ′1 formed after pruning SC
τ1

from τ1, and the resultant top-level subtree τ′2 after pruning SC
τ2

from τ2. Using Eq. (1) and Eq. (2) in Appendix 1, N(τ2) can be calculated as follows:

N(SD
τ2

) = 2

N(Sc1
τ2

) = N(SD
τ2

) = 2

N(SC
τ2

) = 1+N(Sc1
τ2

) = 1+2 = 3

N(SG
τ2

) = 2

N(S
f1
τ2

) = N(SC
τ2

)×N(SG
τ2

) = 3×2 = 6

N(SH
τ2

) = 3

N(S
f2
τ2

) = N(SH
τ2

) = 3

N(τ2) = N(SF
τ2

) = N(S
f1
τ2

)+N(S
f2
τ2

) = 6+3 = 9

Similarly, N(τ1), N(τ′1), and N(τ′2) are calculated to be 6, 4, and 5, respectively. Hence, N(τ1)×
N(τ′2) = 30 and N(τ′1)×N(τ2) = 36. Since N(τ1)×N(τ′2) < N(τ′1)×N(τ2), τ2 should be the top-level

subtree chosen for pruning.

23

1 2a f1 f2

c1 c2

d1 d2

Pruning SC
τ1

from τ1

e1 e2b2b1

a1 2a

b1 b2 e1 e2

c1 c2

d1 d2

f1 f2

h1 h2 h3g1 g2h1 h2 h3g1 g2

(τ1) (τ2
′)(τ1

′) (τ2)

a

D

��aa

��� hhhh

""bb

�� PP

"" bb

�� QQ

!! aa

�� HH ��HH

�� HH

!! PP

�� aa

.......................... aa

..........................
..........................

 ``̀

!! aa
..........................
........................

Pruning SC
τ2

from τ2

A F

B E C G

D

H

A F

B E G H

C

Figure 8: Resultant Subtrees Formed after Pruning SC
τ1

and SC
τ2

from τ1 and τ2, respectively

(4) Identification of Stand Alone Classifications

Since I is the only classification that does not appear in any top-level subtree remaining after step (3),
a top-level subtree with I as its root is formed. Then, all the classes (i1 and i2) of I are added to this

partially formed top-level subtree to produce a complete τI .

(5) Integration of All Subtrees

The two top-level subtrees τ1 and τ′2 formed in step (3) and the top-level subtree τI formed in step (4)
are linked to the general root node to form the final classification tree. It is depicted in Figure 3.3 as

T ′
arith−sum.

Example 5

From T ′
arith−sum in Figure 3.3, a total of 60 potential test cases can be constructed and are shown in Table 5.

By checking all these potential test cases against the specification of arith-sum in Example 1, the following

32 potential test cases are found to be illegitimate and should therefore be removed:

• The potential test cases 5–10, 15–20, and 25–30 are illegitimate because class(F) = f2 cannot coexist

with class(C) = c1 or c2.

• The potential test cases 31–34, 41–44, and 51–54 are illegitimate because class(F) = f1 must coexist

with (class(C) = c1 and class(D) = d1), (class(C) = c1 and class(D) = d2), or class(C) = c2.

