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Abstract 

Introduction: Two MspI polymorphisms in the ApoA-I gene (G-75A and C83T) have been 

shown to be associated with plasma HDL-cholesterol levels.   

Methods: We used a PCR-based RFLP method to determine the association of these 

polymorphisms with lipid parameters in 271 non-diabetic, normotriglyceridaemic Chinese 

subjects, of whom 104 were patients with hypertension, with 10.2% having 

hypercholesterolaemia and the remainder were controls. 

Results: As expected, the hypertensive group had higher blood pressure and indices of 

obesity, and a more adverse lipid profile.  No differences in the ApoA-I G-75A genotype or 

allele frequency distributions between the controls and patients were identified.  However, 

there was a significantly lower frequency of the CT genotype (p=0.012) and T allele 

(p=0.011) in the affected subjects with hypercholesterolaemia or hypertension.  Similarly, 

blood pressure and triglyceride levels were significantly lower and HDL-cholesterol levels 

significantly higher in the subjects with the CT genotype compared to those with the CC 

genotype (p<0.05).  However, the G-75A genotypes did not appear to influence the lipid or 

blood pressure levels. The -75A allele frequency was higher in our healthy controls than an 

equivalent Caucasian population (31.1% vs. 18.3%, p<0.001), whereas the 83T allele 

frequency was similar between the healthy Chinese and Caucasian groups. 

Conclusion: The 83T allele may be associated with a better lipid profile and blood pressure 

levels in this group of Chinese subjects. 

 

Key words: Apolipoprotein A-I, Chinese, hypertension, lipids, metabolic syndrome, 

polymorphisms 
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Introduction 

Apolipoprotein A-I (apoA-I) is the major structural protein of high density lipoprotein (HDL) 

particles and, as a co-factor of lecithin-cholesterol acyltransferase, is involved in the 

esterification of free cholesterol [1,2].  ApoA-I plays an essential role in cholesterol efflux 

from peripheral cells and in the reverse cholesterol transport process.  Several 

epidemiological studies have reported that HDL-cholesterol levels are inversely related to 

cardiovascular disease including the incidence of coronary heart disease (CHD) [3-5].  

Weekly infusions of apoA-I Milano, a mutant version of apoA-I found in subjects with low 

HDL-cholesterol, but not increased risk of vascular disease, for 5 weeks was found to 

regress, coronary atheroma volume in patients hospitalised with acute coronary syndromes 

[6]. These studies further support a role for apoA-I and HDL-cholesterol in the pathogenesis 

of cardiovascular disease. 

The regulation of HDL levels is a complicated and incompletely understood process, 

and is likely to depend on the interaction of both environmental and genetic factors.  Several 

genetically determined structural variants of apoA-I have been identified, and have allowed 

the characterisation of structure-function relationships in the protein [7]. 

A G→A mutation at position –75 of the apoA-I gene promoter occurs at a frequency 

of about 0.18 in Caucasian populations and has been associated with higher plasma HDL-

cholesterol levels in several ethnic groups [8-17].  In vitro [18] and in vivo studies [15-17] 

have shown that the A substitution is associated with increased apoA-I gene expression, and 

elevated plasma apoA-I and HDL-cholesterol concentrations.  Up-regulation of the apoA-I 

promoter may lead to increased HDL production and increased very low- and low-density 

lipoprotein (LDL) clearance.  Previous studies also showed an association between the apoA-

I polymorphism and plasma triglyceride levels, the triglyceride level being lower in men with 

–75A [14,19].  
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A further MspI polymorphic site has been identified in the first intron of the apoA-I 

gene [20], in which two consecutive transitions at +83 bp (C to T) and +84 bp (G to A) sites 

occur together or independently.  Several studies have shown that these transitions are also 

associated with increased HDL-cholesterol levels in Caucasians [21].  The frequency of the 

+83 bp substitution in a healthy Caucasian population was lower (rare allele frequency: 0.04) 

than that at the -75 bp site [21].  However, some studies reported that patients with the base 

changes at –75 and/or +83 bp of the apoA-I gene have more severe CHD in both Caucasian 

and Chinese populations [21,22].  In those studies, base changes at –75 and +83 bp of the 

apoA-I gene were not associated with increased HDL-cholesterol levels. 

