Towards a Problem-Driven Approach to Perspective-Based Reading”

T.Y. Chen
School of Information Technology
Swinburne University of Technology
Hawthorn 3122, Australia
tychen@it.swin.edu.au

Sau-Fun Tang
Department of Finance
and Decision Sciences

Hong Kong Baptist University
Kowloon Tong, Hong Kong
ssftang@sinaman.com

Pak-Lok Poon
Department of Accountancy
The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong
acplpoon@inet.polyu.edu. hk

T.H. Tse'
Department of Computer Science
and Information Systems
The University of Hong Kong
Pokfulam Road, Hong Kong
tse@csis.hku.hk

Y.T. Yu
Department of Computer Science
City University of Hong Kong
Kowloon Tong, Hong Kong
csytyuecityu.edu. hk

Abstract

The quality of a requirements specification has a great
impact on the quality of the software developed. Because
of this, a requirements specification should be complete,
correct, consistent, and unambiguous. Otherwise, defects
may remain undetected, resulting in the delivery of a
faulty software product to the users. Motivated by this,
Basili et al. have developed the perspective-based reading
(PBR) technique to help identify defects in requirements
specifications.

In this paper, we propose a problem-driven approach
for supporting the PBR technique. We also discuss
the experience of applying our proposal to a real-life
requirements specification.

Keywords: Classification-Tree Method, Defect-Based
Reading, Perspective-Based Reading, Requirements
Inspection, Software Inspection

“This work is supported in part by grants of the Research
Grants Council of Hong Kong (Project Nos. CityU 1048/01E and
HKU 7029/01E), a grant of the Innovation and Technology Fund (Project
No. UIM/77), and a research and conference grant of the University of
Hong Kong.

TContact author.

1. Introduction

Requirements specifications, to be referred to as
“specifications” for the rest of the paper, are undoubtedly
important documents produced at the initial stage of
the software development life cycle (SDLC). Since
these documents form the basis for software design
and implementation, they should be complete, correct,
consistent, and unambiguous. Otherwise, any defect will
be propagated to subsequent phases of the SDLC. At best,
developers will eventually catch these defects, but at the
expense of schedule delays and additional costs. At worst,
the defects will remain undetected, resulting in the delivery
of a faulty software product to users.

The cost-effectiveness of inspections in uncovering
defects has been well discussed in the literature [3, 10, 11].
For example, Doolan [3] reports that industrial experience
indicates a 30-time return on investment for every hour
spent on inspecting specifications. Russell [10] reports a
similar return of 33 hours of maintenance saved for every
hour of inspection.

Consider some of the possible approaches or techniques
used by reviewers to inspect a specification. The
simplest is an ad hoc approach that has no formal or
systematic procedure, but based largely on an individual’s

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering (HASE’02)
1530-2059/02 $17.00 © 2002 IEEE

expertise and experience. A checklist approach represents
an improvement, by providing reviewers with a list of
items on which to focus. An alternative is defect-
based reading, which helps reviewers focus on different
classes of defects such as missing functionality and data
type inconsistencies [8]. However, defect-based reading
was originally developed for the specifications written in
the software cost reduction notation, a formal notation
developed by Heninger [6] for event-driven process control
systems. This notation is not widely used in the commercial
sector. In this regard, perspective-based reading (PBR)
developed by Basili er al. [1, 12] has been considered
a more widely applicable technique, as it can be used
for inspecting specifications written in natural language.
An important feature of PBR is that it allows reviewers
in the inspection team to select their own perspectives
(say, as a tester, developer, or user) when inspecting the
specifications. Studies [1, 8, 12] report that inspection
teams using PBR find more defects than teams using other
approaches.

In this paper, we propose a “problem-driven” approach
for supporting PBR. We recommend that, based on the
reviewer’s perspective as well as the characteristics of the
problem domain of the specification, a specific method
should be selected to establish a procedure for requirements
inspection. The rationale is that, by selecting a method
that suitably addresses the characteristics of the problem
domain, we can increase the chances of detecting defects
specific to these characteristics. We shall illustrate our
approach by applying it to a real-life specification.

The rest of the paper is structured as follows. Section 2
outlines the original PBR technique developed by Basili et
al. [1, 12]. Section 3 describes our proposal on the use of
a problem-driven approach for supporting PBR. Section 4
discusses our experience of applying the proposal to a real-
life specification. Finally, Section 5 concludes the paper.

