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Conicts and Common Interests in Committees

By Hao Li, Sherwin Rosen, and Wing Suen�

Committees improve decisions by pooling members' independent in-

formation, but promote manipulation, obfuscation, and exaggeration

of private information when members have conicting preferences.

Committee decision procedures transform continuous data into or-

dered ranks through voting. This coarsens the transmission of infor-

mation, but controls strategic manipulations and allows some degree

of information sharing. Each member becomes more cautious in cast-

ing the crucial vote than when he alone makes the decision based on

own information. Increased quality of one member's information re-

sults in his casting the crucial vote more often. Committees make

better decisions for members than does delegation. (JEL D71, D82,

C72)

The subject of this paper is how small groups make decisions when diverse individual

preferences are known to all, but when individuals possess private information that must

be elicited in committee deliberations. Small-group decisions are ubiquitous for decisions

under uncertainty. Judgment by a jury of one's peers, not by a single person, is the

hallmark of the American criminal justice system. Committees recommend hiring and

tenure decisions, and are essential for project and investment undertakings in business

�rms and for many administrative decisions in all organizations. Group evaluations bring

di�erent points of view to bear on an issue. They allow the pooling of information that is

not otherwise available to a single decision-maker. But conict among committee members

limits the possibilities for information pooling. It is in the self interest of committee

members to manipulate their evidence|to exaggerate favorable data that support their
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preferred outcome, or conceal unfavorable data that work against it. This paper studies

the tension between information aggregation and strategic manipulation of information in

small committee decisions.

The statistical value of aggregating diverse information among group members is an

old idea. Condorcet (1785) proved that voting groups with diverse information make

better decisions the larger the group size, using an early application of the law of large

numbers (see also Alvin Klevorick, Michael Rothschild and Christopher Winship, 1984).

The economics literature on group decisions has paid special attention to eliciting private

preferences for public goods (Allan Gibbard, 1973; Mark Satterthwaite, 1975). The study

of eliciting private information from an expert was initiated by Vincent Crawford and Joel

Sobel (1982), who show that the expert's information must be garbled before being used

by an uninformed decision maker with di�erent preferences in the decision.1 In committee

decision-making, sharing or pooling of private information is essential. Little has been

said about the strategic aggregation problem.2 We show that when committee members

disagree on how their information should be used, committee decisions are made through

voting or scoring procedures. Continuous information is garbled and transmitted in ordinal

forms. E�cient pooling of private information in a committee is impossible when members'

interests conict. Voting in committees is necessary to control conicts and allow some

degree of information sharing.

In the model set up in section I, a committee must choose between two alternatives.

Individual committee members are known to have partially conicting interests in the

decisions. Committee members may disagree, but their disagreement disappears when the

evidence is su�ciently strong in either direction. For example, in a recruitment committee,

each member may be biased in favor of hiring if the candidate is in his own �eld, but all

are willing to hire a person of su�ciently high quality regardless of �eld. But private

information is an inherent problem in committee decision-making. In the recruitment

example, information about candidate quali�cations is dispersed in the committee because

committee members have di�erent perspectives or abilities to evaluate research in di�erent

�elds. Since assessments are private, the committee decision can depend only on members'

reports about their information, not on the actual information. Conicting interests and
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private information give rise to strategic considerations that cause members to exaggerate

their information.

In section II we show that information cannot be fully shared among committee mem-

bers under these circumstances. E�cient sharing requires that the committee decision

respond to small changes in any member's data. This property fails in an equilibrium

of any decision-making procedure. Incentive compatibility implies that continuous data

observed by each person are partitioned and transformed into rank order categories. Per-

fect inference of private information is impossible. Obfuscation is the rule rather than the

exception in committees. The partitioning of continuous data into ordered categories can

be interpreted as equilibrium outcomes of voting procedures. Voting is the equilibrium

method of reaching decisions in committees. It coarsens the transmission of information

among committee members, but is necessary to control strategic manipulations that arise

from conicts of interest.

Section III analyzes two-way partitions in detail. This corresponds to the equilibrium

outcome of a simple voting procedure where each member votes \yes" or \no" depending

on whether or not the strength of his private evidence exceeds a personal threshold. The

voting equilibrium is suboptimal because information is garbled and the thresholds are

chosen strategically rather than cooperatively. In the recruitment example, anticipating

manipulation of evidence by fellow committee members, an individual \exaggerates" own

evidence that the candidate in his �eld produces high quality research by voting \yes" to

his favored candidate even though he would have voted \no" with the same evidence were

all information truthfully revealed. He lowers his own hiring bar because he knows that

other members will raise theirs.

Incentives for manipulation and counter-manipulation thus generate a larger area of

disagreement among members than is implied by their inherent conicts in preferences.

The ex ante welfare of each individual committee member decreases as the preferences of

fellow members diverge further away from his. When the preferences of fellow members

are su�ciently extreme, the bene�ts to an individual member from sharing information

under a given voting procedure can be outweighed by distortions in the committee. Still,

equilibrium exaggeration is limited, and information is aggregated by the committee, albeit
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imperfectly. The area of disagreement is bounded from above by the need for members

to share their private information. Regardless of personal preferences, each committee

member casts the decisive vote less frequently than if he were to make the decision based

on his information only. Moreover, if some committee members are known to have more

conclusive evidence, others cast their deciding votes less frequently. Better informed mem-

bers are decisive more often. Indeed, when the committee rule is chosen appropriately,

gains from sharing information outweigh distortions from information manipulation for all

members regardless of the extent of conicts in the committee.

The voting model is used to analyze abstention in section IV. Although members

always have incentives to inuence the committee decision to advance their own interests,

the gains from information sharing may be so large that it is in a member's self interest to

abstain when his private information is relatively uninformative. Abstention improves the

quality of committee decisions. Voting with abstention is equivalent to a generalized voting

procedure that allows each committee member to choose from three categories. Section

V studies voting procedures with more categories that allow �ner partitions of data and

more e�cient utilization of private information. Conicting interests among committee

members impose an upper bound on how �ne information partitioning can be. Great

conicts within the committee make �ne partitions impossible.

I. A Model of Committee Decision-making

We discuss the problem of strategic information aggregation in the context of hy-

pothesis testing given the data. A committee must decide whether to accept or reject a

null hypothesis. For example, a hiring committee must decide whether the candidate is

quali�ed (the null) or unquali�ed, or a management committee must decide if an invest-

ment project is worth undertaking (the null) or not. In a criminal trial jury, the null is

that the suspect is innocent. In these situations of binary states and binary decisions, the

choice of the null hypothesis is arbitrary and unessential to our results, but it facilitates

the discussion.

For simplicity, we consider a committee of two persons, A and B. Member A's prior

that the null is true is a, and the personal costs of type I error (false acceptance) and type
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II error (false rejection) are �a1 and �a2 respectively. Let ka1 = �a1(1 � a) and ka2 = �a2
a.

The ratio ka = ka1=k
a
2 represents the cost of false acceptance relative to false rejection.

A greater ka means that A is more prone to reject. There is no di�erence in this model

between bias as manifested in  and preference as manifested in �; only the ratio ka

matters. The notation for member B's preference is similar. Conicts in the committee

exist whenever ka 6= kb, but interests of committee members are not directly opposed as

long as ka and kb are strictly positive and �nite so that both care about false acceptance

and false rejection. We assume that ka and kb are common knowledge.

Information about the decision is diverse in the committee. Member A receives a

private observation, a real number ya that is realization of a random variable Y a. We

assume that Y a is distributed on a subset [ya; ya] of IR, with continuous density functions

faq (�) if the null is true and f
a
u(�) if the null is false. The corresponding distribution functions

are F a
q (�) and F a

u (�). Member B's information structure is similarly denoted. The random

variables Y a and Y b are independently distributed conditional on the true state. This is a

particular way of modeling the idea that committee members have di�erent evidence due

to di�erences in perspectives and capabilities in evaluating the information.

If the data are publicly observable, the optimal committee decision is a standard

hypothesis testing problem.3 By the assumption of conditional independence, given any

decision rule of accepting the null hypothesis with probability p(ya; yb) when the data are

(ya; yb), the expected cost to each member (j = a; b) (before the data are received) is given

by

(1) (1� j)�j1

Z
p(ya; yb)fau (y

a)fbu(y
b)dyadyb+ j�j2

Z
[1� p(ya; yb)]faq (y

a)fbq (y
b)dyadyb:

Under the optimal decision rule, pa(ya; yb) minimizes the weighted costs of A and B. Let

positive numbers �a and �b be relative weights for A and B, and de�ne k1 = �aka1 +�bkb1

and k2 = �aka2 + �bkb2. Then, the optimal decision rule is given by p(ya; yb) = 1 if ya and

yb satisfy

(2) la(ya)lb(yb) � k1=k2;

and p(ya; yb) = 0 otherwise, where lj is the likelihood ratio f jq =f
j
u for each j = a; b.

