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Abstract- Based on the sixth order Reissner plate theory, the generalized displacement 

functions for a cracked plate are derived by eigenfunction expansion method. The fractal 

two-level finite element method is employed to obtain the stress (moment and shear) intensity 

factors for the center cracked plate subjected to out-of-plane bending and twisting loads. The 

numerical results from the present method are checked with those available in literature. 

Highly accurate stress intensity factors are predicted for a wide range of thickness to crack 

length ratio and a full range of Poisson’s ratio provided that the radius of fractal mesh to 

thickness ratio is not less than 1/10. 
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1. Introduction 

When plates containing through thickness cracks and subjected to general loadings, the 

important crack parameters: stress intensity factors and moment intensity factors should be 

determined accurately in order to predict failure. Sih et al. [1] using the fourth order classical 

plate theory determined the stress intensity factors of crack tips for plane extensions and plate 

bendings. The Kirchhoff theory was employed such that the three physically distinct 

boundary conditions on the crack surface were reduced to two approximate boundary 

conditions. Thus the solutions obtained by Sih are not physically realistic. To improve the 

accuracy, a sixth or higher order theory such as Reissner/Mindlin plate theory was proposed 

to solve the cracked plate problems. It was first considered by Knowles and Wang[2] using  

singular integral equations with a Cauchy type kernel and the Reissner plate theory to derive 

an approximate numerical solution for crack in a vanishingly thin plate subject to pure 

bending. Hartranft et al.[3] and Wang[4] used dual integral equation techniques to extend 

independently the solutions to cracked finite thickness plate. Wang[5] employed the dual 

integral equations and variational procedure to further extend the numerical solutions for 

cracks of thick plate subjected to pure twisting. Joseph and Erdogan[6] queried the validly of 

the solutions [2] and [3] when close to the crack tips. They used perturbation methods and 

collocation techniques to solve the integral equations of cracked Reissner plates and obtained 

an extremely precise numerical solution for the bending stress intensity factors. This stress 

intensity factor was found not to be conversed to the thin plate limit 
ν
ν

+
+

3
1 as reported by 

Hartranft et al.[3]. Recently, Young and Sun[7] made use of both classical and 

Reissner/Mindlin plate theories to calculate the total strain energy release rate of cracked 

plates subjected to out-of-plane tearing loads. They found that the total strain energy release 

rate according to Reissner plate theory converges to that of classical plate theory as the 
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thickness to crack length ratio approaches zero. Subsequently, Hui and Zehnder[8] using J-

integral techniques derived a universal relationship between the Kirchhoff theory stress 

intensity factors and the Reissner theory stress intensity factors for thin plates. They found 

that at the thin plate limit, the mode I moment intensity factor based on Reissner theory 

would converse to 
ν
ν

+
+

3
1  which is agreed with the precise analytical results [6]. In spite of 

the significant achievements of the above-mentioned analytical studies for the cracked plates, 

nearly all the studies were limited to cracks in infinite plates. Only a few analytical studies 

attempted to solve the problems of cracks in finite plates. Examples are Murthy et al. [9] and 

Boduroglu et al. [10]. 

 

Since 1970, alternative formulations, mainly numerical ones have been developed rapidly 

based on higher order theories to solve the pertinent problem such as  [11-20]. Among all the 

references, only reference [16] really solved the mode I, mode II and mode III problems, all 

the others dealt with mode I problem only. Thus the reliability of their proposed methods on 

mode II and mode III problems, which are commonly encountered during the practical 

situations, are questionable and pose serious uncertainties to the engineering designs. It is 

important to note that those numerical studies [11,12 and 17] claimed to be accurate for the 

thin plate limit are in fact agreed with the analytical results by Hartranft et al.[3] which were 

recently proved to be inaccurate by Joseph and Erdogan [6]. Moreover, it has been reported 

that the accuracy of some of the mentioned methods [18 and 19] fails when approaching the 

case of a thin plate. It is therefore important to seek a solution procedure that is highly 

accurate and consistent for all the modes and for the wide range of plate thickness. 
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Recently, the fractal two-level finite element method (F2LFEM) [20-24] was developed to 

tackle problems of cracked plates subject to bending and stretching loads. The objective of 

the present paper is to extend the F2LFEM to solutions of Reissner plate with a crack 

subjected to bending and twisting loadings. The accurate of the calculated stress intensity 

factors would be checked against wide range of thickness to crack length ratio and full range 

of Poisson’s ratio. We suggested that while the interpolating shape functions within a finite 

element reduce the infinite number of degrees of freedom of a continuum to a finite number 

of degrees of freedom associated with the nodal displacements, global interpolating functions 

for the nodal displacements can also reduce the number of unknowns to a large extent. The 

global interpolating functions can be obtained by eigenfunction expansion technique based 

on Reissner plate theory. The fractal transformation method is introduced so that infinite 

number of finite elements and the associated infinitely many degrees of freedom are 

transformed in an expeditious way.  