2. Overview of perspective-based reading

Basili er al. [1, 12] argue that most inspection techniques
do not help reviewers focus on particular aspects of a
specification. Most techniques regard all the information
in a specification as equally important because the
document should define all the functional requirements
and constraints. As a result, reviewers are left with an
ill-defined responsibility of detecting all defects in the
entire specification. This poses problems to reviewers and
reduces their effectiveness in finding defects. Motivated
by this observation, Basili ef al. [1, 12] have developed
PBR, a technique which operates under the premise that
different information in a specification has different levels
of importance for different uses of the document.

In general, PBR helps reviewers answer the following

two important questions about the specifications they
inspect: (i) What kind of information in the specifications
should they check? (ii) How do they identify defects
in that information? PBR focuses on the point of view
of the “customers” of the specifications. For example,
one reviewer may read from the point of view of the
tester, another from the point of view of the developer,
and yet another from the point of view of the user of
the software. Each of these reviewers then produces a
model that can be analyzed to answer questions based
on the perspective. For example, Reviewer A in the
team reading from the perspective of a tester would
consider questions arising from activities related to fest
suite (the set of test cases used for software testing)
design. Similarly, Reviewer B reading from the perspective
of a developer would consider questions related to high-
level system design, and Reviewer C representing the
user would consider questions related to the completeness
and correctness of the requirements with regard to system
functionality. The assumption is that the union of their
perspectives provides a comprehensive coverage of the
specification, whereas each reviewer is responsible for a
narrowly focused view of the specification, which should
lead to more in-depth analysis of any potential defects
in the specification. The validity of this assumption
is confirmed by experiments involving the inspection of
NASA documents [1].

In [12], Basili er al. have illustrated the application
of PBR for inspecting a specification from the tester’s
perspective, by using equivalence partitioning (EP) and
boundary value analysis (BVA). Basically, EP is a
specification-based method that divides the input domain
of a program into classes of data (each of which is called
an equivalence class) from which test cases can be derived.
In EP, input values that are treated the same way by the
program are regarded as equivalent. To choose good test
cases, it is better to select one from each equivalence class
than to select all from one class [9]. On the other hand, BVA
is a test case design method that often complements EP [9].
Rather than selecting an arbitrary element of an equivalence
class, BVA assumes that a greater number of errors tend to
occur at the boundaries of an input domain [9]. Because of
this, elements at or near the boundaries should be selected to
form test cases. Experiments such as those described in [1]
confirm the viability of EP and BVA in detecting defects
from the tester’s perspective within the context of PBR.

3. A problem-driven approach to PBR

3.1. Rationale

We find the PBR technique innovative, particularly from
the tester’s perspective. One additional merit is that a test

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering (HASE’02)
1530-2059/02 $17.00 © 2002 IEEE

suite can be generated from requirements inspection at an
initial stage of the SDLC to be used for software testing at
a later stage.

In general, any test suite construction method can be
classified into either a white-box (implementation-based)
approach or a black-box (specification-based) approach.
The white-box approach aims to construct a test suite based
on the information derived from the source code of the
program. On the other hand, the black-box approach
helps construct a test suite without the knowledge of the
structure of the program. Obviously, white-box test suite
construction methods cannot be used for PBR. This
is because information on the program structure is not
available when the specification is being inspected, since
the program has not yet been developed.

Consequently, we turn our attention to the black-box
approach. Basili er al. [12] have used two popular testing
methods, equivalence partitioning (EP) complemented by
boundary value analysis (BVA), to illustrate how to apply
PBR to inspect specifications from the tester’s perspective.
We note that EP and BVA are but two of many specification-
based methods for constructing test suites. The issue
of whether other specification-based testing methods may
serve a better purpose has not been fully addressed in the
literature. In fact, a more general concern is the need to
select specific methods in supporting PBR according to
different characteristics of the problem domain.

Consider, for instance, a problem domain D that involves
many input constraints.! Suppose the corresponding
specification is RSp. Since D has a lot of input constraints,
chances are that RSp will contain requirements defects
related to such constraints. In this case, when applying PBR
to inspect RSp from a tester’s perspective, requirements
defects should be more easily uncovered if we select a
test suite construction method (such as the classification-
tree method [2, 5] and the category-partition method [7])
that takes explicit consideration of the input constraints. It
is because the selected method specifically addresses the
characteristics of the problem domain D that are potentially
the source of requirements defects. In addition, consider
a problem domain E whose corresponding specification is
RSg. If there are many different combinations of inputs
in E, and each of these combinations results in a unique
output, then cause-effect graphing [4] should be used for
PBR from the tester’s perspective. It is because cause-effect
graphing makes explicit consideration of the interaction of
inputs and the relationship between inputs and outputs. This
property makes it an ideal candidate for PBR of RSg.