24

1 a2

e1 e2b2b1

c1 c2

d1 d2

f 1

g1 2g

G

f 2

h1 h 2

H

3

a

h

2

FA

B E

C

D

I

i 1 i

Figure 9: Final Classification Tree (T ′
arith−sum) for arith-sum

No. Potential Test Cases No. Potential Test Cases No. Potential Test Cases

1 a1, b1, c1, d1, f1, g1, i1 21 a1, b1, c2, f1, g1, i1 41 a2, e1, f1, g1, i1

2 a1, b1, c1, d1, f1, g1, i2 22 a1, b1, c2, f1, g1, i2 42 a2, e1, f1, g1, i2

3 a1, b1, c1, d1, f1, g2, i1 23 a1, b1, c2, f1, g2, i1 43 a2, e1, f1, g2, i1

4 a1, b1, c1, d1, f1, g2, i2 24 a1, b1, c2, f1, g2, i2 44 a2, e1, f1, g2, i2

5 a1, b1, c1, d1, f2, h1, i1 25 a1, b1, c2, f2, h1, i1 45 a2, e1, f2, h1, i1

6 a1, b1, c1, d1, f2, h1, i2 26 a1, b1, c2, f2, h1, i2 46 a2, e1, f2, h1, i2

7 a1, b1, c1, d1, f2, h2, i1 27 a1, b1, c2, f2, h2, i1 47 a2, e1, f2, h2, i1

8 a1, b1, c1, d1, f2, h2, i2 28 a1, b1, c2, f2, h2, i2 48 a2, e1, f2, h2, i2

9 a1, b1, c1, d1, f2, h3, i1 29 a1, b1, c2, f2, h3, i1 49 a2, e1, f2, h3, i1

10 a1, b1, c1, d1, f2, h3, i2 30 a1, b1, c2, f2, h3, i2 50 a2, e1, f2, h3, i2

11 a1, b1, c1, d2, f1, g1, i1 31 a1, b2, f1, g1, i1 51 a2, e2, f1, g1, i1

12 a1, b1, c1, d2, f1, g1, i2 32 a1, b2, f1, g1, i2 52 a2, e2, f1, g1, i2

13 a1, b1, c1, d2, f1, g2, i1 33 a1, b2, f1, g2, i1 53 a2, e2, f1, g2, i1

14 a1, b1, c1, d2, f1, g2, i2 34 a1, b2, f1, g2, i2 54 a2, e2, f1, g2, i2

15 a1, b1, c1, d2, f2, h1, i1 35 a1, b2, f2, h1, i1 55 a2, e2, f2, h1, i1

16 a1, b1, c1, d2, f2, h1, i2 36 a1, b2, f2, h1, i2 56 a2, e2, f2, h1, i2

17 a1, b1, c1, d2, f2, h2, i1 37 a1, b2, f2, h2, i1 57 a2, e2, f2, h2, i1

18 a1, b1, c1, d2, f2, h2, i2 38 a1, b2, f2, h2, i2 58 a2, e2, f2, h2, i2

19 a1, b1, c1, d2, f2, h3, i1 39 a1, b2, f2, h3, i1 59 a2, e2, f2, h3, i1

20 a1, b1, c1, d2, f2, h3, i2 40 a1, b2, f2, h3, i2 60 a2, e2, f2, h3, i2

Table 10: All the Potential Test Cases Constructed from T ′
arith−sum

25

• The potential test cases 23 and 24 are illegitimate because class(C) = c2 cannot coexist class(G) = g2.

Thus, 28 legitimate test cases remain after the removal of the above illegitimate test cases. They are 1–4,

11–14, 21–22, 35–40, 45–50, and 55–60 in Table 5.

In Example 5, it can be seen that the total number of potential test cases (namely 60) constructed from

T ′
arith−sum in Figure 3.3 using the integrated approach is significantly smaller than the number (namely 108)

constructed from Tarith−sum in Figure 2.2. Also, all the legitimate test cases can be constructed directly from

T ′
arith−sum without the need for further reformatting the relevant potential test cases (as required by Chen and

Poon’s restructuring technique).

The usefulness of our integrated approach has been verified in a credit-card approval system [9] and an

integrated hospital system [6]. The results of these applications are very encouraging.

In fact, our integrated approach has the following two important properties:

(a) Preservation Property

Let T be a classification tree and T ′ be the new tree after pruning a set of duplicated subtrees in

step (3) of build tree. All the legitimate test cases identified from T can also be identified from T ′.

(b) Convergence Property

Let Np be the number of potential test cases in T and N′
p be that in T ′. Then N′

p ≤ Np.

Readers may refer to Appendix 2 for the proofs.

4 Major Features of Prototype System ADDICT

Based on the integrated classification-tree methodology presented above, a prototype system (ADDICT) has

been built for the construction of test cases from specifications. ADDICT has been developed using the

object-oriented, event-driven Visual Basic in order to provide a better human-machine interface. Essentially,

ADDICT has the following main functions:

(1) Define or remove classifications and their associated classes.

(2) Define or remove the influence of one classification on the others (where influence is defined as the

effect of the occurrence of each class of a classification on the feasibility of the classes of another

classification).

(3) Construct the classification-hierarchy table by:

(a) Defining the hierarchical relation for some pairs of distinct classifications based on the influences

entered in step (2).

(b) Checking the existence of symmetric parent-child or ancestor-descendent hierarchical relations

for any pair of classifications.

(c) Performing the consistency checking of the defined hierarchical relations.

26

Figure 10: Input Screen for Classifications and Associated Classes

(d) Performing the automatic deduction of new hierarchical relations (if possible).

(4) Construct the classification tree T from the classification-hierarchy table. In order to reduce the

number of illegitimate test cases resulting from the duplication of subtrees under different top-level

classifications, this construction process is guided by the effectiveness metric ET .