 

It is worthwhile to mention that the crack closure effect for mode I problems generally 

reduces the stress intensity factors by 10-45% (refers to Murthy et al.[25], Joseph and 

Erdogan [26] and Young and Sun [27]). Therefore, the effect of crack closure is conveniently 

and conservatively neglected in the present study. For practical engineering designs where 

the presence of slightly tensile loading may reduce the influence of closure effect, it may also 

be safer to neglect this beneficial effect.  

 

2. Global Interpolating Functions 

2.1. Eigenfunction expansion method for cracked plate 

The use of Eigenfunction expansions in the Reissner theory for plate to evaluate the 

asymptotic behavior of relevant field quantities was first suggested by Sosa[28]. The leading 
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coefficients of up to the fourth term were derived. Using the similar procedure, leading 

coefficients of up to the eighth term are determined and presented in the following sections.  

 

With reference to a rectangular coordinate system (x1, x,2, x3), a plate is considered here as an 

elastic body bounded by two parallel plates x3 = ±h/2. According to Reissner plate theory, 

three main assumptions are made:  

i)  displacements are small compared to the plate thickness,  

ii)  the stress normal to the midsurface of the plate is negligible,  

iii)  normals to the midsurface before deformation remain straight but not necessarily 

normal to the midsurface after deformation. 

For a typical Reissner plate, the plate displacement vector u is expressed as, 

         (1) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

w
2

1

ψ
ψ

u

in which w is the lateral plate displacement normal to x1-x2  plane and variables ψ1 and ψ2  

are the normal rotations in x1-x3 and x2-x3 planes respectively. The sign conventions for plate 

displacements and plate forces for Reissner plate are depicted in Figure 1. 

 

INSERT FIGURE 1 AROUND HERE 

 

As in any crack problem, it is essential to choose an appropriate coordinate system. 

Assuming the crack lines along the -x1 axis, it is suitable to use the polar coordinates r and θ, 

located at the crack tip. By using the linear theory of elasticity, the equilibrium equations 

could be written as, 

 
∂
∂

∂
∂θ

θ θθM
r

M
r

M M
r

Qrr r rr
r+ +

−
− = 0,    (2) 
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∂
∂

∂
∂θ

θ θθ
θ θ

M
r

M
r r

M Qr
r+ + −

2
0= ,     (3) 

and 
∂
∂

∂
∂θ
θQ

r
Q

r
Q
r

r + + = 0r .       (4) 

Also the moment and shear forces expressed in terms of the plate displacements were given 

by 

 M D
r rrr
r

r= + +
⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣⎢
⎤

⎦⎥
∂ψ
∂

ν
ψ

∂ψ
∂θ

θ ,     (5) 

 M D
r r r
r

θθ
θ rψ ∂ψ

∂θ
ν
∂ψ
∂

= + +
⎛
⎝
⎜

⎞
⎠
⎟,     (6) 

 M D
r r rr

r
θ

θ θν ∂ψ
∂

∂ψ
∂θ

ψ
=

−
+ −

⎛
⎝
⎜

⎞
⎠
⎟

1
2

,     (7) 

 Q D
h

w
rr =

−
+ r

⎛
⎝
⎜

⎞
⎠
⎟

5 1
2

( )ν ∂
∂

ψ ,      (8) 

 Q D
h

w
rθ θ

ν ∂
∂θ

ψ=
−

+
⎛
⎝
⎜

⎞
⎠
⎟

5 1
2

( )
,      (9) 

in which D
Eh

=
−

3

212 1( )ν
 is the flexural rigidity and E is the Young’s modulus. By 

substituting the plate forces (5-9) into the equilibrium equations (2-4), one can obtain the 

Navier equations for Reissner plate, 

 
[ ]− + − − − + − +

− − + + + =

2 5 1 3 1 2

10 1 1 2 0

2 2 2 2
2

2
2

2 2
2

2 2
2

2

h r h h h r
r

r
w
r

h r
r

h r
r

r
r r

r

( ) ( ) ( )

( ) ( )