Throughout this paper, we assume the monotone likelihood ratio property (MLRP) that
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lj(�) is strictly increasing. This assumption simpli�es our analysis, and is standard in

the literature (see, e.g., Milgrom, 1981).4 MLRP implies that the optimal decision rule

is deterministic and strictly monotone in the observations ya and yb. In other words,

the optimal decision rule can be represented by a \decision function" S that is strictly

increasing in each of the two arguments ya and yb, so that the decision is acceptance if

and only if S(ya; yb) � 0. As illustrated in Figure 1, the optimal decision rule partitions

the data space into an acceptance region and a rejection region, with a strictly downward

sloping boundary between them de�ned by S(ya; yb) = 0. The null hypothesis is accepted

when the data lie above the boundary, and is rejected when the data lie below it.5

The characterization of the optimal decision rule in equation (2) applies to individual

decision-making as well. If member A has access to both Y a and Y b, then his optimal

decision rule is to accept the null if and only if

(3) la(ya)lb(yb) � ka:

MLRP implies that the personal optimal decision rule for each member is deterministic

and strictly increasing in ya and yb, but di�ers from the weighted optimal rule when the

two members have conicting interests (ka 6= kb). If the decision function Sj (j = a; b)

represents member j's personal optimal decision rule, then (2) and (3) imply that there

is no intersection between Sa(ya; yb) = 0 and Sb(ya; yb) = 0 in the data space. Figure 1

illustrates the case where A has a lower standard of acceptance than B (ka < kb). The

region between Sa = 0 and Sb = 0 is the disagreement zone: for the same data (ya; yb) in

the region, A prefers to accept and B prefers to reject. The size of the disagreement zone

measures how much the members di�er in preference and prior. The di�erence between the

members' personal optimal decision rules is the source of their incentives to misrepresent

their own evidence and attempt to tilt the committee decision to their own preferences

when evidence is not publicly observed.

II. Manipulation Leads to Garbling

Since information is private, committee decisions are made on the basis of members'

reports of their private data. Let us �rst consider a Bayesian game where the two members
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report ra and rb simultaneously after learning their private evidence ya and yb, and the

decision is made according to the rule \accept if and only if S(ra; rb) � 0." It is easy to

see that truthful reporting is not an equilibrium strategy as long as ka 6= kb. In this case,

the two personal optimal decision functions Sa and Sb di�er from the committee decision

function S. Suppose B always reports his observation yb truthfully. Member A does not

know the value of B's observation when he submits his report and treats B's report as

the random variable Y b. If A submits report ra, the null is accepted if the realization yb

is such that S(ra; yb) � 0. But conditional on ya, member A prefers to accept whenever

yb satis�es Sa(ya; yb) � 0. Since S di�ers from Sa, reporting ra = ya is not optimal for

member A.

Figure 1 illustrates the optimal report for member A conditional on his evidence ya

when ka < kb. Member A is biased toward acceptance relative to the committee decision

function S. Conditional on ya, the committee decision is to accept if yb � y2, but A prefers

to accept if yb � y1. If B reports his observations truthfully, member A achieves his lower

standard of acceptance by overstating the case for acceptance and reporting r1. Similarly,

B has incentives to understate the case for acceptance if A reports truthfully.

The result of nonexistence of truth-telling equilibrium can be generalized. As long

as the two members A and B commit to a deterministic and strictly monotone rule such

as the one represented by S, truth-telling is not an equilibrium. Moreover, given any

deterministic and strictly monotone rule, there exists no manipulation equilibrium where

members use invertible reporting strategies that allow perfect inference of their private

data. The nonexistence of equilibrium with invertible strategies in reporting games with

deterministic and strictly monotone rules illustrates the incentives to garble private infor-

mation in committee decision-making. Indeed, since our argument depends only on the

local characteristics of the reporting strategies, there exists no equilibrium with partially

invertible strategies (i.e., reporting functions that are invertible for some interval in the

support of the evidence). Garbling occurs everywhere.6

These generalizations can be made precise and strengthened further from a mechanism

design perspective. A limitation of the result above is that it refers to a particular decision-

making procedure, where each member is free to report any observation and a deterministic
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and strictly monotone decision rule maps the reported observations to the decisions. What

will happen in equilibrium under commitments to di�erent ways of making decisions? To

answer this, the result has to be restated in a way that is independent of the particular

information-reporting game. This requires side-stepping the game and the equilibrium

strategy and directly examining how the private data are transformed into decisions in the

data space.

Formally, a \decision mechanism" here is a commitment by A and B to a \report

space" for each member that de�nes all the reports he can choose, and a \committee rule"

that maps a vector of reports to a decision. Since the report spaces and the committee

rule can be arbitrary, the concept of a decision mechanism captures all possible ways for

the committee to make a decision. The Bayesian reporting game considered above de�nes

a \direct decision mechanism," because each member's report is con�ned to the range of

the observations. One can easily imagine \indirect mechanisms" where members' reports

are not restricted to this range. For example, a voting procedure is an indirect mechanism

because the report space for each committee member consists of two votes, yes and no.

Whether direct or indirect, if a decision-making mechanism has an equilibrium, then the

equilibrium de�nes an \outcome," a mapping from the data space to the decision that is

a combination of the equilibrium strategies and the committee rule.

The outcome of e�cient information sharing represented in formula (2) is deterministic

and strictly monotone. A deterministic outcome divides data space into acceptance and

rejection regions. A deterministic and strictly monotone outcome has a boundary that

is a strictly decreasing function in the data space, such as S = 0 in Figure 1. Another

possibility is a deterministic but everywhere weakly monotone outcome, represented by a

boundary that is a decreasing step function, as in Figure 2. This is called a \partition

outcome," because continuous data of each member are transformed into ordered ranks or

categories through partitioning by thresholds. Categorizing data is a particular form of

information garbling that restricts information in a natural way and prevents full revelation

of private evidence. Applying the revelation principle (due to Roger Myerson (1979) in

Bayesian games, and to Gibbard (1973), Partha Dasgupta, Peter Hammond and Eric

Maskin (1979), and Milton Harris and Robert Townsend (1981) in other contexts), we can
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exclude any deterministic outcome whose boundary has a strictly decreasing segment as

an equilibrium outcome.7 The proof of the following proposition, which can be found in

the appendix, formalizes the observation that the argument used at the beginning of this

section to show that truth-telling is not an equilibrium in the reporting game with decision

function S, remains valid under any deterministic committee rule that is strictly monotone

in a neighborhood of some data point (ya; yb).

PROPOSITION 1: Suppose that the two members have conicting interests (ka 6= kb).

Then deterministic and monotone equilibrium outcomes of any decision mechanism are

partition outcomes.

Committee decision-making can be accomplished only by categorizing private data.

Coarsening information through ordered categories controls private incentives to exagger-

ate the strength of one's private evidence while at the same time a�ording opportunities

to pool everyone's evidence. There is a trade-o� between information sharing and ma-

nipulation. Later we show that how this trade-o� is resolved depends on a priori conict

among the members. The greater the latent consensus among members, the greater are

the opportunities for presenting private data in �ner categories and greater detail.

Proposition 1 gives a strong sense that we derive \voting" with categories as a neces-

sary method to achieve consensus in committee decision-making. This is the clearest when

partition outcomes involve two categories. In section III they are constructed as equilib-

rium outcomes of voting games, where each member votes \accept" or \reject," and a rule

stipulates how many votes are needed to accept the null hypothesis. Section IV modi�es

the voting games to allow abstention, which corresponds to partition outcomes with three

categories for each member.8 Section V considers voting games with generalized procedures

where each member can choose an integer score from a given scale (say, 1 to 10), and a

prespeci�ed scoring rule aggregates the scores and compares the sum to a given threshold

(say, 9.5) to yield a committee decision. The equilibrium outcomes in these voting games

correspond to partition outcomes with multiple categories.

