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Abstract— In this paper, the geometric relationship be-
tween mosaic images for concentric panorama acquired
by slit cameras along circular paths is considered. A con-
centric epipolar constraint is derived for mosaic images.
It is shown how the concentric epipolar constraint can be
used to calibrate the slit camera using point correspon-
dences in two mosaic images. The concentric epipolar
constraint is further extended to trifocal geometric rela-
tionships for three mosaic views.

Keywords— concentric panoramas; mosaic images; epipo-
lar geometry; fundamental matrix; scene navigation

I. Introduction

Concentric panorama has been shown to be an e¤ective
basis for rendering scenes in real-time scene navigation
[1]. With concentric panorama, it is possible to synthe-
size the scene realistically while moving the viewpoint
freely within a circular region on a plane. In this paper,
we will discuss the problem of representations of points
and lines in concentric panorama and consider some
novel concentric panorama geometries between mosaic
images.
In concentric panorama, a slit camera is mounted on a
rotary table at a known radius with view axis tangential
to the circular path. The slit camera captures a column
1-D image at equally spaced points along the circular
path. After a complete revolution, a panoramic image
can be formed by gluing all the column images together.
This is called a mosaic image. Repeating the above pro-
cess for di¤erent radii, we can collect a set of mosaic
images.
The relationship of corresponding points in two 2-D pla-
nar images can be described by well-established epipolar
geometry. A point in an image can be back-projected
into 3-D space as a ray passing through the camera ori-
gin and the point. This ray is then projected on the
other image producing the epipolar line. Similarly, the
corresponding point on the second image can be pro-
jected as an epipolar line on the …rst image. This mutual
relationship can be described by a 3 £ 3 matrix called
the fundamental matrix [2], which relates corresponding
points on both images directly without any prior knowl-
edge about the parameters of the camera.
In this paper, we will de…ne the slit-camera model to
project a point and a line from 3-D space to a mosaic
image. The projection of a 3-D point on a mosaic image
is still a point. However, the projection of a line from

3-D space on a mosaic image becomes a curve [3], which
will be referred to as a ‘mosaic line’. We will obtain the
nonlinear equation for this curve.
To extend epipolar geometry to mosaic images, a ray is
back-projected from the camera origin through a point
on the mosaic image. This ray lies on a vertical plane
that is tangential to the circular path and it touches
the circular path at the camera origin. The projection
of this ray on another mosaic image is a curve which
can be represented by the equation of a mosaic line.
This is called an epipolar curve. With the properties
of epipolar curves, the idea of the fundamental matrix
can be extended to mosaic images. We will derive the
mutual relationship between any two mosaic images in
a way similar to the role of the fundamental matrix for
2-D planar images. Two mosaic images are said to be
weakly calibrated [4] if this relationship is known.
Furthermore, given two corresponding points on two mo-
saic images M1 and M2, which are weakly calibrated
with a third mosaic images M3, we will show that it
is possible to locate the corresponding point on the
third mosaic image. Projecting the given correspond-
ing points onM1 andM2 to two epipolar curves on M3,
the intersection of these two epipolar curves will give
the required point. This is similar to the use of trifo-
cal tensors for relating a triple of views in 2-D planar
images. There are two trifocal constraints for mosaic
images. One relates all three vertical elevation values
y of the corresponding points. Another relates all the
three rotated angles µ. A partial 3-D reconstruction (X-
Z plane only) can be performed by three views. We will
also consider how to calibrate the slit camera with …xed
intrinsic parameters using point correspondences in mo-
saic images.