ν ψ ν
∂ψ
∂θ

ν
∂ ψ
∂θ

∂ψ
∂

ν
∂
∂

ν
∂ ψ
∂ ∂θ

∂ ψ
∂

θ

θ
, 

          (10) 

 
( )( )− + − + − − − +

+ − + + + − =

h r h r
w

h

h r
r

h r
r

h r
r

r

r

2 2 2 2
2

2

2 2
2

2 2
2

2

10 1 3 10 1 2

1 1 1 0

ν ψ ν
∂ψ
∂θ

ν
∂
∂θ

∂ ψ
∂θ

ν
∂ψ
∂

ν
∂ ψ
∂ ∂θ

ν
∂ ψ
∂

θ
θ

θ θ

( ) ( )

( ) ( ) ( )

, 

          (11) 
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∂
∂θ

ψ
∂ψ
∂θ

∂
∂

∂ψ
∂

∂
∂

θ
2

2
2

2

2 0
w

r
w
r

r
r

w
rr

r+ + +
⎛
⎝
⎜

⎞
⎠
⎟ + +

⎛

⎝
⎜

⎞

⎠
⎟ = .   (12) 

Further introducing the traction-free boundary conditions at the crack faces, we get 

 M M Qrθθ θ θ θ π= = = ±0 for = .    (13) 

The solutions of the Navier equations are conveniently represented as the double infinite 

series 

 D r
n

n
nm

m( )1
00

− = +

=

∞
r U

=

∞

∑∑ν ψ λ ,     (14) 

 D m n
n

nm
( )1

00
− = +

=

∞

=
r V

∞

∑∑ν ψθ
λ ,      (15) 

 D w r m n
n

nm
( )1

00
− = +

=

∞
W

=

∞

∑∑ν λ ,      (16) 

where Un, Vn and Wn are functions of θ. After substituting the series into the Navier equations 

and considering the boundary conditions (13), the solution of the eigenvalue problem gives, 

 λm
m

m= ± =
2

0 1 2, , , L, .      (17) 

All the negative values of λm  are rejected due to the results of unacceptable stresses and 

displacements. Then the double series (14-16) are simplified to the single series such that 

 D r
n

n
n

( ) /1 2

0
− = r f

=

∞

∑ν ψ       (18) 

 D n
n

n
( ) /1 2

0
− = r g

=

∞

∑ν ψθ       (19) 

 D w r n
n

n
( ) /1 2

0
− = h

=

∞

∑ν       (20) 

where fn, gn and hn are the eigenfunctions  with variables of θ and ν only. Substituting 

equations (18-20) into the Navier equations (10-12) and the force and moment resultant 

equations (6-9) we have, 
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( ) ( ) ( )

( )

1
2

1
4

3
2 4

1

5 1
2

1

2

2

2

2 2 4

−
+

+
−

−⎧
⎨
⎩

⎫
⎬
⎭

+ −
⎛

⎝
⎜

⎞

⎠
⎟

=
−

−
⎛
⎝
⎜

⎞
⎠
⎟ +

⎡
⎣⎢

⎤
⎦⎥− −

ν ∂
∂θ

ν ν ∂
∂θ

ν

f n g n
f

h
n

h f

n n
n

n n

,  (21) 

 

∂
∂θ

ν ν ∂
∂θ

ν

ν ∂
∂θ

2

2

2

2
2

4

3
2

1
4

1
2 4

1

5 1

g n f n
g

h
h

g

n n
n

n
n

+
−

+
+⎡

⎣⎢
⎤
⎦⎥

+
−

−
⎛

⎝
⎜

⎞

⎠
⎟

=
−

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−
−

( ) ( ) ( )

( )
,  (22) 

 
∂
∂θ

∂
∂θ

2

2

2

2
2

4 2
h n h n

f
gn n

n
n+ = − −−
− ,     (23) 

and 

 M r
n

f
g

rr
n

n
n

n
=

−
+

⎛
⎝
⎜

⎞
⎠
⎟ +

⎡

⎣
⎢

⎤

⎦
⎥−

=

∞

∑1
1 2

2 1

0ν
ν θ ν

∂ θ
∂θ

/ ( )
( )

,   (24) 

 M r
n

f
gn

n
n

n
θθ ν

ν
θ

∂ θ
∂θ

=
−

+
⎛
⎝
⎜

⎞
⎠
⎟ +

⎡

⎣
⎢

⎤

⎦
⎥−

=

∞

∑1
1

1
2

2 1

0

/ ( )
( )

,   (25) 