In the present study we investigated the two MspI polymorphisms (G-75A and C83T) 

to assess their importance, with respect to plasma lipid levels and blood pressure in Chinese 

subjects with hypertension and non-hypertensive controls. 

 

Methods 

The study was approved by the Clinical Research Ethics Committee of the Chinese 

University of Hong Kong.  All 271 subjects gave written informed consent and were of Han 

Chinese origin, without any known ancestors of other ethnic origin, and were living in the 

Hong Kong Special Administrative Region of China at the time of the study.  Patients 

(n=104, group A) with hypertension, of whom 10.2% had hypercholesterolaemia, were 

recruited from the general outpatient clinics at the Prince of Wales Hospital.  The catchment 

area of the Prince of Wales Hospital has only been developed since the 1960’s, and serves a 

population of over 1 million.  The majority of its inhabitants, including staff at the hospital, 

are a typical socio-economic representation of first or second-generation migrants from 

Southern China now living in a Westernised environment.  The Prince of Wales Hospital is a 

teaching hospital and tertiary referral centre.  However, as in other public hospitals in Hong 
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Kong, because the system of government-funded primary care is not developed to the same 

extent as most Western countries, many of the patients attending the clinics use the facility as 

their only source of subsidised medical care for management of their chronic diseases.  The 

patients involved therefore do not represent a highly selected group of the most severe cases, 

but are a typical cross-section of patients with these conditions from this region of Hong 

Kong.  Subjects seen by the study physicians in the medical outpatient clinics at the Prince of 

Wales Hospital meeting the selection criteria described below were consecutively invited to 

participate in the study.  All subjects were screened between 9:00 and 10:30 AM and 

treatments for hypertension or dyslipidaemia were withheld until after the measurement of 

blood pressure and the collection of blood samples, following an overnight fast.  Healthy 

controls (group B) were recruited from a broad spectrum of hospital staff.  Subjects were 

defined as hypercholesterolaemic if their total cholesterol level was ≥6.2 mmol/L or total 

cholesterol level was <6.2 mmol/L, but ≥5.2 mmol/L and total cholesterol to HDL-

cholesterol ratio was ≥5.0 or were on treatment to lower LDL-cholesterol.  Subjects with 

more severe hypertriglyceridaemia (≥2.3 mmol/L) were excluded as it was considered that 

they were likely to have other genetic causes and the close inverse relationship between 

triglycerides and HDL-cholesterol would mask any relationship between the ApoA-I gene 

polymorphisms and lipid levels or blood pressure. Subjects were defined as hypertensive if 

seated systolic blood pressure was ≥140 mm Hg and/or diastolic blood pressure was ≥90 mm 

Hg after repeated measurement in a quiet environment or were receiving anti-hypertensive 

treatment. Only 10% of the hypertensive subjects were receiving treatment. All subjects with 

impaired fasting glucose or diabetes (fasting plasma glucose ≥6.1 mmol/L) were excluded.   

DNA was extracted from peripheral blood from the 271 Hong Kong Chinese subjects.  

The apoA-I gene C83T and G-75A polymorphisms were screened using a PCR-based RFLP 

protocol [14].  The presence of the MspI restriction sites at -75 bp (G allele) and at +83 bp (C 
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allele) in the 433 bp product resulted in four fragments of 209 bp, 113 bp, 66 bp and 45 bp.  

The absence of the restriction site at -75 bp (A allele) resulted in three fragments of 209 bp, 

179 bp and 45 bp.  The absence of the restriction site at +83 bp (T allele) created a larger 

fragment of 254 bp instead of two fragments of 209 bp and 45 bp. 

Statistics Package for the Social Science (SPSS version 11.0, 2002, SPSS Inc, 

Chicago, II) was used in the data analyses.  The frequencies of the alleles and genotypes 

among the control and hypertensive groups (A and B, respectively) were compared by the 

chi-square test.  The independent t test was used to examine the association between the 

alleles and clinical parameters.  For parameters with skewed distributions, the nonparametric 

Mann-Whitney test was performed.  An analysis of variance (ANOVA) was performed to 

examine the contribution of the G-75A and C83T polymorphisms on plasma lipid levels and 

blood pressure. 