II. Image Acquisition System

Fig.1 shows the top-view of the acquisition system for
concentric panorama. A slit camera is mounted on a
rotary table at a known distance r from the centre with
view axis tangential to the circular path. The slit camera
captures a column 1-D image at equally spaced points
along the circular path. After a complete revolution, a
panoramic image can be formed by gluing all the column
images together. This is called a mosaic image as shown
in Fig. 2. At any angular position µ, let the image
coordinate of the 1-D image captured by the slit camera
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Fig. 2. Two di¤erent orientations of Mosaic Images

be denoted by y. Then, image coordinate of the mosaic
image is given by [µ; y]T , where µ 2 [0; 2¼) and y lies in
the vertical image range of the slit camera. The radius
r of the camera is …xed for a mosaic image. Repeating
the 1-D image gathering process for di¤erent radii, we
can collect a set of mosaic images, each labelled by its
value of r.
We de…ne the world coordinate system with the origin
set at the centre of the rotary table, theX-Z plane taken
as the horizontal plane and the vertical axis as the Y -
axis with positive direction pointing downward. The
angular position µ of the camera is measured from the
X-axis with the positive sense in the counter-clockwise
direction.
Suppose the view direction of the camera is de…ned to
be the same as the rotating direction. For each circular
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Fig. 3. Slit Camera Model

path, there are two possible view directions, correspond-
ing to counter-clockwise or clockwise rotation of the ro-
tary table. When the rotation is counter-clockwise, the
mosaic image is called a positive mosaic image. Clock-
wise rotation produces negative mosaic images. We will
only consider positive mosaic images in this paper.

A. Slit Camera Model

The extrinsic parameters of a camera describe the loca-
tion of the camera in the 3-D world coordinate system.
The extrinsic parameters of the slit camera are given by
the angle µ and radius r since they completely determine
the location and orientation of the camera.
Given a 3-D point

£
X Y Z

¤T
. This point will be

seen by the slit camera at only one angular position µ
on a circular path. To obtain the projection of the 3-
D point onto the slit camera placed at the appropriate
µ, consider a general pin-hole camera in stead of a slit
camera placed at position (r; µ). The advantage of using
with a pin-hole camera model to start with rather than
the simpler slit camera model will become apparent be-
low. We can then turn the pin-hole camera into a slit
camera by restricting the image to the vertical axis. Let
x-y be a coordinate system de…ned on the image plane
and let the intrinsic parameter matrix of the pin-hole
camera be given by

A =

24 sx 0 cx
0 sy cy
0 0 1

35
where sx and sy are the horizontal and vertical scale
factors (dependent on the pixel size and the focal length
f) and (cx; cy) is the principle point on the image plane.
Since the image of the slit camera will be con…ned to the
y-axis, we may assume without loss of generality that
sx = 1 and cx = 0.
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When the camera is at the position (r; µ), the transfor-
mation from the camera frame back to the world coor-
dinate system is

R =

24 cos µ 0 ¡ sin µ
0 1 0
sin µ 0 cos µ

35 ; t =
24 r
0
0

35
where R is the rotation and t is the translation of the
camera. The projection matrix P of the pin-hole camera
is given by

P = A
£
R¡1 ¡t ¤

3£4

P =

24 cos µ 0 sin µ ¡r
¡cy sin µ sy cy cos µ 0
¡ sin µ 0 cos µ 0

35 (1)

B. Projections of 3D point on mosaic image

A 3D point M =
£
X Y Z 1

¤T
(expressed in ho-

mogeneous coordinates) can be projected onto a point
ms on the image plane by the projection matrix P . Since
the imaging device is a slit camera, the point ms will
appear on the slit camera image only if it has the form£
0 y 1

¤T
. Hence, we have

24 0
y
1

35 ¼
24 cos µ 0 sin µ ¡r
¡cy sin µ sy cy cos µ 0
¡ sin µ 0 cos µ 0

35
2664
X
Y
Z
1

3775
(2)

where ¼ means equal up to a scaling factor. Note
that this equation expresses not only how the 3D point£
X Y Z

¤T
projects onto the vertical coordinate y

of the 1D image, but also where the slit camera should
be placed in order for the image point to be seen. Elim-
inating the scaling factor from (2), we have

r = X cos µ + Z sin µ (3)
y ¡ cy
sy

=
Y

Z cos µ¡X sin µ (4)

We can regard (3) and (4) as the equations for project-
ing

£
X Y Z

¤T
onto the mosaic image coordinates

[µ; y]T for a given radius r - the …rst equation is for locat-
ing µ and the second one for solving y: In (3), there are
two possible solutions for µ corresponding to the positive
and the negative mosaic images. However, the value of
y is the same for both of these mosaic images.