 M r
n

g
f

r
n

n
n

n
θ θ

∂ θ
∂θ

= −
⎛
⎝
⎜

⎞
⎠
⎟ +

⎡

⎣
⎢

⎤

⎦
⎥−

=

∞

∑1
2 2

12 1

0

/ ( )
( )

,   (26) 

 Q
h

r
n

h fr
n

n n
n

=
⎛
⎝
⎜

⎞
⎠
⎟−

−
=

∞

∑5
22

2 1
2

0

/ ( ) ( )θ + θ ,    (27) 

 Q
h

r
h

gn n
n

n
θ

∂ θ
∂θ

θ= +
⎛

⎝
⎜

⎞

⎠
⎟−

−
=

∞

∑5
2

2 1
2

0

/ ( )
( ) .    (28) 

To obtain the solution of the set of ordinary differential equations (21-23), one can observe 

that the third equation (23) can be solved separately from the first two equations (21-22). 

Furthermore the eigenvectors can be determined by combining the complementary functions 

and the particular integrals. 
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Considering the homogenous part of equations (21-23), the complementary functions for fn 

and gn can be shown to be 

  (29) 
f c n c n c n

c n
n
c = − + − + +

+ +
1 2 3

4

1 2 1 2 1 2
1 2

cos( / ) sin( / ) cos( / )
sin( / )

θ θ
θ

θ

θ
  (30) 

g d n d n d n
d n

n
c = − + − + +

+ +
1 2 3

4

1 2 1 2 1 2
1 2

cos( / ) sin( / ) cos( / )
sin( / )

θ θ
θ

where  are arbitrary constants. The relations between the constants are 

found by substituting equations (29-30) into (13) which yields (except for n=2), 

c d ii iand ( , , , )= 1 2 3 4

 d
n n
n n

c1 2
6 2
6 2

=
− − + −
− + + +

( )
( )

ν
ν

,   d
n n
n n

c2 1
6 2
6 2

=
− − + −
− + + +

( )
( )

ν
ν

, 

  d c .      (31) d c3 4 4= and 3= −

b b

n=

b

Letting  

 ,   c n , c n n n1
16 2= − + + +[ ( ) ] ( )ν n n2

26 2= − + + +[ ( ) ] ( )ν

       (32) c a c an3
1

4
2= ( ) ( )and

and by substituting equation (29 and 30) into the boundary conditions at the crack faces, we 

have additional relations for . Finally the general complementary functions are 

given as, 

an
i

n
i( ) ( )and

 
f a n

n n
n

n

a n
n n

n
n

n
c

n n

n n

= + +
− − −

− + +
−

+ + +
− + + +

− − + +
−

( )

( )

[cos( / )
( )

( ( ) )( )
cos( / ) ]

[sin( / )
( )

( ( ) )( )
sin( / ) ]

1

2

1 2
6 2

2 1 1
1 2

1 2
6 2

2 1 1
1 2

θ
ν ν

ν
θ

θ
ν ν

ν
θ

 (33) 

 
g a n

n n
n

n

a n
n n

n
n

n
c

n n

n n

= − + +
+ − +

− + +
−

+ + +
+ − +

− − +
−

( )

( )

[sin( / )
( )

( ( ) )( )
sin( / ) ]

[cos( / )
( )

( ( ) )( )
cos( / ) ]

1

2

1 2
6 2

2 1 1
1 2

1 2
6 2

2 1 1
1 2

θ
ν ν

ν
θ

θ
ν ν

ν
θ

. (34) 

By solving (23), the complementary function of  is given as hn
c
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 h a n nn
c

n

n n
=

+ −
+

− −⎡

⎣
⎢

⎤

⎦
⎥( ) ( ( ) )

cos( / )
( ( ) )

sin( / )3 1 1
2

2
1 1

2
2θ θ .  (35) 

The complementary functions just derived would be used as the global displacement 

interpolation function. It is found that the numerical results become highly accurate when the 

complementary functions alone are chosen. 