'We illustrate this point with a program related to the application for
credit cards by customers of a bank. Suppose the program has many
inputs, in which “Employment Status” and “Monthly Salary” of a customer
are two of them. In this case, a constraint between these two inputs is
that, when “Employment Status = Unemployed”, we must have “Monthly
Salary = 0".

Because of the above, we propose a “problem-driven”
approach for supporting the PBR technique. We shall
discuss this in the context of a tester’s perspective for the
purpose of illustration. The approach should apply also to
the perspective of a developer or user. Section 3.2 below
describes our proposal in detail.

3.2. A sample procedure

Following on our argument in Section 3.1, we propose
to use a PROblem-driven approach to PERspective-based
reading, abbreviated as PROPER. The acronym also
reminds us that the selected method should be the most
appropriate one for a given problem domain with respect
to a given perspective. In this paper, we shall use the
classification-tree method in the tester’s perspective as an
illustration.

Basically, PROPER consists of the following two distinct
phases:

(1) Based on the characteristics of the problem domain
P whose corresponding specification RSp is to
be inspected, select a specification-based test suite
construction method M that specifically addresses
these characteristics. ~For example, as explained
in Section 3.1, the classification-tree method or the
category-partition method can be selected for PBR if
P contains a lot of input constraints. The rationale is
that, by focusing on the explicit consideration of these
characteristics of P, the selected method M will have
a higher chance to detect any requirements defect in
RSp that is related to these characteristics.

(2) Apply the selected method M for PBR of RSp, with a
view to generating a test suite and to identifying any
requirements defect in RSp.

Note that, in phase (1) above, there are many possible
specification-based test suite construction methods that can
be selected. It is, however, not feasible to describe how
to apply each of these methods to PBR in phase (2). For
the purpose of illustration, we shall demonstrate the process
using the classification-tree method (CTM) [2, 5]. CTM is
chosen as the example because:

(i) The procedure PROPERcry for applying CTM to
PROPER can be modified without too much difficulty
using other test suite construction methods.

(if) Among the various test suite construction methods,
CTM is relatively more complete, in the sense that it
consists of well-defined steps that are straightforward
to follow. Furthermore, it has been adopted by
industrial projects such as that at the Daimler-Benz
Group, a control system for the airfield lighting

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering (HASE’02)
1530-2059/02 $17.00 © 2002 IEEE

of an international airport, and an integrated ship
management system [5].

The procedure PROPERcry provides questions tailored
to each of its steps for creating a test suite using CTM.
When creating a test suite, the reviewer answers a series of
questions posed by PROPERcty. The underlying rationale
is that, if the reviewer cannot answer the questions with
respect to a particular requirement in the specification,
then there is an anomaly associated with that requirement,
although it may or may not be due to some defect. In this
way, the reviewer can identify and fix the defects, if any, so
that the requirements will better support the later phases of
the SDLC.

The following is the procedure PROPERcTy:

PROPERcTy: A Procedure of PROPER supported by
CTM

Decompose the specification into a number of units (known
as “requirements units”) that can be processed independently
for the purpose of software testing. For each of these
requirements units, follow the steps below to create a test
suite. During the creation process, use the questions provided
to identify any anomalies in the requirements unit.

Phase I: Preliminary Checking of Requirements Unit

Q.L1. Does the requirements unit make sense from
what you know about the problem domain?

Q.L2. Does the requirements unit provide sufficient
information for identifying the relevant
and important aspects that may affect the
resulting behavior of the system? ¢

Q.L.3. Based on the requirements stated in the
specification and your knowledge of the
problem domain, has any relevant and
important aspect been omitted from the
requirements unit?

Phase II: Creation of Test Suite

(1) Definition of classifications and classes. For every
important and relevant aspect of the requirements unit,
define it as a classification. Use this classification as a
partitioning scheme to divide the input domain of the
system into disjoint sets of elements called classes, such
that all the elements in any class will behave similarly in
the system.?