III. Projections of a straight line in 3D space
on mosaic image

A straight line in 3D space is completely determined by
two given points,M1 =

£
X1 Y1 Z1 1

¤T
andM2 =£

X2 Y2 Z2 1
¤T
on the line. Any pointMl lying on

the line can be represented as Ml = (1¡ °)M1 + °M2,
where ° 2 (¡1;+1). By projecting Ml onto a mosaic

image using (3) and (4) and then eliminating °, we get
the equation of the projected line, which will be referred
to as a mosaic line:

y = cy ¡ sy®0 + °1 cos (µ ¡ Á1)
¯0 + °2 cos (µ ¡ Á2)

(5)

where

®0 = (Y1 ¡ Y2) r
¯0 = X2Z1 ¡X1Z2

°1 =

q
(Y2X1 ¡ Y1X2)2 + (Y2Z1 ¡ Y1Z2)2

°2 = r

q
(Z2 ¡ Z1)2 + (X2 ¡X1)2

Á1 = arctan
Y2Z1 ¡ Y1Z2
Y2X1 ¡ Y1X2

Á2 = ¡ arctan
X2 ¡X1
Z2 ¡ Z1

In general, the projection of a line in 3-D space is no
longer a straight line on the mosaic image.

IV. Epipolar Geometry

Based on the idea of epipolar geometries for 2-D pla-
nar images, we will derive in this section the epipolar
constraint for concentric panoramas. A method will be
proposed for determining the coe¢cients of the Concen-
tric Epipolar Constraint (CEC) using point correspon-
dences, similar to the approach of the seven-point algo-
rithm for determining the fundamental matrix for a pair
of planar images. If all the parameters for the CEC are
known, the pair of mosaic images are said to be weakly
calibrated.

A. Epipolar Geometry for 2-D Planar Images

Epipolar geometry for 2-D planar images describes the
geometrical relationship between the image pair. The
epipolar constraint says that given a point on an image,
its corresponding point in another image must lie on the
epipolar line, which can be found by back-projecting a
ray from the camera centre passing through the given
point on the …rst image into 3-D space, and then pro-
jecting the ray onto the second image. The epipolar
constraint can be expressed in the form: f (m;m0) =
m0TFm = 0, where F is a 3£ 3 matrix (called the Fun-
damental Matrix), and m and m0 are two corresponding
points on the two 2-D planar images.

B. Epipolar Geometry for Concentric Panoramas

We will now extend the idea of epipolar constraint
for planar images to the case of concentric panoramas.
Given an image point on an mosaic image, its correspon-
dence in another mosaic image is a mosaic line which can
be determined using the same principle as the planar
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case. Let uj =
£
µj yj rj

¤T
be a point on an mo-

saic image j with radius rj . A ray can be back-projected
from the camera origin and passing through the point
uj into 3-D space as a straight line.
The origin of the camera is Ok = Rt =£
rj cos µj 0 rj sin µj

¤T
w.r.t. the world coordinate

system. Suppose the point uj on the mosaic image ex-
pressed w.r.t. the image coordinate system is Mjc =£
0 yj 1

¤T
. This point expressed w.r.t. world co-

ordinate system is Mjk = RA¡1Mjc + Rt. Hence, all
points lying on the back-projected ray are given by
Mol = ¸Ok + (1¡ ¸)Mjk; ¸ 2 R: It can be shown that
Ok and Mjk has coordinates given respectively by

Ok =
£
rj cos µj 0 rj sin µj

¤T
; (6)

Mjk =

264 rj cos µj ¡ sin µj
yj ¡ cy
sy

rj sin µj + cos µj

375 (7)

B.1 Uncalibrated Epipolar Curve

Let ul =
£
µl yl rl

¤T
be a possible candidate on the

mosaic image labelled by l corresponding to uj . ul must
lie on the projection of the ray OkMjk on the mosaic
image l. This projection can be obtained by substituting
(6) and (7) (as pointsM1 andM2) into (5), which yields

yl ¡ cyl
syl

= ¡yj ¡ cyj
syj

rl ¡ rj cos (µl ¡ µj)
rj ¡ rl cos (µl ¡ µj) (8)

