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Unified Analysis of a Class of Blind Feedforward Symbol Timing
Estimators Employing Second-Order Statistics

Yik-Chung Wu and Erchin Serpedin

Abstract— In this letter, all the previously proposed digital
blind feedforward symbol timing estimators employing second-
order statistics are casted into a unified framework. The finite
sample mean-square error (MSE) expression for this class of
estimators is established. Simulation results are also presented to
corroborate the analytical results. It is found that the feedforward
conditional maximum likelihood (CML) estimator and the square
law nonlinearity (SLN) estimator with a properly designed pre-
filter perform the best and their performances coincide with
the asymptotic conditional Cramer-Rao bound (CCRB), which
is the performance lower bound for the class of estimators under
consideration.

Index Terms— synchronization, timing recovery, feedforward,
performance, analysis, Cramer-Rao bound.

I. INTRODUCTION

THE PROBLEM of digital blind feedforward symbol
timing estimation assumes recovery of the timing delay

of the received signal based on the oversampled and un-
synchronized received samples. Many algorithms were pro-
posed in the literature to solve this problem. The earliest
one is [1], in which the well-known square law nonlinearity
(SLN) estimator is proposed. Several extensions of the SLN
estimator were later reported in [2], [3] and [4], in which
they consider more general second-order statistics than just
squaring. Recently, the pre-filtering technique was applied to
the SLN estimator to improve its performances at medium
and high signal-to-noise ratios (SNRs) [5]. Other than square
nonlinearity, estimators based on other types of nonlinearities
were also proposed. Reference [6] proposed a logarithmic
nonlinearity estimator, which is obtained by applying a low
SNR approximation to the maximum likelihood (ML) method;
absolute value and fourth order nonlinearities-based estimators
were proposed in [7]; a combination of square and fourth order
nonlinearities was proposed in [8] to take advantage of the
properties of both types of nonlinearities. While all the above
estimators require at least 3 samples per symbol, there are also
some estimators that require only two samples per symbol.
Reference [9] proposed such an estimator based on an ad-
hoc argument. This estimator was later modified to remove
its asymptotic bias in [10], and the pre-filtering technique was
also applied to this estimator in [5] to improve its performance
at medium and high SNRs. Reference [11] proposed another
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two samples per symbol estimator based on the conditional
maximum likelihood (CML) principle.

With so many estimators, designed using different philoso-
phies and their performances analyzed independently under
different assumptions, one would wonder whether we can
have a general framework to analyze the performances of
these estimators so that a fair and easy comparison can be
made. This question was partially answered in [7], in which
a technique for evaluating the jitter performance of symbol
timing estimators employing a zero-memory, general type
of nonlinearity was presented. In this letter, we analyze a
different class of estimators (from that considered in [7])
by formulating all the blind feedforward symbol timing es-
timators employing second-order statistics (which include the
estimators in [1], [2], [3], [4], [5], [9], [10] and [11]) into a
single estimation framework, and then by deriving the finite
sample (as opposed to the asymptotic performance reported
in [8]) mean-square error (MSE) expression for this class of
estimators. The MSE expression for any individual estima-
tor can be obtained from the general expression by setting
suitable parameters. The analytical results are compared with
the computer simulation results, and it is found that both
sets of results match very well. Furthermore, it is found
that within the class of estimators employing second-order
statistics, the SLN estimator with a properly designed pre-
filter and the feedforward CML estimator perform the best and
their performances coincide with the conditional Cramer-Rao
bound (CCRB) [12], which is the performance lower bound
for the class of estimators under consideration.

The following notations are used throughout the letter. The
symbols x∗, xT and xH denote the conjugate, transpose and
transpose conjugate of x, respectively. Notation � stands for
convolution. Notations Re(x) and E[x] denote the real part
and expectation of x, respectively. Matrices IN and 0M×N
are the identity matrix with dimension N × N and the all
zero matrix with dimension M ×N , respectively. Matrix JN
is the counter identity matrix, constructed by flipping IN from
left to right. [Z]ij stands for the (i, j)th element of matrix Z.
δ(.) stands for the Kronecker’s delta.