“For example, in a typical credit-purchase application, “Customer
Account Balance” is a relevant and important aspect that affects
whether a credit-purchase transaction made by a customer should be
approved.

bRefer, for instance, to the credit-purchase application in the
footnote of Q.I.2 above. We define “Customer Account Balance”
as a classification with two associated classes, “< 0” and “> 0.
Normally, when “Customer Account Balance < 07, the credit-
purchase transaction will be rejected. On the other hand, when
“Customer Account Balance > 07, the transaction may be approved,
subject to other considerations such as the credit limit of the customer.

Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering (HASE’02)

1530-2059/02 $17.00 © 2002 IEEE

(2) Construction of a classification tree. From the
information given in the requirements unit, determine
the constraints among the classifications and classes
defined in (1).© Based on these constraints, assemble the
classifications and classes into a hierarchical structure,
forming a classification tree.

(3) Construction of a test case table from the classifica-
tion tree. Construct the corresponding test case table
from the classification tree, so that a test suite can be
created.

(4) Creation of a test suite. Identify all possible
combinations of classes from the test case table. Each
combination of classes represents a fest frame. From
every generated test frame, select one element from each
of its classes to form a test case.

In steps (1) —(4) above, answer the following questions:

Q.IL.1. Do you have sufficient information to define
classifications and their associated classes?

Q.IL.2. According to the information given in the
requirements unit, have classes been defined
so that no element in the input domain may
appear in more than one class within the
same classification?

Q.IL.3. When assembling the classifications and
classes to form a classification tree, does
the requirements unit provide sufficient
information for determining all the con-
straints among the defined classifications
and classes?

Q.IL4. For every test frame, do you have sufficient
information to select an element from each
of its classes to form part of a test case?

Q.IL5. Are there other interpretations of the
requirement that the developer may make on
the basis of the description given? If so, will
this affect the test cases you create?

Phase III: Preparation of Test Plan

For each test case generated, record the corresponding
expected behavior of the system. In other words, how do
you expect the system to respond to this test case you have
just created? In this phase, the reviewer should ask the key
question of whether the resulting behavior could be specified
appropriately and without ambiguity.

¢Consider the credit-purchase application in the footnote of Q.1.2
again. Let “Credit Cardholder” and “Type of Credit Card” be two
classifications for this application. Suppose the former has two
associated classes “Yes” and “No”, and the latter has two associated
classes “Gold” and “Classic”. A possible constraint is that, when
“Credit Cardholder” takes the class “No”, “Type of Credit Card”
cannot take “Gold” or “Classic” as a class.

Readers may refer to [2, 5] for details about the use of
CTM in generating a test suite. It should be noted that,
in a particular application, PROPERcry might be fine-
tuned according to (i) the specific environment, and (i7) the

YF]',F.

COMPUTER

SOCIETY

level of domain knowledge of the reviewer who applies
it. Consider, for example, question Q.I.2 in Phase I of
PROPERcTyM. Suppose the problem domain is the airline
industry, and the reviewer knows that the type of aircraftis a
relevant and important aspect affecting the system behavior.
In this case, question Q.1.2 should be elaborated in more
details by explicitly reminding the reviewer to check for the
information on the aircraft type in the specification.

4. Experience in applying PROPER

In order to determine the viability of PROPER, we have
done a case study on a real-life specification. Since the
problem domain of this specification involves many input
constraints, the reviewer has decided to apply CTM to
support PROPER for the inspection of the document. This
section outlines the way that PROPER has been applied,
followed by a discussion on the results of the analysis.

4.1. Setting

The document to be inspected is a real-life specification
prepared for an international company providing catering
service for airlines, who prefers to remain anonymous and
is referred to as ABC. The specification was produced for a
meal ordering system (MOS) which helps ABC determine
the types and the number of meals to be prepared and
uploaded to each flight served by ABC. For the rest of the
paper, the specification of MOS is referred to as RSyos.
This specification contains various components such as
narrative descriptions of the system, sample system screens,
and reports. MOS has already been developed and released
for production in ABC for several years.

We note that technical jargon unique to the airline
industry is being used in RSyps, and hence it may not be
easily understood by someone outside the project team to
inspect the specification. Thus, an anomaly identified by a
reviewer can of course be a real error in RSy0s, but may
also be due to a misunderstanding by the reviewer. We shall
refer to all the anomalies as potential defects, and the real
errors as genuine defects.

