
Metamorphic Testing and Beyond *

T. Y.Chen F.-C. Kuo

School Information Technology
University Technology

Hawthorn, Victoria 3122, Australia
{tchen, dkuo,

Department Computer Science and Information Systems
The University Hong Kong

Road, Hong Kong
tse csis. hku. hk

T. H. Tse Zhi Quan Zhou

Abstract

When testing a program, correctly executed test cases
are seldom explored even though they may carry
useful information. Metamorphic testing proposes to
generatefollow-up test cases to check important properties
of the target function. It does not need a human oracle
for output prediction and comparison. In this paper, we
highlight the basic concepts of metamorphic testing and
some interesting extensions in the areas of program testing,
proving, and debugging. Future research directions are also
proposed.

Keywords: Follow-up test cases, metamorphic testing,
semi-proving, successful test case, test case selection
strategy, testing oracle

1. Introduction

It is impractical, if not impossible, to test a program
with all conceivable inputs Instead, we should aim at
selecting test cases with higher probabilities of revealing
program failures. Hence, a lot of research has been done
on developing test case selection strategies.

A successful test case is one on which the program
computes correctly. Since successful test cases do not
reveal any failure, they are conventionally considered
useless and thus discarded by testers or merely retained

‘This research is supported in part by a discovery grant of the
Australian Research Council (Project No. a grant of the
Research Grants Council of Hong Kong, and a of the University of
Hong Kong.

Contact author.

for reuse in regression testing later. We note, however,
that successful test cases do carry useful information, albeit
seldom explored. Fault-based testing for example, is
a significant attempt to make use of such information. In
fault-based testing, if a program has successfully passed all
the test cases, then it can be guaranteed to be from
certain types of faults. Unfortunately, most testing methods
are not fault-based, and most test cases are executed
successfully. Thus, some valuable information that results
from program testing will remain buried and unused.

Another limitation of software testing is the oracle
problem An oracle is a mechanism against which
people can decide whether the outcome of the program
on test cases is correct. In some situations, the oracle
is not available or is too expensive to be applied
In cryptography systems, for example, large number
arithmetic is usually involved. It is very expensive to
verify the correctness of a computed result. Other examples
include deciding the equivalence between the source and
object codes when testing a compiler; and deciding the
correctness of an output when testing a program that
performs numerical integration. Furthermore, even when
manual prediction and comparison of testing results are
possible, they are often time consuming and error prone [18,

The oracle problem is “one of the most difficult tasks
in software testing” but is often ignored in the testing
theory [

A metamorphic testing (MT) method has been pro-
posed [4] with a view to making use of the valuable
information in successful test cases. It does not depend on
the availability of an oracle. It proposes to generate follow-
up test cases based on metamorphic relations, or properties
among inputs and outputs of the target function. In this

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

paper, we would like to highlight the method and explore
future research directions.

2. Metamorphic testing

Metamorphic testing is used in conjunction with other
test case selection strategies Given a test case selection
strategy S, such as path coverage, a set of test cases T =

. . . , where is generated. The program is
then tested on T . If no failure is revealed after running all
in T for i = 2, . . . , n, then T will be a set of successful
test cases.

At this stage, metamorphic testing can be carried out
to generate follow-up test cases according to metamorphic
relations. A metamorphic relation (MR) is an expected
relation among the inputs and outputs of multiple executions
of the target program. For a successful test case and a
chosen MR, we can construct follow-up test say
and run the program again. Let p denote the program under
test. We check and against the If MR
cannot be satisfied, the program must have failed.

Consider, for instance, a program that computes the sine
function. The property sin x = sin 80-x) can be used
as a metamorphic relation. Let 57.3 be one of the
test cases chosen according to a selection strategy such as
branch coverage. Suppose the output is 0.8415. This output
may not be verified easily if an oracle is not available.
On the other hand, regardless of whether an oracle exists,
MT suggests testing the program with a follow-up test case
180- 57.3. The program is run on this test case to produce
a second output, say 0.8402. The two outputs are then
compared. Obviously, they do not satisfy the expected MR
and hence a failure is detected.