The result that manipulation arising from conicting interests leads to information

garbling is closely related to Crawford and Sobel's (1982) work on cheap talk games. They
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show that when the preferred decision of a privately informed expert always di�ers from

that of an uninformed decision-maker, the expert's continuous data must be partitioned

before being used by the decision-maker. In our model committee decisions are binary

instead of continuous, so committee members do not always di�er. Yet partition outcomes

with multiple categories arise in a similar way. To see this, imagine that in our model

memberA submits a report of his data to B, who chooses between acceptance and rejection

based on the report and his own data. Think of B's decision as a threshold level of his data

above which the null is accepted, which is a continuous decision variable. Then, A and B

always di�er in B's decision for any data ofA: in Figure 1 where we assume ka < kb, for any

data of member A, the preferred decision of B is the corresponding point on Sb = 0, which

is greater than the preferred decision of A (the corresponding point on Sa = 0). Thus,

we obtain a version of Crawford and Sobel's model by modifying our model and assuming

that one member reports to another who makes the decision. Of course, in our original

model the two members play symmetric roles, so while the modi�ed model shows that the

formal analytical structure is similar in our model and in Crawford and Sobel's model, it

also demonstrates the main di�erence between the two: private information is strategically

aggregated in a committee instead of being transmitted from an expert to an uninformed

decision-maker. Indeed, if in our model only one member has private information, then

one can demonstrate that in any equilibrium outcome this member can partition his data

into at most two categories, as there is no credible way for him to convey the strength of

his evidence. In our present model with two privately informed members, their common

interests in sharing information create potential opportunities to present private data in

more categories and �ner detail.

III. Voting as Equilibrium Garbling

This section considers voting games in which each member chooses between \accept"

or \reject." Two di�erent voting procedures are possible: \unilateral acceptance" where

the hypothesis is accepted if there is at least one \accept" vote, and \unilateral rejection"

where acceptance requires two \accept" votes. Each procedure de�nes a di�erent voting
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game, with an equilibrium in which each member votes \accept" when his observation is

above a threshold. An equilibrium with such threshold strategies results in a partition

outcome with two categories.

A. Characterization of the two-category equilibria

For each j = a; b, denote Lj� = F j
q =F

j
u and Lj�� = (1 � F j

q )=(1 � F j
u). Suppose that there

exist a pair of thresholds (ta
�
; tb
�
) that satisfy

(4)
la(ta

�
)Lb

�
(tb
�
) = ka;

lb(tb
�
)La

�
(ta
�
) = kb:

Similarly, suppose that a pair of thresholds (ta
��
; tb
��
) satisfy

(5)
la(ta

��
)Lb

��
(tb
��
) = ka;

lb(tb
��
)La

��
(ta
��
) = kb:

Consider unilateral acceptance; the case of unilateral rejection is similar. Suppose that

member B adopts the strategy of voting \accept" if and only if yb � tb
�
. Given an ob-

servation ya, to member A the probability that the null hypothesis is true is �afaq (y
a),

and the probability that it is false is �(1 � a)fau (y
a), where � equals the reciprocal of

afaq (y
a) + (1 � a)fau (y

a). Member A ensures acceptance by voting \accept." His ex-

pected cost (from false acceptance) is �ka1f
a
u (y

a). If he votes \reject" instead, the verdict

depends on B's vote. From A's point of view, the null will be wrongly accepted with

probability 1 � F b
u(t

b
�
), and wrongly rejected with probability F b

q (t
b
�
). Member A's total

expected cost from the two types of errors is then �ka1f
a
u (y

a)[1�F b
u(t

b
�
)]+�ka2f

a
q (y

a)F b
q (t

b
�
).

Comparing the costs of these two votes shows that \accept" is preferred to \reject" if and

only if la(ya)Lb
�
(tb
�
) � ka. By MLRP and the de�nition of the thresholds ta

�
and tb

�
, \ac-

cept" is preferred to \reject" if and only if ya � ta
�
. The argument for B is symmetric. We

have proved the following:

PROPOSITION 2: Suppose that there exist thresholds tj� and tj�� (j = a; b) that satisfy (4)

and (5). Then, in the voting game with unilateral acceptance, there is an equilibriumwhere
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each member j votes \accept" if and only if yj � tj�; in the voting game with unilateral

rejection, there is an equilibrium where each j votes \accept" if and only if yj � tj��.

The equilibrium conditions (4) and (5) in the voting games can be understood in terms

of a \pivotal voting" argument (Austen-Smith and Banks, 1996; Feddersen and Pesendor-

fer, 1997).9 In our model, strategic voting requires that each member choose his vote as

if it were pivotal. With unilateral acceptance, A's vote is pivotal if B votes for rejection,

which occurs when yb < tb
�
. The likelihood ratio for the event that A's observation is ya

and yb < tb
�
is given by la(ya)Lb

�
(tb
�
). This represents the relative probability of the null

is true to the null is false. The voting strategy for A is to accept if la(ya)Lb
�
(tb
�
) exceeds

ka, the relative costs of false acceptance and false rejection. To see why pivotal voting is

optimal is to consider how members choose the threshold rule before receiving the obser-

vations. Anticipating that B uses a voting strategy with threshold tb
�
, member A chooses

ta to minimize the expected cost ka1 [1 � F a
u (t

a)F b
u(t

b
�
)] + ka2F

a
q (t

a)F b
q (t

b
�
). In the above

expression, member A's choice of threshold ta a�ects his expected cost only when yb < tb
�
.

The �rst order condition for an optimal threshold ta is precisely (4).

Information aggregation with discontinuous data and strategic voting is analyzed in

a series of interesting papers by Austen-Smith and Banks (1996) and Feddersen and Pe-

sendorfer (1996; 1997; 1998).10 In their model, private signals are binary, a feature that

limits their analysis of information manipulation to mixed strategies. Our model di�ers in

several respects. By using an information structure with continuously distributed private

observations, we are able to study a richer set of information manipulations in committee

decision-making. Instead of the mixed-strategy equilibria of Feddersen and Pesendorfer,

we characterize partition outcomes and analyze obfuscation, exaggeration, and abstention

as distinctive forms of evidence manipulation. More importantly, we do not impose voting

as the collective decision procedure. We start with an information aggregation procedure

that is optimal in the absence of strategic manipulation and derive voting as an equilibrium

outcome of information garbling. In the following analysis of the two-category equilibrium

outcomes, we go beyond the pivotal voting argument of Feddersen and Pesendorfer, em-

phasizing the role of conicting interests in committee decision-making, and addressing

how conicts in the committee a�ect manipulation and sharing of information.
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For unilateral acceptance, equations (4) de�ne reaction functions in the (ta; tb) plane,

and determine the equilibrium thresholds. MLRP implies that Lj�(�) is increasing, and

the two reaction functions are downward sloping. Equilibrium exists under appropriate

boundary conditions on the likelihood ratios. Suppose that for each j = a; b, there exists

a �nite, proper subset [yj
min

; yjmax] of the support [y
j ; yj ] of Y j such that

(6)
la(yamin)L

b
�
(ybmax) < ka < la(yamax)L

b
�
(ybmin);

lb(ybmin)L
a
�
(yamax) < kb < lb(ybmax)L

a
�
(yamin):

Under these conditions, MLRP implies that A's reaction function is de�ned for any tb 2

[ybmin; y
b
max], and vice versa for B. Then, the Brouwer �xed-point theorem applies to

equations (4) and proves that an equilibrium exists on [yamin; y
a
max]� [ybmin; y

b
max]. As long

as the likelihood ratios lj are unbounded (i.e., lj is arbitrarily large at yj and lj is arbitrarily

close to zero at yj), one can appropriately select the �nite intervals [yj
min

; yjmax] to satisfy

(6). For example, when Y j is normally distributed with a shift of the mean conditional on

the true state of the null hypothesis, an equilibrium exists regardless of ka and kb.

A su�cient condition for a unique intersection is that one reaction function is steeper

than the other one whenever the two functions intersect. This condition is satis�ed if the

ratio lj(�)=Lj�(�) is monotone. Throughout this section, we maintain the assumption that

lj(�)=Lj�(�) is strictly increasing on [yj ; yj ]. Under this assumption A's reaction function is

steeper than B's when they intersect. Then, the equilibrium is unique and globally \sta-

ble," in a pseudo-dynamic sense that starting from any initial values the trajectory of the

two thresholds converges to the intersection of the reaction curves. As is the case for many

static games, stability in the pseudo-dynamic sense produces comparative statics results

that are easy to understand (Avinash Dixit, 1986). Figure 3 depicts the reaction functions

for the case where conditional on the true state Y a and Y b are normally distributed. This

case satis�es the assumption that lj(�)=Lj�(�) is increasing.

The case of unilateral rejection is analogous. MLRP implies that Lj��(�) is increasing.