We have recruited two volunteers for our study. They
are known as Participants X and Y in this paper. They have
several years of experience working in the airline industry.
Besides, Participant X has some practical experience
using CTM, while Participant Y has been involved in the
development and implementation of MOS. In the study,
Participant X used PROPER to perform an inspection of
RSmos from the tester’s perspective and recorded all the
potential defects. Participant Y then checked every potential

4.2. Observations and discussion

In our study, Participant X first decomposes RSyos
into numerous requirements units that can be inspected or
tested independently. For example, “Generation of Daily
Meal Schedules” and “Maintenance of City Codes” are
two of these decomposed requirements units. Among the
requirements units, some are considered core requirements
and others as auxiliary. For instance, “Generation of Daily
Meal Schedules” is a core requirement, because it directly
affects the type and the number of meals to be prepared
and loaded onto each flight. On the other hand, the
requirement ‘“Maintenance of City Codes” is considered
auxiliary, because it is only related to the maintenance of
a reference table. We recommend that core requirements
units should be reviewed before auxiliary units.

In this paper, we shall only focus on the core
requirements unit related to the generation of daily meal
schedules. This unit will be referred to as RUe, for the
rest of our discussion.

Phase I: Preliminary Checking of RU ¢,

Based on his domain knowledge and experience, Participant
X performs a preliminary check of RUpe,. The purpose is
to determine whether RU,.,; makes sense in general, and
whether any relevant and important aspects that may affect
the resulting behavior of MOS related to the generation of
daily meal schedules have been omitted from RUyey1. In our
study, no defect has been detected in the preliminary check.

Phase II: Creation of Test Suite

(1) Definition of classifications and classes

We use the following two examples to illustrate how
classifications and classes are identified from RU ea:

Example 1:
RUmeal :

Consider the following paragraph in

. Color of ‘'‘Flight Number’’ displayed
in the screen can be Red, Yellow, or Blue.
These colors correspond to the outdated
master flight schedules (MFSs), MFSs
currently being used, and future MFSs,
respectively.

In addition, it is stated elsewhere in RUpe, that only
“current” MFSs will be used to generate daily meal
schedules for a particular date. In this situation,
Participant X defines [Effective Period of MFS] as a
classification because of its effect on the generation
of daily meal schedules. Furthermore, Participant X
defines |Outdated|, |Current|, and |Future| as the
associated classes of the classification [Effective

defect to confirm whether it was genuine. Period of MFS]. |
Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering (HASE’02) CSFK/[PUQTER
1530-2059/02 $17.00 © 2002 IEEE SOCIETY

Example 2:
RUpeal:

Consider the following paragraph in

. Airlines can change the aircraft
type, flight sector, or estimated time
of departure (ETD) of a flight on a
particular date even after the MFS has
been announced. The system keeps an
Exceptional Flight Schedule in addition to
the MFS. This Exceptional Flight Schedule
has higher priority over the MFS when
creating Daily Meal Schedule.

From the above, Participant X defines [Existence
of Exceptional Flight Schedule] as a classification
because it is an important aspect to be considered
when generating daily meal schedules. For this
classification, Participant X defines |Yes| and |No| as
the associated classes.

Following on in a similar way, Participant X defines a
total of 15 classifications from RUe,. Each of them
has, on average, two or three associated classes.

When Participant X defines classifications and classes
from RUjyeq, he reports that a total of 13 potential
specification defects have been detected. He then
verifies with Participant Y and confirms that all these
defects are genuine. In addition, Participant X
observes that all these 13 defects can be grouped under
two categories, depending on how they are detected
from RUpeq. The first category includes those defects
directly detected as a result of defining classifications
and classes. Consider, for instance, the following
paragraph in RUj¢, related to the generation of daily
meal schedules from MFSs:

. The only user-input for the function
‘‘Generation of Daily Meal Schedules’’ is
the departure date. User can preview the
Daily Meal Schedule of any given departure
date. However, they can only create the
Daily Meal Schedule following the last one
created.

Participant X identifies the classification [Input
Departure Date—Last Creation Date]. |< 0] is
a possible class, which will cause MOS to reject
the departure date entered. @~ When Participant X
defines other classes for [Input Departure Date — Last
Creation Date], he finds that RU e, does not provide
sufficient information for him to determine which of
the following two alternatives should be chosen:

(a) define |> 1| as the only extra class, or

(b) define two more extra classes, namely |= 1| and
>2].

(2)

The problem is that RUp, does not state clearly
whether the departure date entered must be the day
immediately following the last creation date. If it
is stated clearly in RUjp,eq that this is the case, then
Participant X will know that alternative (b) should be
chosen. In (b), the definition of the class |> 2| is useful
in checking whether MOS is able to detect a wrong
departure date (which does not immediately follow the
last creation date) and reject it. Indeed, 6 of the 13
defects detected in this step are similar to this defect.