II. UNIFIED FORMULATION FOR THE

CLASS OF SYMBOL TIMING ESTIMATORS EMPLOYING THE

SECOND-ORDER STATISTICS

For linear modulations transmitted through AWGN chan-
nels, the received signal can be written as shown in (1) at
the top of the next page, where θo is the unknown phase
offset; Es is the symbol energy; di stands for the zero-mean
unit variance, independently and identically distributed (i.i.d.)
complex valued symbols being transmitted; g(t) � gt(t)�gr(t)
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r(n) � r(t)|t=nTs = ejθo
√
Es/T

∑
i

dig(nTs − iT − εoT ) + η(nTs) , (1)

is the combined response of the unit energy transmit filter
gt(t) and the receiving filter gr(t); T is the symbol period;
Ts � T/Q with Q being the oversampling ratio; εo ∈ [0, 1) is
the unknown symbol timing delay to be estimated and η(nTs)
stands for the samples of filtered noise. It is assumed that
the noise samples before receive filtering is complex-valued
circularly distributed Gaussian with power density No.

In this letter, we consider the class of estimators taking the
following general form:

ε̂ = − 1
2π

arg

{
K−1∑
k=0

Λ(k)e−j2πk/K
}
, (2)

where Λ(k) = rHBkr with r � [r(0), r(1), ..., r(LoQ−1)]T

is the observation vector of length Lo symbols and Bk is a
fixed matrix of dimension LoQ×LoQ. The block diagram of
this general estimator is shown in Fig. 1. After the observation
vector is formed, K samples of Λ(k) are calculated, then a
K-point discrete Fourier transform (DFT) is taken, and the
phase of the first bin (i.e., second output) of the DFT scaled
by a constant is the timing estimate. Let us now consider some
special cases.

A. Cyclic correlation-based estimator

The cyclic correlation-based estimator [3], [8] is given by

ε̂ = − 1
2π

arg

{
LoQ−τ−1∑

n=0

r∗(n)r(n+ τ)e−jπτ/Qe−j2πn/Q
}
,

(3)
for Q ≥ 3 and some integer lag τ ≥ 0. Note that different
values of τ result in different previously proposed estimators
in the literature (τ = 0 corresponds to the estimators proposed
in [1] and [4], τ = Q corresponds to the estimator in [2]).

If we decompose the summation term in (3) into Q
polyphase components and define nu(k) � �(LoQ− τ − 1 −
k)/Q�, we have (4), as shown on the next page.

It can be seen that the cyclic correlation-based estimator
takes the form of (2) with K = Q. Expressing ΛCC(k) into
matrix form, we have ΛCC(k) = rHBCC

k r, where BCC
k is a

LoQ×LoQ matrix with its (nQ+ k, nQ+ k+ τ)th element
(n = 0, 1, ..., nu(k)) equal to e−jπτ/Q and other elements
equal zero. In particular, for the well-known SLN estimator
[1] (i.e., τ = 0, Q = 4), we have (for i = 0, 1, 2, 3)

BSLN
i = ILo ⊗ E(i)

4 (5)

where ⊗ denotes the Kronecker product and E(i)
k is a k × k

matrix with the (i, i)th element equals one and other elements
equal zero.

B. Lee’s estimator and the modified estimator

A two samples per symbol estimator was proposed by
Lee in [9]. Later, this estimator was modified to remove its
asymptotic bias [10]. The modified version of Lee’s estimator
can be written as (6), with Q = 2 and γ is a constant

depending on the pulse shape g(t). If g(t) is a raised cosine
pulse with roll-off factor ρ, then γ = 8 sin(πρ/2)/(ρπ(4−ρ2))
[10]. The original Lee’s estimator can be obtained by setting
γ = 1. Now rewrite the expression in the arg{ } of (6) as
shown in (7).