 

In addition, when the particular integrals of equations are determined, the truncated complete 

infinite series of up to the eighth term are obtained and are expressed in the Appendix. It is 

important to realize that in contrast to plane crack problems, the leading unknown 

coefficients ( , i=1,2,3) are coupled with the higher order coefficients through the 

equilibrium equations. Therefore the determination of the coefficients is in fact solving a 

non-linear problem that requires an iterative solution procedure. However, it can be observed 

from equations (A.1) that the non-linear effects become insignificant when the region shrinks 

toward the crack tip or the thickness of plate increases to infinity. To avoid the troublesome 

iterative solution, only the complementary functions and a sufficiently small singular zone 

will be considered in the subsequent fractal transformation. Finally, by substituting the 

displacement equations (18-20) into (24-28), the plate forces can be derived. In particular, 

when n=1, the singular force components are given by, 

)(i
na

 M
r

a ar1 1
1

1
21

2
3
2

5
2

3
2

5
3 2

= −
⎛
⎝
⎜

⎞
⎠
⎟ + −

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

( ) ( )cos cos sin sin
θ θ θ θ

 

 M
r

a aθ
θ θ θ

1 1
1

1
21

2
3
2

3
2

3
2 2

= − +
⎛
⎝
⎜

⎞
⎠
⎟ − +

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

( ) ( )cos cos sin sin
θ

 

 M
r

a arθ
θ θ θ θ

1 1
1

1
21

2
3
2 2

3
2

1
2 2

= − +
⎛
⎝
⎜

⎞
⎠
⎟ + +

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

( ) ( )sin sin cos cos  

 Q
h r

ar1 2 1
35

2 2
= ( ) sin

θ
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 Q
h r

aθ
θ

1 2 1
35

2 2
= ( ) cos .      (36) 

The distributions of shear forces and moments for Reissner plate are found to be similar to 

the counter-parts of the stress components of the three-dimensional straight crack as derived 

by Hartranft and Sih [29]. The displacement and rotation fields could be determined by 

substituting the eigenfunctions as shown in the Appendix into the equations (18) to (20). 

 

2.2. Fracture parameters 

Following the definitions of the fracture parameters by Irwin [30], moment intensity factors 

K1 and K2, and shear force intensity factor K3 are given as follows: 

 

K r M

K r M

K rQ r

r

r

r

r

r

1
0

22

2
0

12

3
0

2

2 0

2

2 0

=

=

=

→

→

→

lim ( , ),

lim ( , ),

lim ( , ).

0       (37) 

Explicit dependence of the stress intensity factors K x i I II IIIi ( ), ( )3 = , , on the transverse 

coordinate x3 is obtained by means of the relations 

 K x
x

h
KI ( )3

3
3 1

12
=  , 

 K x
x

h
KII ( )3

3
3 2

12
=  , 

and K x
h

x
h

KIII ( )3
3

2

3
3

2
1

2
= −

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ .     (38) 

Considering the singular forces (36) and the definitions of (37), the moment intensity factors 

and shear intensity factor can further be related to the unknown coefficients as, 

 K a K a K
h

a1 1
1

2 1
2

3 2 1
32 2

2 2
3

5 2
2

= − = − =( ) ( ) ( ), and .  (39) 

Thus, the whole problem is reduced to the determination of coefficients a . i
1
( )
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3. Decomposition of Stiffness Matrix for Reissner Plate Elements 

Consider an m-node Reissner plate isoparametric element, the coordinates and the 

displacements of which may be expressed by 

   and  x Nx Ni i
i

m

1 1
1

=
=
∑ ( , )ξ η X i2Xi

i

m

2
1

=
=
∑ ( , )ξ η    (40) 

and 

  , ψ ξ η ψ1 1
1

=
=
∑Ni i
i

m
( , ) ψ ξ η ψ2 2

1
=

=
∑Ni i
i

m
( , )

wi

  

and         (41) w Ni
i

m
=

=
∑ ( , )ξ η

1

where (X1i, X2i) and (ψ1i,ψ2i,wi) are the nodal coordinates and nodal displacements of an 

element respectively and Ni(ξ,η) are the shape functions. The resulting element stiffness 

equation is 

 .        (42) Kd Q=

The stiffness matrix K may be calculated by 

 .     (43) K B DB J=
−−
∫∫ 1

1

1

1 T d ddet[ ] ξ η

In particular, the load vector Q for uniformly distributed load with intensity p may be 

expressed as 

       (44) Q N det J=
−
∫ T p d d[ ] ξ η

1

1

where 
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂
∂
∂

x

x

x x

x

x

1

2

2 1

1

2

      (45) 

 J =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∂
∂ξ

∂
∂ξ

∂
∂η

∂
∂η

x x

x x

1 2

1 2
       (46) 

 D

0

0
=

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

D D
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    (47) 

where μ  is the shear modulus. 