Conditions similar to (6) guarantee that there exist ta
��

and tb
��

that satisfy (5). As in

the case of unilateral acceptance, the assumption that the ratio lj(�)=Lj��(�) is increasing

is su�cient to ensure that equilibrium is unique and stable. For example, when Y j is
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normally distributed conditional on the true state, both lj=Lj� and lj=Lj�� are increasing.

In this case, there is a unique and stable equilibrium both in unilateral acceptance and in

unilateral rejection.

B. Information manipulation and information sharing

This section presents a few comparative statics results for the voting game and il-

lustrates the tension between information manipulation and information sharing. From

equations (4) under unilateral acceptance, since lj=Lj� is increasing, if Y
a and Y b have the

same conditional distributions, then ka < kb implies ta
�
< tb

�
. That is, if member A is more

biased toward acceptance than member B, then A's equilibrium threshold for acceptance

is lower than B's. For the same observation value ya = yb = y, member A votes for

acceptance while B votes for rejection if y is between ta
�
and tb

�
. Therefore jta

�
� tb

�
j can be

thought of as the \area of disagreement" between the two members.

Since lj=Lj� is increasing, dta
�
=dkb < 0 and dtb

�
=dkb > 0, so the area of disagreement

increases as conict of interests, jka � kbj, increases. As B becomes more biased toward

rejection and his standard for acceptance increases, A counters by lower his own standard.

This inducesB to raise tb
�
further. The increase in tb

�
can be decomposed into two parts: one

due to the shift of B's reaction function, and the other due to a move along B's reaction

function because ta
�
decreases. See Figure 3. The second part shows that the area of

disagreement in committee decision-making is larger than that implied by inherent conicts

in preferences: strategic manipulation by one member leads to counter-manipulation by

the other. Conicts lead to the exaggeration. When B is more biased toward rejection

than A, memberB raises his threshold not only because of the concern for false acceptance,

but also to balance A's opposite tendency to vote \accept." Member B votes for rejection

more often than in the absence of information manipulation by A.

Although conicts cause manipulation, incentives to exaggerate evidence are balanced

in equilibrium by incentives to share information. Comparing the equilibrium with how

each member would make the decision based on his own private information illustrates

sharing of information in the committee. If a member makes the decision alone, the
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optimal decision is acceptance if and only if his evidence yj (j = a; b) exceeds a threshold

t̂j determined by

(7) lj(t̂j ) = kj :

Compare (7) with (4). Since Lj�(�) < 1, t̂j is lower than tj�. When j observes evidence yj

between t̂j and tj�, he votes for rejection in the committee even though he would have chosen

acceptance if he were the only decision-maker. Member j thus utilizes the information

of the other member by casting the decisive \accept" vote less frequently. Note that

this is true independent of member j's preferences. Even if member j is strongly biased

toward acceptance, the need to utilize the other member's information still makes him

more \conservative" towards acceptance. In the case of unilateral rejection, the decisive

vote is rejection instead of acceptance: each member utilizes the information of the other

member by voting for rejection less frequently than if the decision were made on the basis

of own information.

Incentives to share information under conicting interests can also be examined by

considering how voting behavior changes when quality of the observation received by one

member, sayB, becomes higher. If evidence were public, higher quality data receive greater

weight in the decision rule.11 But since evidence is private, changes in weights can be easily

undone by information manipulation. Instead, changes in information quality changes

equilibrium thresholds. Consider a modi�cation of the information structure available to

members. Member B still observes Y b. Member A observes Y a with probability 1��, and

observes the true state of the null hypothesis with probability �. An increase in � improves

the quality of A's data. The pivotal event that A votes \reject" now has a likelihood ratio

~La
�
given by

(8) ~La
�
=

(1� �)F a
q (t

a
�
)

� + (1� �)F a
u (t

a
�
)
:

From equation (4), since ~La
�
is decreasing in �, an increase in � causes B's reaction function

to shift upwards. The e�ect is that ta
�
decreases and tb

�
increases. See Figure 3. The

interpretation is straightforward. Voting for acceptance decides the verdict regardless of

the value of the other member's observation. Voting for rejection, on the other hand, defers
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the decision to the other member. When A gains access to data of a higher quality, B

takes advantage of the improved information by raising tb
�
and deferring the decision to A,

so A is decisive more often.

The analysis is symmetric for the case of unilateral rejection. Given the modi�ed

information structure, the likelihood ratio for the event that A votes for acceptance is

(9) ~La
��

=
� + (1� �)[1� F a

q (t
a
��
)]

(1 � �)[1 � F a
u (t

a
��
)]

:

An increase in � increases ~La
��
, so ta

��
rises and tb

��
falls. Voting for rejection decides the

case. Member B avoids submitting a decisive vote in order to take advantage of the higher

quality of A's evidence. He lowers tb
��

and votes for rejection less often.

C. Delegation versus committee decision-making

Conicts reduce welfare because strategic manipulation reduces e�ciency of informa-

tion aggregation. To see this, note that the extent of divergence in preferences jka � kbj

directly a�ects expected cost to each member in the voting game. With unilateral accep-

tance, equilibrium expected cost to member A is

(10) Ca
�
= ka1 [1� F a

u (t
a
�
)F b

u(t
b
�
)] + ka2F

a
q (t

a
�
)F b

q (t
b
�
):

Di�erentiating with respect to kb, we have

(11)
dCa

�

dkb
= [�ka1f

b
u(t

b
�
)F a

u (t
a
�
) + ka2f

b
q (t

b
�
)F a

q (t
a
�
)]
dtb

�

dkb
:

From the equilibrium condition (4) for memberA, since dtb
�
=dkb > 0 when lj=Lj� is increas-

ing, dCa
�
=dkb has the same sign as kb � ka. For example, if ka < kb, a further increase in

kb raises member A's expected cost in the equilibrium. Equation (11) shows that dCa
�
=dtb

�

has the same sign as kb � ka. Similarly dCb
�
=dta

�
has the same sign as ka � kb. If ka = kb,

equilibrium thresholds minimize the expected cost to both members. But if ka < kb for

example, the expected cost to both members would fall if A's threshold increased and B's

decreased. Thus, strategic manipulation implies that equilibrium thresholds are Pareto

ine�cient.
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Since conicting preferences reduce welfare, are the gains from information sharing

su�cient to outweigh the losses from strategic voting? To answer this question, we compare

committee decision-making to delegation of the decision to one member. Let Ĉa denote A's

expected cost when he alone makes the decision based on his own information. Then Ĉa =

ka1 [1�F a
u (t̂

a)]+ka2F
a
q (t̂

a), where the optimal threshold t̂a satis�es condition (7). Consider

the di�erence Da = Ca
�
� Ĉa as a function of kb. We showed above that dCa

�
=dkb < 0 for

kb < ka and dCa
�
=dkb > 0 for kb > ka. Since Ĉa is independent of kb, the di�erence Da

decreases for kb < ka and then increases for kb > ka, reaching a minimum at kb = ka.

In the limiting case where kb approaches in�nity, member B always votes for rejection

and lets member A make the decision. Therefore, Da = 0. At the other limit, when

kb approaches zero, B ensures acceptance by himself. Member A's expected cost is then

simply ka1 , and the di�erence Da is given by ka1F
a
u (t̂

a) � ka2F
a
q (t̂

a). By the de�nition of

t̂a, we have ka1f
a
u (y

a) > ka2f
a
q (y

a) for all ya < t̂a. Integrating over the range ya � t̂a then

establishes that Da > 0 when kb approaches zero.

Figure 4 shows that Da is negative at kb = ka: with no conict of preferences, com-

mittee decision-making dominates do-it-alone decision-making because more information

is better. It shows also that for A committee decision-making continues to dominate so

long as B is relatively biased toward rejection (kb > ka), because the unilateral accep-

tance rule allows A to control the acceptance decision while at the same time deferring

to B when the latter has strong evidence for rejection. Moreover, if kb > ka then B

also prefers the committee decision to delegation to A. The reason is that A controls

the decision process in both cases but with committee decision-making B's information is

sometimes used.12 Thus, delegation from a member biased toward rejection to a member

biased toward acceptance is Pareto dominated by unilateral acceptance.

When the committee rule is unilateral rejection, the decisive vote is rejection. Com-

mittee decision-making allows the member who is relatively biased toward rejection to

control the decision process. Unilateral rejection therefore dominates delegation of the

decision to a member relatively biased toward rejection. When the committee rule can be

chosen, delegation is Pareto dominated regardless of preferences of committee members.