It should be noted that the idea of verifying programs
against selected properties is not new. It has long been
used in practice (see for example). The techniques of
program checkers [2] and [3] also
make use of properties that involve multiple executions of
the program. There are, however, significant differences
between MT and other property-based testing methods.
First, before MT is applied, a test case selection strategy
S and a set of test cases T corresponding to must exist
in the first place. If no failure is revealed by then
MT can be applied to generate a new set of test cases
as a partner accompanying T , so that the program can
be further verified against some necessary metamorphic
relations. This is regardless of whether an oracle is
available. Another characteristic of MT is that are
not limited to identity relations. Any expected relation
involving inputs and outputs of two or more executions of
the program can be taken as an In for instance, we
used the convergence property as a metamorphic relation
to test a program that solves a partial differential equation.

For more detailed discussions on the differences between
MT and other methods, readers may refer to

As has been shown, MT does not check the correctness
of individual outputs. Instead, it checks the relations among
several executions. Since no manual output predictions and
comparisons are required, MT can be efficient and fully
automated. In an experimental metamorphic testing
framework has been developed to follow up on our study.

Note that, since an MR is a necessary property, it may
not be sufficient for program correctness. This is indeed a
limitation of all testing methods.

3. Interesting results and potential research
directions

3.1. Testing in the absence of an oracle

In general, when oracles are not available, testers often
test the programs using special or simple values for which
correct results are actually known Our experimental
results in [7] showed, however, that these special and simple
values are not enough in revealing program defects. By
incorporating MT, the problem can be better tackled.

In we studied a faulty program purportedly
computing the sine function. We first tested this program
using the following 5 special values, for which the sine
function values are well known: 0, and

The outputs computed by the program, however, are
all correct.

We then identified metamorphic relations to generate
metamorphic test cases These are:

: sin x- sin(x+ 0;

: sin x +sin (x +n) =0;

: - sin (-x)-sin x = 0;

: sin = 0;

: sin

- 4 =0

: x + - - =

= O ;

For each of the 5 special values, follow-up test
cases were generated to verify the program against
the 10 respectively. After
taking into consideration rounding errors in floating-point
computation, the results were as follows: For the special
value “0”, two were violated; for four were

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

violated; for six were violated; for six were
violated; and for seven were violated. This result
shows that we should not stop when a program has been
tested on some special values and no failure has been
revealed. By making reference to metamorphic relations,
follow-up test cases can be constructed and the program
tested further. This will increase the chance of revealing
defects in the program. We also see from the results
that, for a given metamorphic relation, some inputs may
cause a failure while others may not. When performing
MT, therefore, the test cases should include both special
values (for which an oracle exists) and random values (for
which an oracle does not exist), in order to maximize the
possibility of revealing a failure.

Our results in [7] also show that the failure-causing
abilities of different vary greatly. After metamorphic
testing based on the 5 special values, the failure rates of

are 0, 0.8, 0.6, 0.4, 0.4, 0, 0.6, 0.4,
and 0.8, respectively. This result demonstrates that, when
performing MT, we should try to employ more than one MR
because different may have varying failure-causing
abilities for different types of defect.

3.2. Beyond identity relations

In this section, we shall continue our discussions on
testing in the absence of an oracle.

Metamorphic relations are not limited to identity
relations. In for instance, we used the convergence
property as an MR to test a program solving a partial
differential equation. The program was adapted from [
It attempts to solve the following thermodynamic problem:
Suppose we are given an insulated rectangular plate. Its
boundary temperatures are homogeneous along each edge.
After the heat potential of the plate has reached stability, we
would like to find the temperature of each point on the plate.

The program calculates the temperatures on the plate
by solving a equation with Dirichlet boundary
conditions. The algorithm uses the “alternating direction
implicit” method. We have seeded a fault into the program
by replacing the correct statement

if (fabs (- > larg)
larg = fabs -

with

if (fabs - > larg)
larg = fabs -

It is difficult to verify the results of computation because
of the lack of a testing oracle. We used both simple and
special values as test cases for the faulty program but no
failure was revealed. For example, it produces exactly the
same outputs as the correct program when computing on

Figure 1. Examples of metamorphic
cases

test

3 x 3 and 7 x 7 mesh grids. It produces a result fairly close
to the one computed by the correct program when a 15 x

mesh grid is used. We also used the following special
cases to test the program: (i) setting the temperatures at all
edges to be equal; (ii) using a square plate and setting the
boundary conditions to be symmetric, hence producing a
symmetric distribution of the temperatures; (iii) setting the
boundary condition to be symmetric with respect to both the
horizontal and vertical axes. All these special cases cannot
reveal the fault in the program.