Gender was coded 0 and 1 for male and female, respectively.  For the genetic 

parameters, the apoA-I G-75A GG, GA and AA genotypes were coded 0, 1, and 2, and; C83T 

CC, CT genotypes were coded 0 and 1.  The variables included in the analyses were linearly 

related to the dependent variables.  Zero order and partial correlations analyses adjusted for 

age, and/or gender, were performed to investigate for relationships between the blood 

pressure and lipid parameters and the apoA-I genotypes.  For the stepwise multiple regression 

to determine independent predictors of systolic and diastolic blood pressures and HDL-

cholesterol, age, gender, smoking, systolic and diastolic blood pressures, waist-to-hip ratio, 

body mass index, LDL and HDL-cholesterol and triglycerides, glucose, insulin-glucose 

product, and the apoA-I polymorphism genotypes were included in the analyses.  Due to a 

close correlation, triglycerides were excluded in the determination of independent predictors 

of HDL-cholesterol, and only either systolic or diastolic blood pressures was included during 

the determination of predictors of blood pressure.  The appropriateness of the regression 
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model was judged from the Durbin-Watson statistic (testing for serial correlation of adjacent 

error terms), and partial plots of the residuals.  The tolerance and variance inflation factors 

(VIF) were taken as measures of collinearity, with low tolerance and high VIF being signs of 

collinearity indicating that a variable should not be included in the model.   

 

Results 

A total of 271 non-diabetic, normotriglyceridaemic Chinese subjects were recruited for the 

study.  The demographic characteristics of the control and hypertensive subjects are 

described in Table 1.  The hypertensive group (B) not only had higher blood pressure but also 

higher indices of obesity, and a more adverse lipid profile than the control group A.   

No differences were identified in the frequency distributions of the ApoA-I G-75A 

genotypes or alleles between the control (group A) and hypertensive subjects (group B).  

However, there was a significantly lower frequency of the CT genotype (p=0.012) and T 

allele (p=0.011) in the hypertensive subjects (group B).  Similarly, blood pressure and 

triglyceride levels were significantly lower and HDL-cholesterol was significantly higher in 

the subjects with the CT genotype compared to those with the CC genotype (p<0.05 for all, 

Table 2).  However, the G-75A genotypes did not appear to be associated with the lipid or 

blood pressure levels. 

From the zero order correlation analyses, the apoA-I C83T polymorphism correlated 

with HDL-cholesterol (β=0.14, p=0.029), triglycerides (β=-0.17, p=0.006), systolic (β=-0.15, 

p=0.018) and diastolic blood pressure (β=-0.12, p=0.056).  Partial correlation adjustment for 

gender had no effect on the strength of the correlation, but after adjustment for age and 

gender the relationship with systolic blood pressure was no longer significant (β=-0.10, 

p=0.12), but remained significant for HDL-cholesterol (β=0.13, p=0.047), and triglycerides 

(β=-0.12, p=0.043). 
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Using stepwise multiple linear regression, waist circumference (β=-0.32, p<0.001) 

and gender (β=0.18, p=0.033) were identified as independent predictors of HDL-cholesterol, 

accounting for 18% of the variance (HDL-cholesterol = [-0.01⋅waist circumference] + [0. 

41⋅female gender] + 2.2, R2=0.18, F=15.4, p<0.001).  For triglyceride levels, systolic blood 

pressure (β=0.21, p=0.012), waist circumference (β=0.24, p=0.011), fasting insulin-glucose 

product (β=0.19, p=0.011) and age (β=0.17, p=0.021) were identified as independent 

predictors of triglycerides, accounting for 40% of the variance (triglycerides = [0.02⋅systolic 

blood pressure] + [0.05⋅waist circumference] + [0.15⋅fasting insulin-glucose product] + 

[0.003⋅age] – 1.0, R2=0.40, F=23.9, p<0.001).  For systolic blood pressure, waist 

circumference (β=0.52, p<0.001), triglycerides (β=0.21, p=0.003), and age (β=0.16, 

p=0.015) were independent predictors, accounting for 54% of the variance (systolic blood 

pressure = [1.18⋅waist circumference] + [22.7⋅triglycerides] + [0.33⋅age] + 28.5, R2=0.54, 

F=56.4, p<0.001).  For diastolic blood pressure, the same parameters waist circumference 

(β=0.53, p<0.001), age (β=0.17, p=0.010), and triglycerides (β=0.18, p=0.015) were 

independent predictors, accounting for 53% of the variance (diastolic blood pressure = 

[0.82⋅waist circumference] + [0.24⋅age] + [13.0⋅triglycerides] + 5.3, R2=0.53, F=52.7, 

p<0.001).   