D. Voting procedures and voting behavior
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This section compares the equilibrium with unilateral acceptance to the equilibrium

with unilateral rejection. It might seem that requiring two votes for acceptance instead of

one is a more \stringent" standard of proof. But this statement ignores strategic responses

to the voting procedure. When unanimity in acceptance is required, each member lowers

his threshold for acceptance and votes for acceptance less cautiously, because he knows

that the other member may have information that will lead to a vote against acceptance.

On the other hand, if acceptance is unilateral, each member is more cautious in casting a

vote for acceptance, because such a vote would be decisive regardless of the other member's

information. More precisely, MLRP implies that for each j = a; b, Lj�(�) < 1 and Lj��(�) > 1.

It then follows from conditions (4) and (5) that tj� > tj��.

The above result is illustrated in Figure 5. Under unilateral acceptance, the hypothe-

sis is accepted unless the data lie in the region below both of the two lines through ta
�
and

tb
�
. With unilateral rejection, it is accepted only when the data lie in the region above both

lines through ta
��

and tb
��
. Since the two regions overlap, the comparison between unilat-

eral acceptance and unilateral rejection depends on the precise shapes of the conditional

distributions of Y a and Y b. In particular, unanimous acceptance does not necessarily lead

to lower acceptance rates.13

The extent of conict a�ects members' preference over voting procedures. When

interests are identical, the two members agree on which procedure should be used. By

continuity, small di�erences in preference do not generate disagreement about the ex ante

choice of voting procedure. However, as conicts increase, strategic manipulations of

information amplify the di�erences in personal preference over voting procedures. For

a numerical example, let Fq � N(0; 1) and Fu � N(1; 1) be the common distribution

functions, conditional on the true state. If the common preference k exceeds 1, both

members prefer unilateral rejection to unilateral acceptance. Now, consider the following

parameterization: ka1 = k � d, kb1 = k + d, and ka2 = kb2 = 1. As d increases from 0

to k, ka decreases and kb increases. De�ne a \cooperative" threshold �t� under unilateral

acceptance by the equation l(�t�)L�(�t�) = k. With this speci�cation, �t� minimizes the

equally-weighted sum of expected costs to the two members under unilateral acceptance,

regardless of the extent of conicts d. Similarly, de�ne the cooperative threshold �t�� under
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unilateral rejection according to l(�t��)L��(�t��) = k. Figure 6 (with k = 2) illustrates how

each member j's preference over plurality changes with d, as measured by the ratio of

expected cost �Cj
� under unilateral acceptance to cost �Cj

�� under unilateral rejection.

With cooperative thresholds, member B's preference for unilateral rejection becomes

stronger as he becomes more biased toward rejection ( �Cb
�
= �Cb

��
increases with d). Member

A's preference over the two procedures, shown by �Ca
�
= �Ca

��
, initially coincides with B's,

but switches to unilateral acceptance as he becomes more concerned with false rejection.

In Figure 6 this happens around d = 1:36. In contrast, equilibrium manipulation implies

a larger di�erence in personal preference over voting procedures. Figure 6 also plots the

ratio of each member j's equilibrium expected cost Cj
� under unilateral acceptance to the

cost Cj
�� under unilateral rejection. As with cooperative decision-making, the di�erence

between Cb
�
=Cb

��
and Ca

�
=Ca

��
becomes greater as d increases, but the divergence grows

much faster. Member A switches his preferred voting procedure from unilateral rejection

to unilateral acceptance around d = 0:38.

IV. Abstention

This section allows committee members to abstain in the voting games, which corre-

sponds to a three-way partition of each member's data. Abstention improves the quality

of decision-making in equilibrium, because it allows each member to signal that his data

are inconclusive and reduces harmful strategic manipulations. This result is obtained for

the case of unilateral acceptance. The case of unilateral rejection is symmetric.

We need to specify what happens when both members abstain. The simplest way is

to specify a \default decision" when both abstain. If the default is rejection, abstention

is equivalent to voting for rejection and has no e�ect on the equilibrium. But suppose

the default is acceptance. Then a vote for rejection by A results in acceptance only if B

votes for acceptance, while abstention by A results in acceptance when B either votes for

acceptance or abstains. Now equilibrium strategies involve two thresholds, tj1 < tj
2
, such

that a member strategy votes \accept" if yj � tj2, votes \reject" if y
j < tj1, and abstains if

tj2 > yj � tj1.
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For each j = a; b and any yj2 > yj1, denote the ratio [F
j
q (y

j
2)�F j

q (y
j
1)]=[F

j
u(y

j
2)�F j

u(y
j
1)]

as Lj (yj2; y
j
1). Using similar reasoning as in the proof of Proposition 2, we can show that

the thresholds for A satisfy:

(12)
la(ta1)L

b(tb2; t
b
1) = ka;

la(ta2)L
b
�
(tb1) = ka:

A symmetric pair of equations holds for B. The term Lb(tb2; t
b
1) in the �rst equation of

(12) is the likelihood ratio for the event that B abstains. In that case, A can guarantee

rejection only if he votes for rejection. The term Lb
�
(tb1) in the second equation is the

likelihood ratio for the event that B votes for rejection, when A can guarantee rejection if

he abstains. MLRP implies that Lj(tj2; t
j
1) > lj(tj1) > Lj�(t

j
1). Then, if t

b
2 > tb1, (12) implies

that ta2 > ta1, and vice versa. Thus, the thresholds (ta1 ; t
a
2; t

b
1; t

b
2) de�ned by (12) form an

equilibrium of the voting game. We assume that the equilibrium exists and is unique.

Comparing the thresholds in the equilibrium with abstention with the equilibrium

thresholds without abstention shows that allowing abstention makes committee members

more \careful" in casting their votes. Formally, for each j = a; b, we have tj2 > tj� > tj1 (the

proof is in the appendix). Thus, if the evidence is not very strong either way, a member

chooses to abstain.14 Standards of evidence for voting for acceptance or for rejection are

raised so that the probability of voting either way is reduced for both members. E�ciency

in information sharing improves. The proof is in the appendix.

PROPOSITION 3: Equilibrium expected cost to each member in the voting game with

abstention is lower than that in the voting game without abstention.

With conicts in the committee, allowing abstention reduces the tension. Finer par-

titioning of information improves the welfare of each member of the committee. However,

�ner partitions are possible only when conicts are bounded: Proposition 3 assumes that

an equilibrium exists with three-categories, but the existence depends on the extent of

conicts. If conicts are too great, three-category equilibrium outcomes do not exist and

allowing abstention has no e�ect on committee decisions. We show this point next.
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V. More Categories

This section shows that the degree of conict among members limits the �neness of

data partitioning under any decision mechanism. For expositional convenience, we consider

a voting game with a speci�c scoring rule that implements a unilateral acceptance outcome

withN thresholds andN+1 categories for each member. Each member chooses an (integer)

score from 0 to N . The committee decision is \acceptance" if the sum of the two scores

is greater than N � 1

2
and \rejection" otherwise. We construct an equilibrium where each

member j (j = a; b) uses an N-threshold strategy, such that for each n = 0; : : : ;N , the

score n is chosen if yj 2 [tjn; t
j
n+1), where tj1; : : : ; t

j

N are the N thresholds (tj0 = yj and

tjN+1 = yj are de�ned as the lower and upper bound of the support of Y j .) Each member

can convey the strength of his evidence by choosing di�erent scores. A score of N ensures

acceptance regardless of the other score, while a score of n � N � 1 results in acceptance

only when the other score is at least N � n.

Deriving conditions for thresholds in the (N + 1)-category equilibrium is a straight-

forward extension of the proof of Proposition 2. By construction, for each n = 1; : : : ;N , a

choice between two scores n� 1 and n for member A is pivotal only if member B chooses

N �n: if A chooses n�1 rejection results, and if he chooses n acceptance results. Member

A therefore makes the choice between the two scores conditional on his evidence ya and

on B's choice of N � n (that is, on yb 2 [tbN�n; t
b
N�n+1)). See Figure 2. The expected

cost to A from choosing n is �ka1f
a
u (y

a)[F b
u(t

b
N�n+1)�F b

u(t
b
N�n)], and from choosing n� 1

is �ka2f
a
q (y

a)[F b
q (t

b
N�n+1) � F b

q (t
b
N�n)], where � is a normalization factor under Bayesian

updating, and the terms in the brackets are the probability that B's evidence lies in the

interval that allows A's choice to be pivotal. Thus, choosing n instead of n� 1 is optimal

if and only if ya � tan where the threshold tan satis�es

(13) la(tan)L
b(tbN�n+1; t

b
N�n) = ka:

MLRP implies that Lj(u; v) is increasing in both u and v for all u > v.15 Since the

above argument holds for n = 1; : : : ;N , the thresholds de�ned by equations (13) satisfy

ta1 < : : : < taN . Thus, if member B uses a voting strategy with thresholds tb1 < : : : < tbN ,

the threshold strategy de�ned by (13) is optimal for member A.
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The equilibrium thresholds are described by the N equations in (13), and a symmetric

set ofN equations for memberB. Conditions (4) for the two-category equilibrium outcome

and conditions (12) for the three-category equilibrium outcome are special cases of (13). If

members have identical preferences, categorization can get �ner and �ner as N increases.