Therefore, the estimator in (6) can also be expressed in the
form of (2) with K = 4. With the fact that Re(x) = (x+x∗)/2
and expressing ΛLee(k) in matrix form, we have ΛLee(k) =
rHBLee

k r, where the expression in (8) is true.

C. Feedforward CML estimator

The feedforward symbol timing estimator based on the
conditional ML principle was proposed in [11]. Unfortunately,
the results in [11] cannot be directly applied here since the
original estimator was derived under the assumption that the
noise samples are independent of each other, but in the signal
model (1), the noise samples are correlated due to the receiver
filtering. Of course, one can always start from the probability
density function of r, taking into account the correlation of
noise and re-derive the estimator following the idea of [11].
However, a faster but equivalent method is as follows. Since
the correlations between noise samples are related to the
receiving filter (which is known), we can whiten the filtered
noise samples by pre-multiplying the observation vector r with
(ϕ−1/2)H , where ϕ is the correlation matrix of the noise
vector (with its elements given by [ϕ]ij =

∫∞
−∞ g∗r (t)gr(t −

(i − j)T/Q)dt ) and ϕ−1/2 denotes any square root of ϕ−1

(e.g., Cholesky decomposition) such that ϕ−1/2(ϕ−1/2)H

= ϕ−1. Then the results of [11] can be applied readily to
this transformed observation vector (ϕ−1/2)Hr. It turns out
that the resultant feedforward CML symbol timing estimator is
given by ε̂ = − 1

2π arg
{∑K−1

k=0 ΛCML(k)e−j2πk/K
}

, where

K ≥ 3 and ΛCML(k) = rHBCML
k r with variable BMCL

k

defined in equations (9)-(11), and Lg denotes the number of
symbols affected by the inter-symbol interference (ISI) intro-
duced by one side of g(t). Notice that if g(t) is bandlimited to
f = ±1/T (an example of which is the raised cosine pulse),
this feedforward CML estimator is valid for Q ≥ 2. Notice
also that if gr(t) = δ(t), this estimator would reduce to the
original proposed feedforward CML estimator in [11].

D. Estimators with pre-filter

In [5], a properly designed pre-filter was applied to the SLN
estimator and the modified Lee’s estimator to improve their
performances at medium and high SNRs. In general, the pre-
filtering technique can be applied to the general estimator (2).
In that case, the observation vector is composed of samples
from the output of pre-filter. That is, ΛPRE(k) = xHBkx with
x � [x(0), x(1), ..., x(LoQ−1)]T and x(n) � r(n)�h(n) is
the further filtered (apart from the receiver filtering) received
signal samples through the pre-filter h(n). If h(n) is of finite
length Lp, then x(n) =

∑Lp−1
v=0 h(v)r(n − v) and the vector

x is expressed as in (12).
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Fig. 1. Block diagram of the general estimator.

ε̂ = − 1
2π

arg
{Q−1∑
k=0

e−jπτ/Q
nu(k)∑
n=0

r∗(nQ+ k)r(nQ+ k + τ)e−j2π(nQ)/Q

︸ ︷︷ ︸
ΛCC(k)

e−j2πk/Q
}
. (4)

ε̂ = − 1
2π

arg

{
γ

LoQ−1∑
n=0

|r(n)|2ejnπ +
LoQ−2∑
n=0

Re[r∗(n)r(n+ 1)]ej(n−0.5)π

}
, (6)

γ

Lo−1∑
n=0

|r(nQ)|2
︸ ︷︷ ︸

ΛLee(0)

+
Lo−1∑
n=0

Re[r∗(nQ)r(nQ+ 1)]

︸ ︷︷ ︸
ΛLee(1)

e−jπ/2

+ γ

Lo−1∑
n=0

|r(nQ+ 1)|2
︸ ︷︷ ︸

ΛLee(2)

e−jπ +
Lo−2∑
n=0

Re[r∗(nQ+ 1)r(nQ+ 2)]