The second category of defects includes those not
directly detected as a result of defining classifications
and classes. Consider, for example, the following
paragraph in RU e,

. Exceptional Crew Configuration
has higher priority over Aircraft
Configuration ... when creating Daily
Meal Schedule. . An Exceptional Crew
Configuration record contains the Airline,
Aircraft Type, Flight Number, Sector
Number, ...

We know that information on sector numbers is kept
in Exceptional Crew Configuration records. There is,
however, no documentation in RU e, (or indeed in the
entire RSpos) describing what a sector number is, or
how it relates to the generation of daily meal schedules.
Because of this, it is obviously a specification defect.

Although this defect is detected when Participant X
is defining classifications and classes from RU e, its
detection is not directly due to the definition process
itself. It is possible that a reviewer without the support
of any systematic inspection technique can still detect
this defect simply by reading RSymos. Similar defects
account for 7 of the 13 defects detected in this step.

Construction of a classification tree

In this step, Participant X identifies all the constraints
among the classifications and classes defined in
step (1) above, based on the information given in
RUpea. The identification of these constraints is
required for the construction of a classification tree.
We note that, in addition to the 13 defects detected
in step (1), four additional defects are detected by
Participant X in this step and they are confirmed
to be genuine by Participant Y. Before we explain
how additional defects can be detected via the tree
construction, let us give an overview of the structure
of a master flight schedule (MFS) and the structure of
a classification tree.

Basically, an MFS contains numerous data elements
for determining whether it should be selected for

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering (HASE’02)
1530-2059/02 $17.00 © 2002 IEEE

generating a daily meal schedule. Consider, for
example, the following two MFSs:

First MFS: HK001 05/04/2002 —05/06/2002
1.3.... 747 HKG— MEL

Second MFS: HK002 05/11/2002—05/24/2002
1234567 737 HKG— OSA

The data elements, from top to bottom, and from left to
right, correspond to the flight number, effective period,
weekly flight pattern, aircraft type, and flight sector,
respectively. Note that all date elements in MOS are in
mm/dd/yyyy format.

In Example 1, it is mentioned that any MFS belongs
to one of three types, namely outdated, current, or
future. Given any MFS, its type is determined by
comparing the date element “Effective Period” with
the departure date entered online by the user. For
instance, suppose the user enters a departure date
“05/04/2002” into MOS. Then, the first MFS with
flight number “HKO001” is the current schedule, since
the entered departure date falls within the effective
period. On the other hand, the second MFS with
flight number “HKO002” is a future schedule, since
the entered departure date is earlier than the effective
period of that MFS.

Consider the weekly flight pattern “1.3....” of the first
MFS, in which the numeric digits correspond to the
days of the week. Such a pattern tells MOS that,
within the effective period of the first MFS, this record
should be selected for generating daily meal schedules
on Monday and Wednesday only. This is because
flight “HKO01” will only depart on these two days
of the week. Now, consider the weekly flight pattern
“1234567” of the second MFS. It shows that “HK002”
is a daily flight. It triggers MOS to select this record
in generating daily meal schedules on every day of the
week from “05/11/2002” to “05/24/2002”.

From the above discussion, it is not difficult to see
that test cases should be constructed for testing the
behavior of MOS for outdated MFSs, current MFSs,
and future MFSs with respect to the departure date
entered. According to RUpe,, MOS will generate
daily meal schedules for current MFSs but not
outdated or future MFSs. In addition, for any current
MEFS, test cases should be constructed for testing each
of the following situations:

(a) Tts weekly flight pattern is “1234567”, indicating
that it is a daily flight. In this situation, no matter
which day of the week the entered departure date

Effective Period
of MFS

Outdated Current Future

s / "
Weekly Flight
Pattern

Daily Flight Non-Daily Flight

(P)
Any Flight Within
Effective Period
No
))

Yes

(B (P

Figure 1. A partial classification tree (tru,,,)
for RUcal

is, this MFS will always be used to generate a
daily meal schedule.

(b) Tts weekly flight pattern is of any form other than
“1234567”, indicating that it is a non-daily flight.
In this situation, the following two types of test
case are generated:

(i) The first type corresponds to ‘“normal”
situations where at least one flight departs,
by comparing the effective period with
the weekly flight pattern of this MFS.
An example is the first MFS above,
with an effective period between Monday
05/04/2002 and Wednesday 05/06/2002
and having a weekly flight pattern “1.3....7,
which means Monday and Wednesday
flights.