Data previously reported from Caucasian subjects (n=534), where the frequency of 

the GG, GA, and AA genotypes were 65.7, 32.0, and 2.3%, respectively, with an allele 

frequency of 81.7, and 18.3%, for the G and A alleles, were significantly different compared 

to the distribution within the current control population (group A, Table 2, p<0.001) [12]. 

Whereas no differences were observed for the C83T polymorphism, whose frequencies in 

Caucasians were 93.4, 6.6% for the CC and CT genotypes and 96.7, 3.3% for the C and T 

alleles [12]. 
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Discussion 

The prevalence of hypertension and dyslipidaemia is high in Hong Kong.  In the adult 

population of Hong Kong Chinese, 46% of men and 41% of women have plasma cholesterol 

levels over 5.2 mmol/L.  18% of men and 17% of women have hypertension (≥140/90 mm 

Hg) [23].  Many genetic and environmental factors are involved in regulation of lipid levels 

and blood pressure.  The apoA-I gene, which is a major structural component of HDL, is a 

possible candidate associated with changes in lipid metabolism.  Epidemiological and clinical 

studies have revealed an inverse correlation between plasma HDL-cholesterol concentration 

and CHD incidence [24-26].  Furthermore, a strong genetic regulation of the level of HDL-

cholesterol has been established in several studies [25,27].  In an effort to elucidate the 

functional role of apoA-I gene polymorphisms, we examined a putative association between 

two apoA-I/MspI polymorphisms and plasma lipid levels, and explored their relationship 

with other clinical parameters. 

In vitro and in vivo studies suggest that the A allele at -75 site increases apoA-I gene 

expression and hence leads to elevated plasma apoA-I and HDL-cholesterol concentrations 

[14-16,18,28].  Conversely, the A allele has also been reported to be associated with 

decreased apoA-I gene expression in vitro [29].  The base substitution at the 83 bp site of the 

apoA-I gene has also been reported to be associated with elevated HDL-cholesterol levels 

[21].  In our present study, the 83T allele was associated with higher HDL-cholesterol levels, 

supporting the association of this gene with modulating HDL-cholesterol levels, even though 

there was no evidence of a relationship with the G-75A polymorphism.  The apoA-I C83T 

polymorphism was not an independent predictor of HDL-cholesterol levels.  However, 

regression equations are designed to explain the largest proportion of the variance in the 

model, rather than identifying biologically relevant parameters involved in disease 
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pathogenesis.  As such, waist circumference, an independent predictor of all the lipid and 

blood pressure parameters, gender, or age may act as composite markers of a number of 

cardiovascular risk factors, and therefore appear as strong independent predictors in these 

analyses.  Similarly, exclusion of a parameter does not preclude it from directly contributing 

to the pathogenesis of the disorder, merely the variance attributed to the parameter is 

accounted for by the other variables.  In our cross-sectional analyses, BMI closely correlated 

with all blood pressure and lipid parameters, but was not an independent predictor in the 

regression analyses, probably confounded by other parameters such as increasing waist 

circumference and ageing.  It is therefore not surprising that the apoA-I C83T polymorphism 

with its small effect size, and the likely interactions with other genetic and environmental 

factors, is not an independent predictor of HDL-cholesterol levels, even though the 

polymorphism correlated with HDL-cholesterol and triglyceride levels even after adjustment 

for age and gender. 

The previous studies reported that the frequency of the -75A allele and the +83T in 

Caucasian populations is about 18% and 4%, respectively [8,12,15,16,21].  As a distinct 

group, the Hong Kong Chinese healthy controls (group A) had a significantly higher -75A 

allele frequency (31.1%) than in equivalent Caucasian populations.  This suggests the genetic 

background could be responsible for the variable results. 

Plasma triglyceride levels were significantly different between the C83T genotypes, 

showing decreased levels in the heterozygote subjects.  Thus, the rare T allele was associated 

with lower plasma triglyceride levels.  Mutations in the apoAI-CIII-AIV gene cluster have 

been implicated in hypertriglyceridaemia.  The A allele at –75 bp site of apoA-I gene was 

associated with lower triglyceride levels in men in Finnish population [14], but not in 

Japanese [10] or in the current study.  However, the association of the 83T allele with 
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decreased triglyceride levels suggests this locus may modulate triglyceride levels in Oriental 

subjects.  