The solution converges to that implied by the Neyman-Pearson lemma, and full information

revelation occurs. However, conicts in preferences place an upper bound on how �ne

categorization can be in equilibrium. This is illustrated with the help of Figure 2, where

we assume without loss of generality that ka < kb. The area above Sa = 0 (represented

by lalb = ka) and below Sb = 0 (represented by lalb = kb) is the disagreement zone. Since

Lj(u; v) is increasing in both u and v for all u > v, we have lj(u) > Lj(u; v) > lj(v). Then,

for any two adjacent equilibrium thresholds tan and tan+1, from the equilibrium conditions

(13),

(14)
la(tan)l

b(tbN�n) < ka;

la(tan+1)l
b(tbN�n) > kb:

Thus, the threshold point (tan; t
b
N�n) is below Sa = 0, and the point (tan+1; t

b
N�n) is above

Sb = 0. That A's observation ya lies between tan and tan+1 is pivotal for determining B's

threshold tbN�n. This means that the line segment connecting the two points (tan; t
b
N�n)

and (tan+1; t
b
N�n) is on the decreasing step function that separates the acceptance region

from the rejection region. Since the argument applies to any two adjacent thresholds of A,

any \horizontal" segment on the decreasing step function must \cross" the disagreement

zone. Moreover, the same conditions (14) imply that any \vertical" line segment of the

decreasing step function must also cross the disagreement zone: for example, in Figure

2 the point (tan; t
b
N�n) is below Sa = 0 and the point (tan; t

b
N�n+1) is above S

b = 0. We

summarize this result in the following proposition. We say that a partition outcome with

N thresholds tj1; : : : ; t
j

N for each member (j = a; b) \crosses the disagreement zone" in the

data space, if the thresholds satisfy (14) for any n (the conditions are reversed for the case

of ka > kb).

PROPOSITION 4: If ka 6= kb, then any equilibrium partition outcome crosses the dis-

agreement zone in the data space.

{ 22 {



Greater conicts create a greater disagreement zone. The decreasing step function

associated with any equilibrium partition outcome must then cross a larger disagreement

zone, and the lower bound on the distance between adjacent thresholds for each member

becomes larger. The maximum possible number of thresholds for each member in any

equilibrium partition outcome is �nite on any proper subset of the support of data, and

depends negatively on the di�erence in preferences jka � kbj.16 Great conicts within the

committee make �ne categorization impossible.

Proposition 4 directly implies that any equilibrium partition outcome is ex post Pareto

ine�cient. In Figure 2, where we assume ka < kb, when the data (ya; yb) fall into any

triangular region above Sb = 0 and below the step function, both A and B would like

to accept the null, but the equilibrium decision is rejection. Similarly, in any triangular

region below Sa = 0 and above the step function, both A and B would like to reject

but the equilibrium decision is acceptance. Proposition 4 thus demonstrates that ex post

ine�ciency is a necessary consequence of sharing private information. As partitioning

becomes �ner, the regions of ex post Pareto ine�ciency shrink. As a result, each member

becomes better o�. The proof of Proposition 3 directly extends to establish that the

expected cost of each member decreases as the number of equilibrium thresholds increases

for each member.

Since the maximum number of categories is limited by the extent of conict, Proposi-

tion 4 raises the question of whether committee decision rules must be frequently adjusted

to accommodate changes in preferences of committee members. The answer is \no," be-

cause a scoring rule that allows �ne partitioning of data can also produce equilibrium

outcomes with coarser partitioning. For example, suppose that the scoring rule allows a

maximum of 10 categories, in which each member can choose a score from 0 to 9, and the

threshold is 8.5. If the extent of conict is so great that only two-category partitioning

of private data is possible, then one equilibrium is where each member chooses the score

0 when his private data are below his personal threshold and the score 9 otherwise. This

equilibrium yields the unilateral acceptance outcome with two categories.

Voting procedures and scoring games considered in this paper are also robust in a

di�erent sense. The same equilibrium partition outcomes arise if, instead of submitting
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votes or scores simultaneously, the two members in a committee express their positions

one by one, or they are allowed to change after all positions are known.17 The reason is

that under pivotal voting, each member chooses a vote or score conditional on his data

and on the assumption that his fellow member has taken up a position to make his own

pivotal. Thus, no one wants to change after knowing the other side's position.18

VI. Conclusion

Committee members' incentives to manipulate private information to tilt decisions

toward their personally preferred outcome imply that information cannot be e�ciently

aggregated by committees. Perhaps this is the basis for the old joke: \Q. How do commit-

tees make decisions? A. Badly." Nonetheless, committees are used to make many business

and other decisions. We have illuminated some of the reasons for their continued use and

survival. True, self interest and strategic considerations make information pooling in com-

mittees imperfect, but that is relative to some unattainable ideal. Garbled information

still leads to better decisions for all members than if one of them acted as \dictator" and

made the decision without bene�t of other, albeit strategically manipulated, information.

The reason is that viable committees must share some common goals, even though

individual committee members might weigh outcomes somewhat di�erently. All members

certainly want to gain the statistical advantages of information sharing. What makes the

process work is that the committee rules and procedures are themselves chosen to temper

and control strategic misrepresentations and �lter the data, given self-interested behavior.

Procedures are adopted that coarsen the content of information and put a natural limit

on feasible manipulations. They control conict in an acceptable way. The smaller the

di�erences of a priori opinion among committee members, the less coarsening the rules can

be while keeping conict in control. The quality of committee decisions improves with the

degree of consensus.

The two-category voting procedures studied in detail here are a very clear analytical

representation of these ideas. In the statistical decision problem from which it is con-

structed, all sample information is perfectly aggregated into a \score." Minimizing the
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loss function sets a critical score. If the sample score exceeds the threshold, the commit-

tee makes one decision, and if it falls short of the threshold another decision is chosen.

But this perfect aggregation scheme does not work when there is conict in the committee.

Voting in a committee is a cruder kind of scoring system, but a scoring system nonetheless.

The committee decision depends on the proportion of members whose sample information

places it above or below their own strategically determined personal thresholds. Personal

thresholds are chosen to \undo" the presumed biases of other committee members, but not

by enough to completely nullify the information of others. For instance, members defer to

those who have more informed sample information|committee members who have greater

expertise and whose data have a higher quality. The better informed members are decisive

more often.

The framework of this paper can be used to understand a host of issues related to

committee decision-making. We give three examples here, management of expert teams,

side payments, and arbitration. (i) In some environments, an uninformed decision maker

may seek opinion from experts who are privately informed about the decision but have

di�erent interests. A team of experts is a committee with conicts and common interests

in inuencing the decision maker. One can show that when the decision maker �nds it

necessary to bring in a second expert, he will not choose someone with the same preference

as himself, because doing so forces the incumbent expert to be more strategic and lowers

the quality of his information. Instead, a second expert with a preference closer to that

the �rst serves the decision maker better.19 (ii) Monetary side payments can be used to

improve quality of committee decisions. For example, suppose that in a two-category

voting procedure each member must pay a �ne to the other one if he chooses the position

he favors a priori. When such ex post transfers are properly chosen, the members can be

induced to vote cooperatively to minimize the sum of expected errors. With appropriate

ex ante side transfers, each member is better o� than under strategic voting without side

transfers. (iii) Suppose that in a two-category voting procedure when votes di�er the case

goes to an arbitrator whose decision is stochastic. Under the unilateral procedures, when

votes di�er the decision is deterministic and may favor one side over the other. In contrast,

the presence of an exogenous stochastic decision by an arbitrator can reduce manipulation

of information and improve the quality of committee decision.
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While there are few general analytical results on how voting plurality| simple major-

ity, super-majority, or unanimity|a�ects the quality of committee decisions, the analysis

illuminates some of the economic considerations involved in these debates. It is interesting

that though requiring unanimity for acceptance makes each member decisive for accep-

tance, self-interest makes them less cautious in voting for acceptance because others may

have information against acceptance. Similarly, requiring unanimity for rejection makes

voters more cautious in voting for acceptance. These are precisely the reasons why Con-

dorcet's Theorem fails when strategic considerations play a role in voting (Austin-Smith

and Banks, 1996; Feddersen and Pesendorfer, 1998). Our model needs to be enriched be-

fore it can be used to understand the issue of optimal plurality. Committee rules are chosen

to achieve a certain kind of durability to a broad variety of issues that come before it. The

nature of preferences, voting rules, incentives to collect information (Li, forthcoming), the

presentation of arguments and rhetoric in committee deliberations (Richard Posner, 1998;

Dewatripont and Tirole, 1999), and intertemporal vote trading for ongoing committees are

all likely to be important for understanding the choice of committee rules.