We tested this program using the convergence property
of the solutions of partial differential equations Let us
use (P) to denote the at a point computed
by the program using a mesh grid Let and
denote any three mesh grids. We identified and proved the
following MR for testing the program:

Using this convergence property as the MR, we tested the
program at the same 9 points . . . , using mesh
grids . . . , where c c .. .c Figure
for example, shows the 9 points for mesh grids and
By comparing the differences between the 5 computation
results, it can be found that this series of outputs do not
satisfy the expected Hence, a failure has been revealed.

3.3. Fault-based testing without oracles

We have also applied the technique of metamorphic
testing to fault-based testing [9] so that prescribed faults can
be eliminated the program even when an oracle is not
available.

The theory of fault-based testing was introduced by
He observed that, although testing could not

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

double Power (double double v)
double numerator, result;
inti;

2 . result =

else
3.
4. result =

6.

if == v)

result = result *

else {
= In + (u- = * (u- +

* - __.
7.
8.
9. numerator =

10. =

1 1 . result =

13. I ;
14.
IS.

= -

while (InTerm) > le-16)

numerator = numerator *
= numerator

result = result

I
result = exp (v * result);

I
return result;

Figure 2. Program Power

prove the correctness of programs, correctly executed test
cases can indeed show that the program code is from
certain types of fault. Like other testing methodologies,
Morell’s method also requires an oracle. This is because
we must know whether the test cases have been executed
correctly in the first place.

By employing metamorphic relations, the oracle
problem in fault-based testing can be alleviated
Figure 2 shows a program that has been used as one of the
examples to illustrate our method. For the given input and
v, the program computes If v = 0, it will immediately
return If v is a positive integer, then it produces the
result by multiplying by itself v times. Otherwise, it uses
the formula = to compute the power.

Suppose we would like to know whether statement
is correct with respect to a constant substitution for

In other words, we would like to know
whether the correct statement 11 could have been replaced
erroneously by

result = F;

where “F” is a constant value instead of the variable
To achieve this goal, the fault-based testing

technique should be used. Because of a lack of an oracle

begi

Figure 3. Control flow of program Med

for this problem for the general situation, however, Morell’s
method could not be applied. On the other hand, by making
use simple metamorphic relation x = (u x
the problem can be solved. It can be proved that a constant
substitution for is impossible without causing
a failure We have also given more examples to
demonstrate the use of both actual and symbolic test cases
in eliminating prescribed faults.

3.4. Metamorphic testing using symbolic inputs

Metamorphic testing is not restricted only to actual
inputs. With the use of symbolic inputs, metamorphic
testing can be turned into a program verification method
known as semi-proving which is an integration of
testing, proving, and debugging. In semi-proving, symbolic
inputs have been used to verify whether the program
satisfies a given MR for either the entire input domain or
selected paths in the program.

A simple program b, c) is given in to
illustrate the method. Its control flow is shown in
Figure 3 (a). The program is expected to return the median
of three real numbers a, b, and c. Obviously, the program
is expected to observe the property b, c))=
Med (a , b, c) for any input (a , b , and any permutation

b, c) . In fact, according to group theory only
two identities need to be verified, namely a , c) =

b, c) and c , b) = b, These
two identities are taken as the metamorphic relations.

Semi-proving verifies these metamorphic relations by
applying the techniques of global symbolic evaluation [10,

followed by constraint solving Global symbolic
evaluation is a technique that executes every possible path

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

of the program with symbolic inputs. Similar symbolic
analysis techniques are also intensively studied in the area
of compilers For certain classes
of programs, we can either prove that they satisfy the
prescribed MR for the entire input domain or identify
all failure-causing inputs violating the Furthermore,
these failure-causing inputs will be expressed in constraint
expressions to support debugging. For example, for the
faulty program with a “missing path error” as shown in
Figure 3 (b), the failure-causing inputs can be described by
the expression < a < c. As a result, the nature of the
program defect can be better revealed In situations
where it is too difficult or expensive to perform global
symbolic evaluation, semi-proving can still be applied to
verify selected paths rather than the entire input domain.
In this way, the cost of global symbolic evaluation and
constraint solving can be reduced

3.5. Stronger may not necessarily be better
than weaker ones

For a given problem, usually more than one metamorphic
relation can be identified. It is important to know how to
select the most effective For example, some properties
are theoretically stronger than others. Are stronger
properties necessarily better than weaker ones? Our
preliminary study in [6] suggests that it is not necessarily
the case.