Considering two elements denoted by 1 and 2, which are similar in x1 and x2 directions such 

that X Xi i1
2

1
1= ξ  and X Xi2

2
2
1= ξ i  in which ξ  is the proportionality constant. By equation 

(46), one can have 

 det J det J[ ] [2 2= ξ ]1 .       (48) 

The stiffness matrix K in (43) for element 2 can be decomposed according to the power of ξ  

to three sub-matrices S0, S1 and S2, such that 

 K B DB det J S S2 2 2 2
0 1

2
21

1

1

1
= =

−−
∫∫ T d d[ ] ξ η ξ ξ S+ +   (49) 

where 
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and 
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Similarly, the associate load vector can be written as 

 Q2 2= ξ Q1.        (53) 

Equations (49) and (53) can be used to calculate any element stiffness matrix and the 

associate load vector with geometrical similarity. 
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4. Fractal Transformation for Cracked Reissner Plates 

Figure 2 shows the layout of the fractal mesh. Γ0 is any convex curve that separates the 

singular region Ψ with the regular region. In the singular region, infinite many of 

conventional finite elements are capable of modeling the singular behavior of the crack tip. It 

is convenient to take the crack tip as a center of similarity as shown in Figure 2. Noting the 

defined range 0<ξ <1 of the proportionality constant, an infinite set of curves { },...,, 321 ΓΓΓ  

similar to the shape of Γ0 with proportionality constants 1ξ , 2ξ , 3ξ … are generated inside 

the singular region. In between any two curves Γn-1 and Γn, the region is named the nth layer. 

All the nodes located on the curve Γ0 are called the master nodes. A set of straight lines that 

emanate from the similarity center is connected to the master nodes. Therefore, each layer is 

divided into a mesh of element with a similar pattern. All the nodes inside the curve Γ0 are 

called the slave nodes. The grading of mesh inside the singular region can be controlled by 

the proportionality constant ξ <1. Higher values of ξ will produce finer grade of mesh and 

vice versa. By this procedure, a fractal mesh is generated. The final stiffness matrix in the 

singular domain Ψ shown in Figure 2 is accomplished by transforming the stiffness matrix of 

the first layer of fractal mesh and modifying each entry of the stiffness matrix. 

 

INSERT FIGURE 2 AROUND HERE 

 

For the first layer of mesh, let the displacements on the boundary Γ0 be the masters dm and 

the displacements within the boundary Γ0 be the slaves ds. To carry out the transformation, 

equation (42) is first partitioned with respect to s and m as, 

      (54) Kd
K K
K K

d
d

f
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⎫
⎬
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f
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f

s
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m
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where the superscript ‘f’ indicates first layer of mesh. Only the displacements at the slave 

nodes are transformed. The second level (global) interpolation of displacements can be 

written as follows, 

       (55) 
d
d

T 0
0 I

a
d

s

m

s
f

m

⎧
⎨
⎩

⎫
⎬
⎭
=
⎡

⎣
⎢

⎤

⎦
⎥
⎧
⎨
⎩

⎫
⎬
⎭

where I is the identity matrix and Ts
f is the transformation matrix that can be evaluated by 

suitable coordinate transformation of equations (18-20). The generalized stiffness matrix and 

force vector for the first layer of fractal mesh can be evaluated, and the result is given by, 
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 K d Qf f f= .        (56) 

For the inner layer, each element stiffness matrix and load vector within the first layer of Ψ 

would be transformed and assembled. Based on the fractal concepts, an infinite number of 

elements and numerous degrees of freedom would virtually be generated near the crack tip. 

Applying the fractal transformation technique, infinitely many layers of mesh can be 

transformed and assembled with little effort. Inner layer of the generalized stiffness matrix 

and generalized load vector are given as 
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Due to the fact of geometrical similarity, the transformation matrix at the kth layer ( T ) can 

be written in term of the first layer ( ) i.e., 

k

T f

        (59) T T Diag[ ]k f
j= α

where α ξj
n k

j
j n
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j
j

j
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= =
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L

 .  (60) 

Substitute equations(59) and (60) into equations (57) and (58), one can observe that the 

summations of  infinite series in each entry of the stiffness matrix is in fact a summation of a 

geometric progression series. Therefore, the condensation of equation (57) can be achieved 

by multiplying each entry of transformed stiffness matrix at the first layer f
ijls  with a factor of 

ijlα , thus 
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Similarly for the load vector 
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in which 
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Finally, 

 K K Ks
f= + i ,       (65) 
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and Q Q Qs
f= + i        (66) 

The generalized stiffness matrix and the generalized load vector can be obtained easily. 