This equation represents the epipolar constraint for con-
centric panorama. Note that the constraint, unlike the
planar case, is no longer linear in the image coordinates
(rj ; µj) and (rl; µl). Given (rj ; µj), we can regard (8)
as an equation de…ning a curve on the (rl; µl)-plane,
which will be called an Uncalibrated Epipolar Curve
(with cyl; syl; cyj ; syj as unknown parameters). We will
consider how the parameters in (8) can be calibrated by
means of point correspondences in the sequel.

B.1.a Range of Epipolar Curve. Given a point on one
mosaic image j together with known intrinsic parame-
ters (i.e. rl; cyl; syj ; etc.), we can plot the epipolar
curve (8) on another mosaic image l. The epipolar curve
has bounded ranges in both µ and y directions. Clearly,
a straight line in 3-D space has a mosaic image which
can only extend over a maximum range of ¼ on the hor-
izontal µ-axis. The critical points of an epipolar curve
in the y-direction can be found by setting the partial
derivative of yl w.r.t. µl to zero:

@yl
@µl

= ¡syl yj ¡ cyj
syj

¡
r2l ¡ r2j

¢
sin (µl ¡ µj)

(rj ¡ rl cos (µl ¡ µj))2
= 0

Solving for the maximum and minimum points, we get

yl 2
µ
cyl ¡ (yj ¡ cyj) syl

syj
; cyl + (yj ¡ cyj) syl

syj

¶

B.2 Concentric Epipolar Constraint

Equation (8) shows the mutual relationship between cor-
responding points on a mosaic image pair, and is sym-
metric w.r.t. the labelling j and l of the two images. We
can rewrite (8) as the Concentric Epipolar Constraint:

fc (ul; uj)

= syj (yl ¡ cyl) (rj ¡ rl cos (µl ¡ µj)) (9)

+syl (yj ¡ cyj) (rl ¡ rj cos (µl ¡ µj))
= 0

(9) is the extension of the relationship f (m;m0) = 0
for planar images to the case of concentric panorama.
The coe¢cients of concentric epipolar constraint can be
evaluated from a set of point correspondences. De…ne
the coe¢cients in the constraint equation to be

a0 = ¡syjcylrj ¡ sylcyjrl (10)

= ¡cyla1 ¡ cyja2
a1 = syjrj (11)

a2 = sylrl (12)

a3 = syjcylrl + sylcyjrj (13)

= ¡cyla4 ¡ cyja5
a4 = ¡rlsyj (14)

a5 = ¡rjsyl (15)

a1; a2 > 0, and a4; a5 < 0

By these de…nitions, the coe¢cients satisfy the condi-
tions:

0 = a1a2 ¡ a4a5 (16)

0 6= a1a5 ¡ a2a4, 8rj 6= rl (17)

In terms of the coe¢cients ai, (9) becomes

0 = a0 + a1yl + a2yj + a3 cos (µl ¡ µj) (18)

+(a4yl + a5yj) cos (µl ¡ µj)
Because of (16), only …ve among the six unknown co-
e¢cients ai are independent. The minimum number of
corresponding points for determining the coe¢cients (up
to scale) is 4. Given four such pairs of corresponding
points, we can write (18) as

Af = ¡Yl (19)

where

f =

266664
a0=a1
a2=a1
a3=a1
a4=a1
a5=a1

377775 ; Yl =
2664
yl
:
:
:

3775
4£1

A =

2664
1 yj !lj yl!lj yj!lj
: : : : :
: : : : :
: : : : :

3775
4£5

!lj = cos (µl ¡ µj)



in which each row of the matrix A and the vector Yl
contains the data from one pair of corresponding points.
We can write the general solution to (19) as

f ¼ fls + ®fns
where fls is the least-squares solution to (19), fns is a
vector spanning the null space of A (assumed to be of
rank 4) and ® is an undetermined parameter. Substi-
tuting f into (16) gives a quadratic equation in ® from
which two possible solutions can be solved. (17) may
help to eliminate one of the two solutions. Another way
is to substitute other corresponding points into (18) to
verify which solution is correct.