(5) Construct the set of potential test cases from T .

Let us use the specification of arith-sum in Example 1 to illustrate the functions of ADDICT.

Example 6

(1) First, all the classifications and their associated classes for arith-sum have to be entered into ADDICT.

Figure 6 depicts the input screen through which A and its associated classes (a1 and a2) are entered.

(2) For some pairs of distinct classifications X and Y , the influence of every class of X on the classes of Y

has to be entered. For example, in Figure 6, the influence of each class (b1 and b2) of B on the classes

of E is being entered. It can be seen that when class(B) = b1 or b2, class(E) 6= e1 and e2. This will

trigger ADDICT to automatically assign the hierarchical operator “∼” to B 7→ E. ADDICT will also

automatically deduce the hierarchical operator for E 7→ B to be “∼” (after performing consistency

checks and detecting no inconsistencies).

Similarly, the influence of each class of B on the classes of C can also be entered in two dialogue

windows, indicating that (i) when class(B) = b1, class(C) = c1 or c2, (ii) when class(B) = b2,

class(C) 6= c1 and c2, and (iii) when class(C) = c1 or c2, class(B) = b1 or b2. Such a combination

will trigger ADDICT to automatically assign the hierarchical operator “⇒” to B 7→C.

(3) Occasionally, incorrect influences may accidentally be entered into ADDICT, and incorrect hierarchi-

cal relations may be defined or deduced as a result. These incorrect influences or hierarchical relations

may be subsequently detected either by the consistency checking mechanism of the prototype system

or by the software testers themselves. In such cases, ADDICT allows the software testers to remove

27

Figure 11: Input Screen for the Influences of One Classification on Others

Figure 12: Input Screen for Selecting the Pair of Classifications whose Influences are to be Removed

these incorrect influences or hierarchical relations. During the process, the prototype system will

automatically identify and remove any other influences or hierarchical relations that may be affected.

For example, in Figure 6, the software tester wants to remove the influence of D on C. By referring to

the element-type table (internally maintained by ADDICT), the prototype system will also remove the

influences of C on D (as D⊗C is deduced from C ⇒ D).

(4) After hierarchical operators have been assigned to all the ti j’s, all the “⇒”s are converted into “≫”s

or “>”s. See Figure 6. Note that the symbol “@” in Figure 6 corresponds to the hierarchical operator

“⊗” used throughout this paper.

(5) From the classification-hierarchy table, ADDICT will automatically construct the corresponding clas-

sification tree (see Figure 4), from which the set of potential test cases is constructed. Some of the

potential test cases for arith-sum constructed by ADDICT are shown in Figure 4.

28

Figure 13: Classification-Hierarchy Table for arith-sum

Figure 14: Classification Tree for arith-sum Constructed by ADDICT

Figure 15: Some of the Potential Test Cases for arith-sum Constructed by ADDICT

29

5 Conclusion

The original classification-tree method proposed by Grochtmann and Grimm [12, 13] provided a means for

software testers to construct test cases from specifications via the construction of classification trees. From

the notion of classification-hierarchy tables, Chen and Poon [8] provided a methodology for the construction

of classification trees, from the given sets of classifications and their associated classes. Using classification

trees, the construction of their sets of potential test cases is relatively straightforward.

Unfortunately, some potential test cases constructed from the classification trees may be illegitimate,

since not all the constraints among the classifications may be reflected by the classification trees. This

leaves software testers with a manual task of identifying the legitimate test cases from the potential ones,

by validating against the specifications. A smaller set of potential test cases is obviously desirable. Based

on this rationale, Chen and Poon [7] defined an effectiveness metric ET and developed a tree restructuring

technique in order to improve on the quality of a classification tree.

In this paper, we introduce an integrated classification-tree methodology by (i) refining the set of

hierarchical operators and (ii) enhancing and integrating the classification-hierarchy table, the tree construc-

tion algorithm, and the tree restructuring technique. Our integrated methodology incorporates additional

features, including:

(a) a means to identify any unwarranted symmetry in the parent-child or ancestor-descendent hierarchical

relations among classifications,

(b) a means to check the consistency of the defined hierarchical relations during the construction of the

classification-hierarchy table,

(c) a means for the automatic deduction of some hierarchical relations yet to be defined, based on those

already defined,

(d) the use of the parent-child relation to improve on the construction of classification trees,

(e) the provision of a new approach, guided by an effectiveness metric, to construct classification trees

from the classification-hierarchy table, and

(f) the elimination of the need for test case reformatting during the construction of test cases from

classification trees.