(ii) The second type corresponds to “abnormal”
situations where no flight satisfying the
weekly flight pattern can be identified from
the effective period. An example is an MFS
with an effective period between Monday
05/04/2002 and Tuesday 05/05/2002 but
a weekly flight pattern “....67”, which
corresponds to Saturday and Sunday. This
type of test case is useful for testing whether
MOS can recognize and handle abnormal
situations.

Figure 1 shows a partial classification tree Try__, for
RU\peq1- In this figure,

meal

e The circle at the top of Tru,,,, Tepresents the part
of the input domain of MOS that is relevant to
RUnear-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering (HASE’02)
1530-2059/02 $17.00 © 2002 IEEE

e (Classifications are enclosed in boxes whereas
classes are not.

e The symbols enclosed in brackets represent
paths of Try,,.,, that contain some classifications
and classes. For example, P; represents the
path [Effective Period of MFS]— |Current| —
[Weekly Flight Pattern] — |Non-Daily Flight| —
[Any Flight within Effective Period] — | Yes|.

The basic idea of Try,,, is to capture the constraints
among the classifications and classes defined in
RUpea;. For instance, given the predefined rules
in constructing the test case table and the resulting

test suite (see steps (3) and (4) in Phase II of

PROPERcT)), we are not allowed to construct a test
case that contains the classes “Daily Flight” (in path
P>) and “Yes” (in path P3).2 In fact, paths P», P3, and
P4 in Figure 1 correspond to the situations (a), (b)(i),
and (b)(ii) above.

Having discussed the underlying data structures, we
are now ready to explain how additional specification
defects are detected via the construction of a
classification tree. We do this through the following
two examples:

Example 3: In fact, Try,,,, is part of the classification
tree actually constructed by Participant X for RUjeq
in our study. During the tree construction process,
Participant X has to explicitly consider the constraints
among the defined classifications and classes in
step (2) in Phase II of PROPERcTM. When
considering the constraints between the classifications
[Weekly Flight Pattern] and [Any Flight within
Effective Period] and their associated classes with a
view to constructing a classification tree, Participant X
realizes that RUp,y does not specify how MOS
should behave in response to situation (b)(if) above
(corresponding to the path P4 in Figure 1). Note that,
intuitively, this defect is difficult to be detected by
simply defining classifications and classes in step (2)
without considering their constraints.]

Example 4: Consider the following description in
RU a1 on Exceptional Crew Configuration records:

. Aircraft Configuration, such as the
number of crewmembers, is retrieved from
the Menu Planning System (MPS). However,
this information can be overridden
for flight schedules with additional
crewmembers. The system keeps an
Exceptional Crew Configuration table

2The rules for constructing the test case table and the resulting test suite

Existence
of ECC

Number of
Crew

=0 >=1

Figure 2. A partial classification tree for RU ...,

Existence

of ECC

Numberof | | |
Pursers

Number of
Senior Pursers

Number of
Second Officers

.| Number of
First Officers

=0 =1 =0 =1 =0 >=1 =0 >=1

Figure 3. Another partial classification tree for
Filhned

for this purpose. Exceptional Crew
Configuration has higher priority over
Aircraft Configuration in MPS when
creating Daily Meal Schedule. ... An
Exceptional Crew Configuration record
contains Airline, Flight Number, Number of
Crewmembers, ...

The crew in a flight normally consists of the captain,
no more than one first officer, no more than one
second officer, the chief purser, several senior pursers,
and several pursers. The actual composition of the
crew will vary according to the aircraft type. With
this domain knowledge, when Participant X reads the
above description on Exceptional Crew Configuration
(ECC) records, he does not know whether (i) only
the total number of crewmembers on the flight is
specified, or (ii) different numbers of crewmembers
are specified for different types of crew. If case (i)
is true, the partial classification tree in Figure 2 may
be constructed. On the other hand, if case (i) applies,
then the partial classification tree in Figure 3 may be
constructed instead. Again, this ambiguity defect is
detected mainly due to the explicit consideration of
constraints among classifications and classes during

are fairly straightforward and hence will not be discussed in the paper. the construction of a classification tree for RUmea. ®

Readers may refer to [5] for details.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering (HASE’02)
1530-2059/02 $17.00 © 2002 IEEE

We shall omit Phase III and steps (3) and (4) of Phase II
in PROPERcty because they are relatively straightforward
and Participant X has not found additional defects in these
steps/phases in our study.