B.3 Calibration from Concentric Epipolar Constraint

We now assume that all the coe¢cients ai (i = 0; 1; :::; 5)
have been found. From (10) and (13), the intrinsic pa-
rameters cyl and cyj for the two mosaic images can be
determined as·

cyl
cyj

¸
= ¡

·
a1 a2
a4 a5

¸¡1 ·
a0
a3

¸
(20)

As 0 6= a1a5 ¡ a2a4; there is always a unique solution.
Furthermore, the ratios, rl=rj and syl=syj can be solved
as

rl
rj
= ¡a4

a1
;
syl
syj

= ¡a5
a1

(21)

However, it is not possible to solve for the individual
values using (9) alone.

B.4 Cosine Form of Concentric Epipolar Constraint

We shall need another form of the concentric epipolar
constraint. After some manipulations, (9) can be ex-
pressed as

cos (µj ¡ µl) =
´y + ´r´s
´y´r + ´s

(22)

where

´y =
yl ¡ cyl
yj ¡ cyj

´r =
rl
rj

´s =
syl
syj

(22) will be referred to as the cosine form of the epipolar
constraint.

V. Three-view Geometry

In the previous sections, the relationship between a pair
of mosaic images have been studied. We will now con-
sider the geometric relationship between three views.
Suppose the third view is labelled by k with intrinsic
parameters are cyk and syk: Points on the third view k
(corresponding to uj and ul in the …rst two views) will

be denoted uk = [µk; yk; rk]
T . The mutual relationship

between any possible combined pairs from the three mo-
saic images will be assumed to be weakly calibrated in
this section.

A. Trifocal Constraints for mosaic images

In 2-D planar images, the trifocal Constraint relates
three views by a trifocal tensor which is a matrix of
dimension 3 £ 3 £ 3. For mosaic images, the trifocal
constraint is a nonlinear relationship, but the constraint
on y and µ are decoupled so that the constraint on y
does not depend on µ; and vice versa.

A.1 Trifocal Constraint for y

For simplicity of notation, we will assume that all the
cameras are already calibrated and that syj = syl =
syk = 1, cyj = cyl = cyk = 0. Given three views, we
have three epipolar constraints of the cosine form (22)
for all combinations of two views. We seek to eliminate
the µj ; µk and µl from all the equations to relate the
vertical elevations yj ; yk and yl. By the cosine and the
sine law, we can combine the three equations to give

0 =

0@ X
i=fj;k;lg

®iy
2
i

1A0@ X
m6=n2fj;k;lg

¯m;ny
2
my

2
n

1A (23)

®j =
¡
r2l ¡ r2k

¢
r2j ; ®k =

¡
r2j ¡ r2l

¢
r2k;

®l =
¡
r2k ¡ r2j

¢
r2l ; ¯kl = ¯lk =

¡
r2l ¡ r2k

¢
=2

¯jk = ¯kj =
¡
r2k ¡ r2j

¢
=2; ¯jl = ¯lj =

¡
r2j ¡ r2l

¢
=2

(23) can be expanded as

0 = °y2l y
2
jy
2
k +

X
m6=n2fj;k;lg

¸m;ny
4
my

2
n (24)

where

¸jk = r
2
l r
2
jr
2
k + r

4
jr
2
k ¡ r4kr2j ¡ r4j r2l

¸jl = r
2
l r
2
j r
2
k + r

4
j r
2
l ¡ r4l r2j ¡ r4jr2k

¸kj = r
2
l r
2
jr
2
k + r

4
kr
2
j ¡ r4j r2k ¡ r4kr2l

¸kl = r
2
l r
2
jr
2
k + r

4
kr
2
l ¡ r4l r2k ¡ r4kr2j

¸lj = r
2
l r
2
j r
2
k + r

4
l r
2
j ¡ r4j r2l ¡ r4l r2k

¸lk = r
2
l r
2
jr
2
k + r

4
l r
2
k ¡ r4kr2l ¡ r4l r2j

° = ¡6r2l r2j r2k + r4j r2k + r4j r2l + r4l r2j + r4kr2j + r4kr2l + r4l r2k

The mutual relationship (24) between the three mosaic
images j; k and l is such that the equation remains un-
changed by exchanging any two labels among j; k and l.
Furthermore, the coe¢cients satisfy