︸ ︷︷ ︸
ΛLee(3)

e−j3π/2 . (7)

BLee
0 = γILo ⊗ E(0)

2 , BLee
1 = 0.5ILo ⊗ J2, BLee

2 = γILo ⊗ E(1)
2 ,

BLee
3 =

⎡
⎣ 0 01×2(Lo−1) 0
02(Lo−1)×1 0.5ILo−1 ⊗ J2 02(Lo−1)×1

0 01×2(Lo−1) 0

⎤
⎦ . (8)

BCML
k � ϕ−1Aε(AH

ε ϕ−1Aε)−1AH
ε ϕ−1

∣∣∣
ε=k/K

, (9)

Aε � [a−Lg (ε), a−Lg+1(ε), ..., aLo+Lg−1(ε)], (10)

ai(ε) � [g(−iT − εT ), g(Ts − iT − εT ), ..., g((LoQ− 1)Ts − iT − εT )]T , (11)

x =

⎡
⎢⎢⎢⎣

h(Lp − 1) h(Lp − 2) ... h(0)
h(Lp − 1) h(Lp − 2) ... h(0)

. . . ... ...
. . .

h(Lp − 1) h(Lp − 2) ... h(0)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
H

⎡
⎢⎢⎢⎣

r(−Lp + 1)
r(−Lp + 2)

...
r(LoQ− 1))

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
r̃

(12)



740 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 4, APRIL 2006

Therefore, the general estimator with pre-filter is ε̂ =
− 1

2π arg
{∑K−1

k=0 ΛPRE(k)e−j2πk/K
}

, where ΛPRE(k) =

r̃HHHBkHr̃ � r̃HBPRE
k r̃. For example, for the SLN

estimator with pre-filter, we have

BPRE
k = HHBSLN

k H. (13)

Notice that, due to pre-filtering, although the observation
vector x is of length LoQ, the length of effective observation
r̃ (before pre-filtering) is LoQ + Lp − 1. Also, BPRE

k is of
dimension (LoQ + Lp − 1) × (LoQ + Lp − 1), rather than
(LoQ − 1) × (LoQ − 1). Of course, if there is no pre-filter
(i.e., h(n) = δ(n)), all the equations in this subsection would
reduce to that of the original estimator.

III. PERFORMANCE ANALYSIS

A. Performance bound

In [12], the asymptotic CCRB was introduced for sym-
bol timing estimation problem. The asymptotic CCRB is a
lower bound tighter than the modified Cramer-Rao bound
(MCRB), but still a valid lower bound on the variance of
any consistent estimator that is quadratic with respect to
the received signal (which is the class of estimators under
consideration). However, the asymptotic CCRB in [12] was
derived assuming white Gaussian noise samples, therefore, the
whitening technique similar to that in Section II-C has to be
applied in order to include the effect of the receiving filter.
Applying the results of [12] to the transformed observation
vector (ϕ−1/2)Hr, it can be shown that for fixed εo,

CCRBas(εo) =
1

2tr(D̃H
εo

ΨεoD̃εo)

(
Es
No

)−1

(14)

where D̃ε � 1√
Q
dAε/dε and Ψε � ϕ−1 −

ϕ−1Aε(AH
ε ϕ−1Aε)−1AH

ε ϕ−1. Since the symbol timing de-
lay εo is assumed to be uniformly distributed in [0, 1), the
average asymptotic CCRB can be calculated by numerical
integration of (14). Notice that although the value of Q
appears in the expression of the asymptotic CCRB, numerical
computations show that the asymptotic CCRB is independent
of Q as long as Q ≥ 2. This is reasonable, since the
asymptotic CCRB is derived under the assumption of white
noise, oversampling the signal above Nyquist rate does not
provide any new information, thus the ultimate performance
cannot be improved.