In conclusion, voting is often said to be an inferior decision mechanism because it

does not allow the intensity of one's preferences to be expressed in the �nal tally. But

in group decisions where social gains arise from the pooling of information, the intensity

of di�erences in preferences and opinion leads to discordance among group members that

causes trouble. Voting procedures bound the expression of intensity and discordance among

groupmembers and lead to better informed group decisions. Perhaps this is the main lesson

in this paper.
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APPENDIX

PROOF OF PROPOSITION 1:

Fix any deterministic and monotone equilibrium outcome. By the revelation principle,

it can be replicated by a truth-telling equilibrium of a direct mechanism. Since it is

deterministic and monotone, this outcome can be represented by a downward sloping

boundary that divides the acceptance region and the rejection region in the data space.

For a given equilibrium outcome, let the boundary be represented by a function T of ya.

(For each vertical segment of T that corresponds to some point ya, we choose T (ya) to

be the highest point of the segment; this arbitrary choice does not a�ect the proof.) We

claim that if T is di�erentiable at some ya, then T 0(ya) = 0. The proposition then follows

from the observation that a monotone function T is almost everywhere di�erentiable.

To prove the claim, we assume by way of contradiction that there exists ya such that

T 0(ya) 6= 0. Conditional on ya, to member A the probability that the null hypothesis

is true is �afaq (y
a), and the probability that it is false is �(1 � a)fau (y

a), where the

normalizing factor � equals the reciprocal of afaq (y
a) + (1 � a)fau (y

a). By choosing

an arbitrary report ra, the hypothesis is accepted whenever B submits a report rb �

T (ra). Since B reports truthfully, A's expected cost conditional on ya and report ra is

�ka1f
a
u (y

a)[1 � F b
u(T (r

a))] + �ka2f
a
q (y

a)F b
q (T (r

a)). Truth-telling by A requires that the

derivatives of A's expected cost with respect to ra be zero at ya. Since T 0(ya) 6= 0, we

have

(A1) ka1f
a
u (y

a)fbu(y
b) = ka2f

a
q (y

a)fbq (y
b);

where yb = T (ya). Since T is strictly downward sloping at ya, its inverse exists and has

nonzero derivatives at yb. Then truth-telling by B implies a similar condition:

(A2) kb1f
b
u(y

b)fau (y
a) = kb2f

b
q (y

b)faq (y
a):

The above two equations contradict the assumption that ka 6= kb.

PROOF OF PROPOSITION 3:
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We consider a Cournot tatonnement process that begins with the two-category equi-

librium without abstention and converges towards the three-category equilibrium with

abstention. First note that any one-threshold strategy can be viewed as a two-threshold

strategy by adding an additional threshold for each member appropriately. If za1 = ya and

za2 = ta
�
are member A's two thresholds, and zb1 = tb

�
and zb2 = yb are B's two thresh-

olds, then the voting outcome is the same as the two-category equilibrium de�ned by (4).

In each iteration of the Cournot tatonnement, the new thresholds are chosen as best re-

sponses to the previous thresholds. The proof proceeds in two steps. First we show that

the two-category equilibrium converges monotonically to the three-category equilibrium in

a Cournot tatonnement process. Then we show that expected cost to each member falls

in each iteration of the tatonnement.

The equilibrium conditions for the thresholds of member A speci�ed in (12) can be

used to de�ne the reaction functions za1 = g1(zb1; z
b
2) and za2 = g2(zb1). The reaction

functions for member B can be speci�ed analogously. Note that all the reaction functions

are strictly decreasing in their arguments. If we denote x = (za1 ; z
a
2 ;�z

b
1 � zb2) and let

h : IR4 ! IR4 be the reaction function in the rede�ned variables, then h(x) is increasing

in x. The Cournot tatonnement is de�ned by the process x(t) = h(x(t � 1)). The initial

thresholds are speci�ed at the two-category equilibrium, x(0) = (ya; ta
�
;�tb

�
;�yb). An

induction argument establishes that x(t) increases monotonically. Suppose x(t) � x(t�1).

Because h(�) is monotonic, x(t + 1) = h(x(t)) � h(x(t � 1)) = x(t). Furthermore, using

the conditions for the two-category equilibrium and (6), it can be veri�ed that x(1) =

h(x(0)) � x(0), and the induction argument is complete. A bounded and monotonic

sequence converges to a limit point x̂. By the continuity of each member's expected cost

in the thresholds, this point must also be an equilibrium point, x̂ = h(x̂). To see this, note

that Ca(xa(t); xb(t�1)) � Ca(xa; xb(t�1)) for all xa, because x(t) is the best response to

x(t� 1). Since Ca is continuous in x(t) and x(t)! x̂, we have Ca(x̂a; x̂b) � Ca(xa; x̂b) for

all xa. A similar condition holds for B. Therefore x̂ is a three-category equilibrium point.

Because the convergence of the thresholds is monotonic, we have ta2 > ta
�
and tb1 < tb

�
.

A symmetric Cournot tatonnement process, in which A's thresholds begin with za1 = ta
�

and za2 = ya and monotonically decrease, and B's thresholds begin with zb1 = tb and
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zb2 = yb
�
for B and monotonically increase, establishes that ta1 < ta

�
and tb2 > tb

�
. Therefore,

tj1 < tj� < tj2 for each j = a; b.

For the second step of the proof, we assume that ka < kb and use the Cournot

tatonnement process with A's thresholds increasing and B's decreasing. (When ka > kb,

we use the symmetric process.) Let the expected cost to juror j be

(A3)
C(za; zb; kj) =kjf[1� F a

u (z
a
2 )] + [F a

u (z
a
2 )� F a

u (z
a
1 )][1� F b

u(z
b
1)] + F a

u (z
a
1 )[1� F b

u(z
b
1)]g

+ f[F a
q (z

a
2 ) � F a

q (z
a
1 )]F

b
q (z

b
1) + F a

q (z
a
1 )F

b
q (z

b
2)g:

The change in cost to juror A between two successive iterations is

(A4)

C(za(t + 1); zb(t + 1); ka)� C(za(t); zb(t); ka)

=[C(za(t + 1); zb(t + 1); ka) � C(za(t); zb(t+ 1); ka)]

+ [C(za(t); zb(t + 1); ka)� C(za(t); zb(t); ka)]:

We claim that (i) @C(za; zb(t + 1); ka)=@za < 0 for za(t) � za � za(t + 1); and (ii)

@C(za(t); zb; ka)=@zb > 0 for zb(t + 1) � zb � zb(t). Hence both terms in brackets are

negative.

To establish claim (i), note that the derivative @C(za; zb(t+1); ka)=@za1 has the same

sign as la(za1 )L
b(zb2(t+1); zb1(t+1))�ka. Since za1 < za1 (t+2) for za1 2 [za1 (t); z

a
1 (t+1)], we

have la1(z
a
1 ) < la1(z

a
1 (t+2)). Then it follows from the de�nition of za1 (t+2) that @C(z

a; zb(t+

1); ka)=@za1 < 0. Similarly, the derivative @C(za; zb(t + 1); ka)=@za2 has the same sign as

la(za2 )L
b
�
(zb1(t+1))� ka. Since za2 (t+2) > za2 , we have @C(z

a; zb(t+1); ka)=@za2 < 0. This

establishes (i).

To establish claim (ii), note that the derivative @C(za(t); zb; ka)=@zb1 has the same sign

as lb(zb1)L
a(za2 (t); z

a
1 (t))�ka. Since ka < kb and zb1 � zb1(t+1) for zb1 2 [zb1(t+1); zb1(t)], we

have @C(za(t); zb; ka)=@zb1 > 0. Similarly, the derivatives @C(za(t); zb; ka)=@zb2 have the

same sign as lb(zb2)L
a
�
(za1 (t)) � ka. Since zb2 � zb2(t + 1), @C(za(t); zb; ka)=@zb2 > 0. This

establishes (ii).