0 = ° +
X

m6=n2fj;k;lg
¸m;n (25)
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A.2 Trifocal Constraint for µ-axis

To derive the trifocal constraint for µ, observe that three
constraints (8) can be obtained for the three combi-
nations of pairs of views. The three equations can be
combined into one by multiplication to eliminate the y
terms, giving the trifocal constraint for the µ-axis:

0 = ¡rjrkrl (¡3 + cos(2µj ¡ 2µk)
+cos (2µk ¡ 2µl) + cos(2µj ¡ 2µl))

+rj
¡
r2k + r

2
l

¢
(cos (µl ¡ 2µj + µk)¡ cos (µk ¡ µl))

+rk
¡
r2l + r

2
j

¢
(cos (µj ¡ 2µk + µl)¡ cos (µj ¡ µl))

+rl
¡
r2j + r

2
k

¢
(cos (µj ¡ 2µl + µk)¡ cos (µj ¡ µk))

A.3 Prediction by Trifocal Constraints

From (24) and given yj ; yl; rj ; rl and rk; there are two
possible solutions for y2k:

y2k =

¡
r2j ¡ r2k

¢
r2l y

2
l +

¡
r2k ¡ r2l

¢
r2jy

2
j

r2k
¡
r2j ¡ r2l

¢
or y2k =

¡
r2j ¡ r2l

¢
y2l y

2
j¡

r2k ¡ r2j
¢
y2j + (r

2
l ¡ r2k) y2l

Hence, there are a total of 4 possible solutions in yk. Al-
though we have derived (24) for calibrated cameras. The
results can be easily adopted for uncalibrated camera by

substituting
y ¡ cy
sy

for y in the above formulas.

VI. 3-D reconstruction

We will consider reconstructing only the X and Z coor-
dinates of the 3-D point from point correspondences in
three views. From (3), we can construct a set of equa-
tion for each 3-D point seen in three images j; k and l
as:

24 cos µj sin µj ¡1 0 0
cos µk sin µk 0 ¡1 0
cos µl sin µl 0 0 ¡1

35
266664
X
Z
rj
rk
rl

377775 = 0 (26)

Note that only the µ values of the point correspondences
are used in (26). Given n corresponding points in three
mosaic images, the total number of equations is 3n.
The total number of unknowns is 2n+ 3 (including the
(X;Z) coordinates of the n points and 3 unknown radii).
Hence, the condition for solvability is

3 + 2n · 3n

i.e. 3 · n

With 3 or more corresponding points, the (X;Z) compo-
nents of the points as well as rj ; rk and rl and be solved
up to a scaling factor by applying a Singular Value De-
composition (SVD) to (26). In practice, the radii of the

mosaic images are likely to be known. As long as one
such r is given, X and Z for each 3-D point can be re-
constructed. For the depth correction [1] of real-time
rendering of concentric mosaics, the positions of those
3-D points on the X-Z plane (top-view) are more im-
portant than the value of Y .

VII. Conclusion

In this paper, we have obtained the geometrical relation-
ship of corresponding points between a pair of concentric
mosaic image by extending the epipolar constraint for
planar images. It is shown that this relationship can be
expressed as a concentric epipolar constraint equation
which can be regarded as the counterpart of the Funda-
mental matrix relationship for planar image geometry.
A method is proposed to calibrate the camera using con-
centric epipolar constraint. A method for identifying the
parameters of the CEC has also been proposed similar
to the seven-point algorithm for identifying the funda-
mental matrix in the case of planar images. The results
of this paper can be used to perform 3-D reconstruction
from concentric mosaic images. Depth information re-
covered from mosaic images can be used for the purpose
of horizontal depth correction in the rendering process.
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