B. MSE expression

In this section, we present the MSE expression for the
general estimator (2). The derivation procedures follow closely
to that in [11]. The only difference is that, the MSE expression
in [11] was derived under the assumption of white noise, while
in this letter, the correlation of noise has to be taken into
consideration. This can be easily done by modifying just a
few lines of the derivations in [11]. Due to space limitation,
only the results are presented. Interested readers can refer to
[11]. It can be shown that for a true timing delay εo, the MSE
of the general estimator (2) is given by

MSE(εo) � E[(ε̂− εo)2] ∼= −
(

1
2π

)2
Re(φ1) − φ2

Re(φ1) + φ2
, (15)
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Fig. 2. Analytic and simulated MSEs for modified Lee’s estimator and
feedforward CML estimator.

where

φ1 � ej4πεo

K−1∑
k1=0

K−1∑
k2=0

E[Λ(k1)Λ(k2)]e−j2πk1/Ke−j2πk2/K ,

(16)

φ2 �
K−1∑
k1=0

K−1∑
k2=0

E[Λ(k1)Λ∗(k2)]e−j2πk1/Kej2πk2/K . (17)

In the above equations, the cross-correlation factors take the
expressions given by equations (18), (19), and (21), where
tr[.] denotes the trace of a matrix, Rε � Es

T Gε + NoQ
T ϕ,

[Gε]ij �
∞∑

n=−∞
g∗(iT/Q− nT − εT )g(jT/Q− nT − εT ),

(20)
with an(εo) defined in (11), and m4 = E[|di|4] is the fourth
order moment of the transmitted symbols, which is fixed for
a specific constellation (e.g., m4 = 1 for PSK and m4 > 1
for QAM). As the symbol timing delay εo is assumed to be
uniformly distributed in [0, 1), the average MSE is calculated
by numerical integration of (15). Notice that the expressions
of E[Λ(k1)Λ(k2)] and E[Λ(k1)Λ∗(k2)] in (18) and (19) are
more compact than the corresponding expressions presented
in [11], but they are equivalent. This can be easily seen by
the fact that if we expand the expressions in (18) and (19)
and putting ϕ = I, then we would obtain the corresponding
expressions given in [11].

IV. NUMERICAL EXAMPLES AND DISCUSSIONS

In this section, the general analytical MSE expression
presented in the last section will be plotted as a function
of Es/No for different estimators. The analytic results are
compared with the corresponding simulation results and the
asymptotic CCRB. All the results are generated assuming
i.i.d. QPSK data, Lo = 100, both gt(t) and gr(t) are square
root raised cosine pulses with ρ = 0.3, Lg = 3, and εo is
uniformly distributed in the range [0, 1). The carrier phase θo
is generated as a uniformly distributed random variable in the
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E[Λ(k1)Λ(k2)] = tr[BT
k1Rεo ]tr[B

T
k2Rεo ] + tr[BT

k1RεoB
T
k2Rεo ] + c(k1, k2), (18)

E[Λ(k1)Λ∗(k2)] = tr[BT
k1Rεo ]tr[Bk2Rεo ] + tr[BT

k1RεoBk2Rεo ] + c(k1, k2), (19)

c(k1, k2) � E2
s

T 2
(m4 − 2)

∞∑
n=−∞

[an(εo)HBk1an(εo)][an(εo)HBk2an(εo)], (21)

TABLE I

PARAMETERS OF DIFFERENT FEEDFORWARD TIMING ESTIMATION ALGORITHMS WHEN EXPRESSED IN THE FORM OF THE GENERAL ESTIMATOR

Q Bk K remark
Modified Lee’s estimator [9] 2 eqn. (8) 4 –

Feedforward CML estimator [11] 2 eqn. (9) 4 Lg = 3
SLN estimator [1] 4 eqn. (5) 4 –

SLN estimator with pre-filter [5] 4 eqn. (13) 4
h(n) = g(nT/Q) cos(2πn/Q)

for n = −5Q, ...,5Q

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
s
/N

o
 (dB)