A prototype system ADDICT has been built on our integrated methodology for the construction of test cases

from specifications. The practical usefulness of our methodology has been verified in [6, 9].

Acknowledgments

We would like to thank M.F. Lau and C.K. Low of the University of Melbourne, W.H. Kwok and I.K. Mak

of the University of Hong Kong, and Y.T. Yu of the City University of Hong Kong for their invaluable

comments and suggestions. In addition, we are grateful to Y.Y. Fu and C.K. Low of the University of

Melbourne for their help in implementing part of ADDICT. Y.Y. Fu was supported in part by a Summer

Vacation Scholarship.

30

References

[1] N. Amla and P. Ammann, Using Z specifications in category-partition testing, in Systems Integrity, Software

Safety, and Process Security: Building the Right System Right: Proceedings of the 7th Annual IEEE Conference

on Computer Assurance (COMPASS ’92), pp. 3–10, IEEE Computer Society, Los Alamitos, California, 1992.

[2] P. Ammann and A.J. Offutt, Using formal methods to derive test frames in category-partition testing, in

Safety, Reliability, Fault Tolerance, Concurrency, and Real Time Security: Proceedings of the 9th Annual

IEEE Conference on Computer Assurance (COMPASS ’94), pp. 69–79, IEEE Computer Society, Los Alamitos,

California, 1994.

[3] R. Bache and M. Müllerburg, Measures of testability as a basis for quality assurance. Software Engineering

Journal 5 (3), 1990, 86–92.

[4] M.J. Balcer, W.M. Hasling, and T.J. Ostrand, Automatic generation of test scripts from formal test specifications,

in Proceedings of the 3rd ACM Annual Symposium on Software Testing, Analysis, and Verification (TAV ’89),

pp. 210–218, ACM Press, New York, 1989.

[5] H.Y. Chen, T.H. Tse, F.T. Chan, and T.Y. Chen, In black and white: an integrated approach to class-level testing

of object-oriented programs. ACM Transactions on Software Engineering and Methodology 7 (3), 1998, 250–

295.

[6] T.Y. Chen, W.H. Kwok, and T.H. Tse, Improving the effectiveness of the classification-tree methodology, in

Proceedings of the 4th Annual IASTED International Conference on Software Engineering and Applications

(SEA 2000), ACTA Press, Calgary, Canada, pp. 43–48 (2000).

[7] T.Y. Chen and P.L. Poon, Improving the quality of classification trees via restructuring, in Proceedings of the

Asia-Pacific Software Engineering Conference (APSEC ’96), pp. 83–92, IEEE Computer Society, Los Alamitos,

California, 1996.

[8] T.Y. Chen and P.L. Poon, Construction of classification trees via the classification-hierarchy table. Information

and Software Technology 39 (13), 1997, 889–896.

[9] T.Y. Chen, P.L. Poon, and S.F. Tang, A systematic method for auditing user acceptance tests. IS Audit and

Control Journal 5, 1998, 31–36.

[10] T. Chusho, Test data selection and quality estimation based on the concept of essential branches for path testing.

IEEE Transactions on Software Engineering 13 (5), 1987, 509–517.

[11] A.L. Goel, Software reliability models: assumptions, limitations, and applicability. IEEE Transactions on

Software Engineering 11 (12), 1985, 1411–1423.

[12] M. Grochtmann and K. Grimm, Classification trees for partition testing. Software Testing, Verification and

Reliability 3 (2), 1993, 63–82.

[13] M. Grochtmann, J. Wegener, and K. Grimm, Test case design using classification trees and the classification-tree

editor CTE, in Proceedings of 8th International Software Quality Week (QW ’95), Software Research Institute,

San Francisco, California, 1995.

[14] R. Gupta and M.L. Soffa, Employing static information in the generation of test cases. Software Testing,

Verification and Reliability 3 (1), 1993, 29–48.

[15] R.K. Iyer and I. Lee, Measurement-based analysis of software reliability, in Handbook of Software Reliability

Engineering (M.R. Lyu, Ed), pp. 303–358, McGraw-Hill, New York, 1996.

[16] K.W. Miller, L.J. Morell, R.E. Noonan, S.K. Park, D.M. Nicol, B.W. Murrill, and J.M. Voas, Estimating the

probability of failure when testing reveals no failures. IEEE Transactions on Software Engineering 18 (1), 1992,

33–44.