 

5. Examples on Mode I, Mode II and Mode III Cracks 

In order to verify the validity of the proposed approach, problems concerning the bending of 

a square plate under the effects of edge moment and twisting are studied. The results are 

compared with the analytical solution by Joseph[6] and Wang [4] and [5] for infinite plates. 

The present analyses employed 9-node Lagrange plate elements as the reliability and 

accuracy for this kind of elements had been ascertained by Zienkiewicz and Taylor [31]. 

 

The following data are used throughout the analyses: i) For material properties, E=20000, 

ν=0.3 unless otherwise specified. ii) For geometrical data, b=1 where 2b is the plate width, 

crack length of 2a is for central crack. iii) For loading condition, edge moment or edge 

twisting moment is of unit intensity. iv) The self-similarity ratio is assumed to be 0.5. 

 

5.1. Infinite plate with crack subjected to out-of-plate bending 

 

The analytical solution of infinite cracked plate subjected to out-of-plate bending had been 

studied by Hartranft and Sih [3], Wang [4] and recently by Joseph and Erdogan [6]. whereas 

the numerical solutions had been investigated by various investigators[11,12,14,16,17]. This 

problem is considered in this section to examine the thickness and the Poisson’s ratio effects 

on the variations of moment intensity factors and the convergence of the F2LFEM. 

 

Figure 3 shows the typical finite element mesh for the analysis, consisting of 152 elements 

and 694 nodes. Since all the applied loads are symmetric about the axis on which the crack is 

 18



lying, only one quarter of the plate requires analysis. The ratio of plate width to crack length 

b/a=20.0 is selected since it has been shown to be large enough for modeling the infinite 

plate by Barsoum [11]. 

 

INSERT FIGURE 3 AROUND HERE 

 

In order to study the convergence of the proposed method with the size of fractal mesh r0 (the 

radius of fractal mesh), five finite element meshes with size of fractal mesh r0/a ranging from 

1/16 to 1/256 are prepared. Table 1 shows the results of convergence of the dimensionless 

moment intensity factor K M a1 0/ . It is found that r0/a<1/256 is in general, enough for 

achieving the convergence for the plate with thickness ratio h/b=0.01. Furthermore the 

convergence of number of transformation terms is also investigated. The results are tabulated 

in Table 2. It is found that a higher number of terms is required to achieve an accurate 

solution for smaller ratios of h/a. In general, 14 terms are sufficient for thin plate with 

h/b=1/1000 to reach a convergent solution.  
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 Size of fractal mesh r0/a   

H/a 1/16 1/32 1/64 1/128 1/256 Hartanft Haung 

2.0 0.818 0.820 0.820 0.820 0.820 0.816 0.819 

1.5 0.783 0.787 0.788 0.788 0.788 0.781 0.785 

1.0 0.739 0.746 0.748 0.749 0.749 0.741 0.745 

0.5 0.670 0.692 0.698 0.700 0.701 0.693 0.697 

0.2 0.542 0.622 0.652 0.662 0.664 0.697 0.651 

Table 1: Convergence of F2LFEM against size of fractal mesh. 

(Number of transformation terms = 12, ν = 0.3) 

 

 Number of transformation terms 

h/a 2 4 6 8 10 12 14 16 

1.0 .724 .749 .749 .749 .749 .749 .749 .749 

0.1 .496 .624 .635 .637 .638 .639 .639 .639 

0.02 .184 .348 .446 .466 .476 .481 .485 .485 

Table 2: Convergence of F2LFEM against number of transformation terms. 

(r0/a=1/128, ν=0.3) 

 

When compared with the F2LFEM for two-dimensional cracks, it is found that the accuracy 

of the solution does depend on the size of fractal mesh. Faster convergence is achieved for 

smaller size of fractal mesh or larger thickness of plate. It should be recalled that the global 

interpolating functions used here contain only the complementary functions and that all the 

effects of coupling coefficients in r0 of equation (A.1) are neglected. However, the coupling 

effects are found to be proportional to the ratio r0
n/hm where n and m are some positive 
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integers. The coupling effects would be diminished leading to a good approximation by  

solely the complementary functions when the size of fractal mesh r0 is small or the thickness 

of plate h is large. 