M
S

E

Simulated MSE −− SLN estimator
Analytic MSE     −− SLN estimator
Simulated MSE −− SLN estimator with pre-filter
Analytic MSE     −− SLN estimator with pre-filter

Asymptotic
CCRB 

Fig. 3. Analytic and simulated MSEs for SLN estimator with and without
pre-filter.

range [−π, π), and assumed constant during each estimation.
Each simulation point is obtained by averaging 104 simulation
runs. The asymptotic CCRB is computed assuming Q = 2. In
this letter, the results of the following representative estimators
are presented:

1) Modified Lee’s estimator [10]. The Lee’s estimator is an
algorithm obtained from an ad-hoc argument. Its mod-
ified version is used since it has a better performance
than the original version.

2) Feedforward CML estimator [11]. This is an algorithm
derived from a well-known statistical signal processing
approach, namely the ML principle.

3) SLN estimator [1]. This estimator belongs to the class
of cyclic correlation-based estimator (3). It is chosen
because it was shown in [4] and [8] that the performance
of (3) for τ = 0 appears to be the best.

4) SLN estimator with pre-filter [5]. This estimator is
included to demonstrate the efficiency of pre-filter. The
pre-filter used is h(n) = g(t) cos(2πt/T )|t=nT/Q for
n = −5Q, ..., 5Q (i.e., Lp = 10Q+ 1) [5].

Notice that the first two estimators assume an oversampling
ratio Q = 2, while the last two estimators assume an
oversampling ratio Q = 4. The parameters for these four
estimators when expressed in the form of the general estimator
(2) are summarized in Table I.

For the computation of BCML
k and CCRBas(εo), there is a

need to calculate ϕ−1. Unfortunately, numerical calculations
show that, for the gr(t) under consideration, ϕ is not full rank
(at least to the accuracy of Matlab). A main reason for rank
deficiency is that, due to the nature of gr(t), when |i− j| is
large, the values of [ϕ]ij are very very small but not zero.
A way to get around this is to replace ϕ−1 by ϕ̄−1, where
[ϕ̄]ij = [ϕ]ij if |i− j| < LϕQ and zero otherwise.

In this way, the matrix ϕ̄ can be made full rank, but at the
same time, significant part of the correlation between noise
samples can still be represented accurately. Since most of the
correlation induced by gr(t) is confined to a duration of a few
symbols, Lϕ = 4 is used for the rest of the letter. Notice that
the matrix ϕ in Rε need not to be replaced by ϕ̄ since no
inversion is required.

Fig. 2 shows the results for the modified Lee’s estimator and
the feedforward CML estimator. It can be seen that the ana-
lytical and simulation results match very well. Furthermore,
the feedforward CML estimator performs much better than
the modified Lee’s estimator at high Es/No and its perfor-
mance coincides with the asymptotic CCRB, meaning that
the feedforward CML estimator is the best (in terms of MSE
performance) within the class of symbol timing estimators
employing second-order statistics. Fig. 3 shows the results for
the SLN estimator with and without pre-filter. This figure also
shows that the simulation results match the analytical results
very well. Moreover, the figure shows that the application of a
properly designed pre-filter removes the estimation error floor
at high Es/No and makes the performance of the resultant
estimator reaches the asymptotic CCRB.

V. CONCLUSIONS

In this letter, all the previously proposed feedforward sym-
bol timing estimators employing second-order statistics were
formulated into a unified framework. The finite sample mean
square error (MSE) expression and the asymptotic conditional
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Cramer-Rao bound (CCRB) for this class of estimators were
established. It was found that the analytical and simulation
results match very well. Furthermore, it was found that the
feedforward CML estimator [11] and the SLN estimator with
a properly designed pre-filter [5] perform the best and their
performances coincide with the asymptotic CCRB, which is
the performance lower bound for the class of estimators under
consideration.
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