5. Conclusion

There is no doubt that a specification must be complete,
correct, consistent, and unambiguous, in order to reduce the
chance of having defects in the resulting software product
delivered to the end users. In this regard, requirements
inspections remain a popular and effective technique in
uncovering requirements defects.

In this paper, we have proposed an enhanced approach,
known as PROPER, for requirements inspections. It is
developed by supplementing the original PBR technique
developed by Basili ef al. [1, 12] with a problem-driven
approach. The main contribution of our approach lies in
stressing the need to select a specific method to support
PBR by considering the characteristics of the problem
domain of the specification to be inspected. The rationale
is that, by selecting a method that suitably addresses the
characteristics of the problem domain, we can increase the
chances of detecting specification defects related to these
characteristics. Our proposed approach has been validated
in a case study of a real-life commercial specification.
The results of the study show that PROPER is effective in
detecting various kinds of defect.

We note that, although we have only illustrated the
application of PROPER in the context of the tester’s
perspective in this paper, the problem-driven approach can
also be applied to the perspective of the developer or user.
In the developer’s perspective, for example, if the problem
domain of the specification involves a lot of decision and
control flows, then decision tables, decision trees, or control
flow diagrams may be used for PBR. On the other hand, if
the problem domain involves complex data structures, then
entity-relationship diagrams may be employed.

In conclusion, we find PROPER to be a technique
worth further investigation. We are conducting a more
comprehensive evaluation using a variety of real-life
specifications.

Acknowledgement

We are grateful to the anonymous catering service
company for providing the requirements specification in our
study.

References

[1] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile,
F. Shull, S. Sgrumgard, and M. V. Zelkowitz, “The Empirical
Investigation of Perspective-Based Reading”, Empirical
Software Engineering: An International Journal, vol. 1, no. 2,
1996, pp. 133-164.

[2] T.Y. Chen, P.L. Poon, and T.H. Tse, “An Integrated
Classification-Tree Methodology for Test Case Generation”,
International Journal of Software Engineering and Knowl-
edge Engineering, vol. 10, no. 6, 2000, pp. 647-679.

[3] E.P. Doolan, “Experience with Fagan’s Inspection Method”,
Software: Practice and Experience, vol. 22, no. 2, 1992,
pp- 173-182.

[4] W.R. Elmendorf, “Functional Analysis Using Cause-Effect
Graphs”, in Proceedings of SHARE XLIII, New York, 1974,
pp- 567-577.

[5] M. Grochtmann and K. Grimm, “Classification Trees
for Partition Testing”, Software Testing, Verification and
Reliability, vol. 3, no. 2, 1993, pp. 63-82.

[6] K.L. Heninger, “Specifying Software Requirements for
Complex Systems: New Techniques and Their Application”,
IEEE Transactions on Software Engineering, vol. SE-6, no. 1,
1980, pp. 2-13.

[7] T.J. Ostrand and M.J. Balcer, “The Category-Partition
Method for Specifying and Generating Functional Tests”,
Communications of the ACM, vol. 31, no. 6, 1988, pp. 676—
686.

[8] A.A. Porter, L.G. Votta, Jr., and V.R. Basili, “Comparing
Detection Methods for Software Requirements Inspections:
A Replicated Experiment”, IEEE Transactions on Software
Engineering, vol. 21, no. 6, 1995, pp. 563-575.

[9] R.S. Pressman, Software Engineering: A Practitioner’s
Approach, McGraw-Hill, New York, 2000.

[10] G.W. Russell, “Experience with Inspection in Ultralarge-
Scale Development”, IEEE Software, vol. 8, no. 1, 1991,
pp- 25-31.

[11] G.M. Schneider, J. Martin, and W. T. Tsai, “An Experimental
Study of Fault Detection in User Requirements Documents”,
ACM Transactions on Software Engineering and Methodol-
ogy, vol. 1, no. 2, 1992, pp. 188-204.

[12] F. Shull, I. Rus, and V. Basili, “How Perspective-Based
Reading Can Improve Requirements Inspections”, IEEE
Computer, vol. 33, no. 7, 2000, pp. 73-79.

[13] R.A. Weber, Information Systems Control and Audit,
Prentice Hall, Upper Saddle River, NJ, 1999.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering (HASE’02)
1530-2059/02 $17.00 © 2002 IEEE