 

Thickness effect is studied here using the size of fractal mesh of r0/a=256 and 14 

transformation terms. The dimensionless moment intensity factors are plotted in Figure 4 for 

comparison with those of Barsoum[11], Yagawa[12], Alwar[14], Viswanath[17] and 

Joseph[6]. It is found that the 3-dimensional analysis [14] generally over-estimated the 

moment intensity factors by around 8%. When compare with the extremely precise analytical 

solutions by Joseph[6], all the numerical results (Barsoum[11], Yagawa[12], Alwar[14], 

Viswanath[17] and the present method) under-estimate the moment intensity factors when 

approaching the thin plate limit. The results reported by Barsoum[11], Yagawa[12] and 

Viswanath[17] started to departure from the exact solution when h/a are less than 1.0, 0.5 and 

0.25 respectively. The accuracy and the reliability of the present method appear to be the best 

among all the available numerical methods. The present numerical solutions tend to diverse 

from the analytical solution only when the ratio of h/a is less than 0.04 or equivalent 

speaking the ratio of r0/h is greater than 1/10. 

 

INSERT FIGURE 4 AROUND HERE 

 

Poisson’s ratio and thickness effects are studied here used the size of fractal mesh of 

r0/a=256 and 14 transformation terms. The dimensionless moment intensity factors are 

plotted in Figure 5 for comparison with those of Wang[4]. Very good agreement with less 

than 1.5% difference with Wang’s analytical results is obtained. A distinguishing feature of 

 21



accurate prediction of mode I moment intensity factors for a wide range of h/a ratios 0.04 to 

5 and the full range of Poisson’s ratio is observed.  

 

INSERT FIGURE 5 AROUND HERE 

 

5.2. Infinite plate with crack subjected to twisting bending 

The solution of infinite cracked plate subjected to twist loading shown in Figure 6 had been 

studied analytically by Wang [5] and numerically by Huang [16]. It is a mixed mode (II and  

III) problem. We use the similar mesh as shown in Figure 3 with width to crack length ratio 

b/a=20.0 for the analyses. Since all the applied loads are skew-symmetric with respect to the 

axis on which the crack is lying, only one quarter of the plate is analyzed. 

 

INSERT FIGURE 6 AROUND HERE 

 

Poisson’s ratio and the thickness effects are studied here using a fractal mesh of size r0/a=256 

and 14 transformation terms. The dimensionless moment intensity factor K H a2 0/ ( )  and 

shear intensity factor K h H3 01( ) / (+ ν a10 )  are compared with the results of Wang [19] and 

are plotted in Figure 7 and 8 for mode II and III respectively. Good agreements with 

deviations less than 1.0% and 5.0% for mode II and mode III respectively are observed. A 

distinguishing feature of accurate prediction of moment intensity factors for a wide range of 

h/a ratios (from 0.02 to 5) and full range of Poisson’s ratio is also noticed. 

 

INSERT FIGURES 7 & 8 AROUND HERE 

 

6. Conclusion 
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In this paper, the F2LFEM was applied to analyze the mixed mode problems of Reissner 

plates with crack. The eigenfunction series of cracked Reissner plate was derived up to the 

eighth term. The decomposition of stiffness matrices and force vectors with similar shape 

was discussed. The basic formulation of the F2LFEM on the analysis of Reissner plate cracks 

including the fractal transformation technique was given. The convergence study of the 

present method showed that highly accurate results could be obtained when the fractal mesh 

size satisfies r0/h < 1/10. Examples were given on I, II and III modes to illustrate the 

efficiency of the present method. In general, good accuracy of about 1.0% error for mode I 

and mode II, and about 5.0% error for mode III cracks were found when compared with 

Wang’s results. A distinguishing feature of accurate prediction of moment intensity factors 

for a wide range of h/a ratios (from 0.04 to 5) and the full range of Poisson’s ratio is also 

observed. The present approach has shown to be more reliable and accurate than the other 

methods such as the special crack tip element method [17] and the quarter-point element 

approach[11] in which errors of 10% or more were reported for decreasing plate thickness. 

By combining the present cracked plate formulation with the cracked membrane formulations 

[23] and [24], it is possible to extend the present F2LFEM to solutions of general flat shell 

with cracks. 
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List of Captions 

Figure 1. Notations for Reissner plate. 

Figure 2. Fractal mesh configuration. 

Figure 3.  Mesh configuration for modeling the infinite plate. 

Figure 4. Comparison of moment intensity factors. 

Figure 5. Variation of K1 versus ratio of plate thickness to crack length. 

Figure 6. Center cracked plate subjected to twisting moment. 

Figure 7. Variation of K2 versus ratio of plate thickness to crack length. 

Figure 8. Variation of K3 versus ratio of plate thickness to crack length. 
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Figure 3. Mesh configuration for modeling the infinite plate. 
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