31

[17] J.D. Musa, Operational profiles in software-reliability engineering. IEEE Software 10 (2), 1993, 14–32.

[18] J. Musa, G. Fuoco, N. Irving, D. Kropfl, and B. Juhlin, The operational profile, in Handbook of Software

Reliability Engineering (M.R. Lyu, Ed), pp. 167–216, McGraw-Hill, New York, 1996.

[19] A.J. Offutt and A. Irvine, Testing object-oriented software using the category-partition method, in Proceedings

of the 17th International Conference on Technology of Object-Oriented Languages and Systems (TOOLS 17)

(R.K. Ege, M. Singh, and B. Meyer, Eds), pp. 293–304, Prentice-Hall, Englewood Cliffs, New Jersey, 1995.

[20] T.J. Ostrand and M.J. Balcer, The category-partition method for specifying and generating functional tests.

Communications of the ACM 31 (6), 1988, 676–686.

[21] W.E. Perry, Effective Methods for Software Testing, Wiley, New York, 1995.

Appendix 1

The total number of combinations of classes for a classification tree can be calculated using the following

algorithm:

Algorithm calculate combination for Calculating the Total Number of Possible Combinations of Classes

In addition to the notation used in step (3) of build tree, let Sx
τi

be a subtree within the top-level subtree

τi, with the class x as its root. Let N(SX
τi
) and N(Sx

τi
) represent the total number of combinations of classes

for SX
τi

and Sx
τi

, respectively.

• For the Computation of Np for the Whole Classification Tree:

Given a classification tree T with h top-level classifications, the number of potential test cases Np of

T is given by

Np =
h

∏
i=1

N(τi)

• For the Computation of N(SX
τi
):

Suppose X has j1 non-terminal classes (denoted by xt , t = 1, 2, . . . , j1) and j2 terminal classes. Then,

N(SX
τi
) = j2 +

j1

∑
t=1

N(Sxt
τi
) (1)

• For the Computation of N(Sx
τi
):

Suppose x has j child classifications denoted by Yt , t = 1, 2, . . . , j. Then,

N(Sx
τi
) =

j

∏
t=1

N(SYt
τi
) (2)

32

Appendix 2

The two properties associated with our integrated classification-tree methodology mentioned in Section 3.3

are proved as follows:

Proposition 1 (Preservation Property)

Let T be a classification tree and T ′ be the new tree after pruning a set of duplicated subtrees in step (3) of

build tree. All the legitimate test cases identified from T can also be identified from T ′.

Proof

Given m top-level classifications in T , let τ1, τ2, . . ., τm be the top-level subtrees.

Obviously, Proposition 1 is valid when (i) m = 1, or (ii) m ≥ 2 but there are no duplicated subtrees

across any pair of distinct top-level subtrees. In both cases, T ≡ T ′.

Let us consider the situation where m≥ 2 and there are duplicated subtrees across some distinct top-level

subtrees. Without loss of generality, suppose the subtrees SX
τ1

, SX
τ2

, . . ., SX
τn

are duplicated across the distinct

top-level subtrees τ1, τ2, . . ., τn, respectively. Suppose, further, that after the pruning process according to

step (3) of build tree, all these duplicated subtrees are removed except for the subtree(s) SX
τ j

of one top-level

subtree τ j (where 1 ≤ j ≤ n).

We can classify any feasible path in T into one of the following three cases:

(a) The path goes through SX
τ j

:

This path will remain intact after the pruning process.

(b) The path goes through one of the duplicated subtrees SX
τi

(where 1 ≤ i ≤ n and i 6= j):

Since the subtree(s) SX
τ j

in τ j are left intact after the pruning process, even though all the classifications

and classes in SX
τi

are subsequently pruned, they can still be found in SX
τ j

. Hence there will be no loss

of classifications and classes.

(c) The path does not go through any of the duplicated subtrees:

Obviously, such a path will also remain the same after the pruning process.

Hence, all the legitimate test cases identified from T can also be identified from T ′.

Proposition 2 (Convergence Property)

Let T be a classification tree and T ′ be the new tree after pruning a set of duplicated subtrees in step (3) of

build tree. Let Np be the number of potential test cases in T and N′
p be that in T ′. Then N′

p ≤ Np.

Proof

It can be seen from build tree that T ′ is equivalent to T with the duplicated SX
τi

’s pruned from all but one τi.

Thus, N′
p ≤ Np.

33