For juror B, we follow a di�erent decomposition to get

(A5)

C(za(t + 1); zb(t + 1); kb)� C(za(t); zb(t); kb)

=[C(za(t + 1); zb(t + 1); kb) � C(za(t+ 1); zb(t); kb)]

+ [C(za(t + 1); zb(t); kb)� C(za(t); zb(t); kb)]

{ 29 {



We can follow similar steps as above to show (i) @C(za(t + 1); zb; kb)=@zb > 0 for

zb(t + 1) � zb � zb(t); and (ii) @C(za; zb(t); kb)=@za < 0 for za(t + 1) � za � za(t). Then

(i) and (ii) imply juror B's expected cost also falls with each iteration.
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1. See also Jerry Green and Nancy Stokey (1980). Bengt Holmstrom (1983) studies

how a principal can delegate to an agent. The problem of eliciting private information

from experts appears in a number of economic and political models: allocating burden

of proof among experts (Paul Milgrom and John Roberts, 1986; Hyun Song Shin, 1994;

John Morgan and Vijay Krishna, forthcoming), agenda-setting in legislatures (Thomas

Gilligan and Keith Krehbiel, 1989; David Austen-Smith, 1990), and providing incentives

for investment in expertise (Canice Prendergast, 1993; Pilippe Aghion and Jean Tirole,

1997; Mathias Dewatripont and Tirole, 1999).

2. Exceptions are, in the context of large elections, Austen-Smith and Je�rey Banks (1996),

and Timothy Feddersen and Wolfgang Pesendorfer (1996; 1997).

3. See, for example, Morris DeGroot (1970). This optimal decision rule derived below is a

special case of the Neyman-Pearson lemma.

4. Suppose f jq and f ju (j = a; b) di�er only by a location parameter. That is, f ju(x) = h(x)

and f jq (x) = h(x � d) where d > 0. Then lj is increasing if h is log-concave. Of course,

MLRP is more general than log concavity, as there is no reason to assume that f jq and f ju

di�er only by a location parameter.

5. Figure 1 assumes that Y a and Y b have the same normal distributions that di�er by

a locational parameter conditional on the true state. The mean of the observations is a

su�cient statistic and the optimal statistical decision rule (2) takes a linear form, \accept if

and only if ya+yb � �," where � is a function of the preference and distribution parameters.

Under the assumption of conditional independence, regardless of whether Y a and Y b have

the same conditional distributions, the optimal rule can be generally expressed in a linear

aggregation of the log likelihood ratios. See, for example, Anthony Edwards (1992).



6. There are two types of garbling: introducing noise to data by randomization, and par-

titioning data into intervals. In any Bayesian reporting game with a deterministic and

strictly monotone decision rule, besides the partition equilibria studied in this paper, there

are also mixed-strategy equilibria where data are partitioned into intervals but for some

or all intervals a report is randomly chosen. In both types of equilibria, each member's

equilibrium report is a random variable with discontinuous distributions (conditional on

the true state). One can show that there exist no mixed-strategy equilibria where each

member's report has continuous conditional distributions. Since the underlying data have

continuous conditional distributions, equilibrium reporting strategies must involve parti-

tioning of data.

7. Stochastic outcomes cannot be excluded as candidates for equilibrium outcomes. The

reporting game with the rule \accept if S(ra; rb) � 0" has mixed strategy equilibria where

data are partitioned and in some regions the null is accepted with probabilities strictly

between 0 and 1. One such equilibrium can be alternatively implemented by the following

decision mechanism. Each member chooses \accept" or \reject." If they agree, that choice

is carried out. If they disagree, a lottery with predetermined odds is used to decide. One

can show that this mechanism has a stochastic outcome with threshold strategies. Exam-

ples can also be constructed to show that MLRP does not by itself rule out nonmonotone

outcomes, but we do not consider them.

8. If only one member is allowed to abstain, then one can generate partition outcomes

with three categories for this member and two categories for the other. This corresponds

to a voting game where the member allowed to abstain has veto rights to both acceptance

and rejection. Note that Proposition 1 implies that in any equilibrium partition outcome,

either both members have the same number of thresholds, or one member has exactly

one more threshold than the other. Only the simplest partition outcome with unequal

numbers of thresholds is considered in the paper (section III), in which one member has

one threshold and the other has none. This corresponds to delegation of the committee

decision to the �rst member.

9. The pivotal voting argument remains valid when there is incomplete information about

preferences and biases of committee members. Such incomplete information can be mod-



eled as di�erent types of members. Derivation of the equilibria of the voting games is not

a�ected as long as probability distributions of types are common knowledge.

10. John Duggan and Cesar Martinelli (1999) uses a setup similar to ours to extend the

results of Feddersen and Pesendorfer on the Condorcet Jury Theorem. They characterize

the two-category equilibrium outcomes, assuming common preferences among members.

11. For example, in Figure 1 where Y j is normally distributed with a shift of the mean

conditional on the true state of the null hypothesis, when the precision of Y a increases,

the committee decision function S becomes steeper in the data space, representing the fact

that the decision becomes more sensitive to A's data.

12. The precise argument that B prefers committee decision-making to delegating to A

when kb > ka follows the proof of Proposition 5.1. For B, letting A decide is equivalent

to the committee decision with thresholds set at t̂a and �yb. Start the iteration at za0 = t̂a,

and zb0 = �yb. De�ne a Cournot tatonnement process with increasing threshold for A and

decreasing threshold for B. Then B's expected cost falls in each step of the iteration, until

the thresholds reach ta
�
and tb

�
.

13. Our comparison of voting procedures complements the works of Raaj Sah and Joseph

Stiglitz (1986; 1988), who consider committees without the strategic manipulations that

arise from conicting interests.

14. If we think of abstention as skipping the decision-making meeting in an endogenous

participation model, then only members with extreme preferences based on their informa-

tion participate. Matthew Turner, Martin Osborne, and Je�rey Rothenthal (2000) obtain

a related result in a model of preference aggregation where agents incur a �xed cost to

inuence the collective decision.

15. The derivative of this ratio with respect to u has the same sign as f jq (u)[F
j
u(u)�F

j
u(v)]�

f ju(u)[F
j
q (u)� F j

q (v)]. By MLRP, f jq (u)f
j
u(y) > f ju(u)f

j
q (y) for all y < u. Integrating over

y from v to u gives f jq (u)[F
j
u(u) � F j

u(v)] > f ju(u)[F
j
q (u) � F j

q (v)]. Monotonicity in v can

be proved in a similar manner.

16. Members can have countably in�nite number of equilibrium thresholds over the entire

support of the data, either when the supports are unbounded (as in normal distributions),

or when the supports are �nite but the likelihood ratios are unbounded (as in the beta

distributions).



17. In a di�erent setup, Dekel and Piccione (2000) show that sequential and simultaneous

voting procedures have the same equilibrium outcomes. In our model the equivalence

between sequential and simultaneous voting requires that the �rst mover be unable to

commit to a threshold rule. Inability to commit follows because a strategy in a voting or

scoring game is not observable even when positions are sequentially submitted.

18. Green and Jean-Jacques La�ont (1987) propose the concept of \posterior implemen-

tation" to capture the idea of robustness of group decisions under private information: a

decision is posterior implementable if it is an equilibrium outcome of a Bayesian incen-

tive compatible mechanism, with the additional property that the information conveyed in

the implementation does not invalidate the optimality of the equilibrium strategy of any

player. In a model similar to ours, with two group members and a binary group decision

between the status quo and an alternative, they show that any posterior implementable

group decision can have only two values in terms of the probability of adopting the alter-

native. In any partition outcome, the committee decision has two values|the probability

of accepting the null hypothesis is either zero or one. One can easily verify that all equilib-

rium partition outcomes considered in this paper are posterior implementable in the sense

of Green and La�ont.

19. These and other issues of choosing experts and delegating decisions are discussed in

Hao Li and Wing Suen (2001).



Figure 1. Optimal decision rules and information manipulation.

Figure 2. A partition outcome.

Figure 3. Reaction functions in the voting game with unilateral acceptance.

Figure 4. Welfare comparison: do-it-alone versus committee.

Figure 5. Comparison of unilateral acceptance and unilateral rejection procedures.

Figure 6. Conicts and personal preference over voting procedures.