Our study also found a relationship between the C83T polymorphism of the apoA-I 

gene and blood pressure.  The T allele frequency was significantly lower in the affected 

subjects (group B) than that in control subjects (group A) and the subjects with the CT 

genotype had significantly lower SBP and DBP than subjects with CC genotype.  Blood 

pressure is influenced by genetic and nongenetic factors.  Other candidate genes in 

lipoprotein metabolism have been suggested to be candidates for blood pressure variation 

including the apoB gene which was reportedly associated with SBP [30].  The D8S282 

marker near LPL gene locus has also been reported to be associated with SBP variation in 

Taiwanese [31] and in our population [32].  Furthermore, a previous study in Caucasians also 

suggested a possible role for the apoAI-CIIII-AIV gene complex in blood pressure [33].  Our 

findings support the close relationship between blood pressure and lipid metabolism.  

However, it is currently unclear how such a mutation might influence blood pressure but 

these polymorphisms might be in linkage with others which may be more clearly related to 

blood pressure. 

In summary, we conclude that the allele distribution of the ApoA-I/MspI G-75A 

polymorphism is significantly different between Chinese and Caucasian populations. The G-

75A polymorphism did not appear to be associated with plasma HDL-cholesterol levels in 

Hong Kong Chinese.  However, the 83T allele appears to be associated with higher HDL-

cholesterol levels and decreased triglyceride levels and blood pressure. The interesting 

situation with the apoA-I gene in linking lipid metabolism and blood pressure requires further 

investigation to elucidate the mechanisms underlying this relationship. 
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Table 1: Clinical biochemical and genetic characteristics of the 271 non-diabetic 

Chinese control and hypertensive subjects  

 

 Controls (group A) Hypertensive (group B) 

Numbers 167 104 

Age (years) 36 ± 11 47 ± 10 

Gender (% male) 36.8 47.1 

Fasting glucose (mmol/L) 4.9 ± 0.4 5.2 ± 0.5 

Cholesterol (mmol/L) 4.5 ± 0.8 5.5 ± 1.3 

HDL-cholesterol (mmol/L) 1.48 ± 0.39 1.26 ± 0.32 

LDL-cholesterol (mmol/L) 2.7 ± 0.7 3.7 ± 1.3 

Triglyceride (mmol/L) 0.68 (0.63-0.73) 1.19 (1.10-1.29) 

Systolic blood pressure (mm Hg) 111 ± 9 157 ± 15 

Diastolic blood pressure (mm Hg) 64 ± 9 94 ± 11 

Mean arterial pressure (mm Hg) 80 ± 8 115 ± 10 

Body mass index (kg/m2) 21.1 ± 2.1 26.2 ± 4.1 

Waist circumference (cm) 69.2 ± 6.3 85.6 ± 9.7 

C83T genotype (CC/CT, %) 89.8/10.2 98.1/1.9 

C83T allele (C/T, %) 94.9 / 5.1 99.9 / 1.0 

G-75A genotype (GG/GA/AA, %) 47.3 / 43.1 / 9.6 53.8 / 36.3 / 6.7 

G-75A allele (G/A, %) 68.9 / 31.1 73.6 / 26.4 

Mean±SD, geometric mean (geometric 95% CI); all comparisons p<0.001, except the ApoA-

I C83T genotype (p=0.012) or allele (p=0.011) frequencies.  No significant differences were 

observed for the G-75A polymorphism distributions 
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Table 2: Association between the apoA-I C83T polymorphism genotypes and lipid 

(HDL-cholesterol and triglycerides), and blood pressure parameters 

 

 ApoA-I C83T polymorphism genotypes P value 

 CC (n=252) CT (n=19)  

HDL-cholesterol (mmol/L) 1.39 ± 0.38 1.59 ± 0.46 0.029 

Triglyceride (mmol/L) 0.86 (0.80-0.91) 0.61 (0.52-0.72) <0.001 

Systolic blood pressure (mm Hg) 126 ± 25 115 ± 15 0.001 

Diastolic blood pressure (mm Hg) 76 ± 17 68 ± 11 0.008 

Mean arterial pressure (mm Hg) 94 ± 19 84 ± 11 0.002 

Mean±SD, geometric mean (geometric 95% CI) 

 