A program v) is used as a case
study in The parameter G is an undirected weighted
graph represented by a matrix. The program searches for
the shortest path between vertices and v in G. For a
non-trivial input, it will be very expensive to verify the
correctness of the output. An experiment is conducted with
2 mutants as faulty programs. For each mutant, 1000pairs
of metamorphic test cases are randomly generated.

The experiment is as follows: The identity relation
A’, B’) = A, B) is

employed to produce a hierarchy of metamorphic relations,
where H is a graph randomly generated; is a
permutation of H; A and B are different vertices in H ; and
A’ and B’ are vertices in the graph corresponding to
A and B, respectively. Suppose H consists of 10 vertices

vg) . Let be a transposition of H
that exchanges the positions of vertices and i =

2, . .. , 9. Then, the input matrices corresponding to the
graphs H, (H) , . . . , will be different. Let

(H) , . . . , be another set of permutations
of H obtained by circularly shifting . . . , v g) left by

digit, 2 digits, . . .,and 9 digits, respectively.
According to group theory [the compositions of

the transpositions . . . , can generate any other
permutations of H. Hence, the metamorphic relations

. . . as a whole are obviously stronger than the
metamorphic relations . . . , The experimental
results in [6] show, however, that overall failure-revealing
ability of the metamorphic relations . . . , is much
higher than that of .. . , In addition, although
is the strongest property among . . . , because it
can generate any other for = 2, 3 , . . . , 9, it actually
demonstrates the lowest failure-causing ability. Instead,
demonstrates the highest failure-causing ability, followed
by and then followed by and and then and

The worst are and
Thus, the results suggest that theoretically stronger

metamorphic relations may not necessarily have a higher
failure-revealing ability than weaker ones.

3.6. How to select useful metamorphic relations

In addition to permutation properties, other
have also been investigated in Among them, the
seemingly simplest property A , B) =

B, A) has demonstrated the highest
failure-causing ability. The reasons for this have also been
studied: In metamorphic testing, the program is run on a
first input case and then on a follow-up input case. Although
the two inputs are different, they are related by the
Hence, the two executions of the program should have both
similarities and differences. It is found in [6] that the
bigger the differences between two executions, the more
effective is the MR in revealing program defects. Take
the permutation property discussed in Section 3.5 as an
example. Although the second test case is different from
the first one, the program’s search for the shortest path
on the two test cases basically follows a similar execution
sequence, that is, searching from the starting vertex A (and
correspondingly, A’) to the adjacent edges and vertices until
B (and correspondingly, B’) has been reached. Since the two
input graphs are permutations of each other, their adjacent
vertices and edges also correspond to each other. Hence,
their searching sequences are similar. As a result, it is
relatively more likely that the two executions will produce
the same outcome. On the other hand, when the MR

A , B) = B , A) is used,
the starting and ending points in the second execution are
swapped and hence the searching sequence is reversed: The
program will start from B and search towards A. In this
way, the two execution sequences differ from each other
greatly. Consequently, it is relatively more likely that the
two executions will produce different outcomes if there is a
fault in the program.

In short, it is suggested in [6] that, when selecting MR
to test a given program, the algorithm and structure of the
program should be taken into consideration. Metamorphic
relations that can make the second execution most different

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

from the first execution are likely to achieve the best
revealing effect. It should be noted that the concept of
“difference between two executions” has not been defined
explicitly. It is a concept covering all aspects of program
executions. For example, it may include the sequence of
statements exercised, sequence of different values taken by
program variables, and so on. Further research should be
conducted to give more explicit guidelines.

4. Conclusion

In this paper, we have presented the basic concept
of metamorphic testing and its applications in program
testing, proving, and debugging. We have also highlighted
several important issues that are critical to the
detection effectiveness of metamorphic testing. In addition
to program verification, our semi-proving technique also
supports debugging by generating constraint expressions
for the failure-causing inputs. This kind of expression
(such as b < a < c for a program b , c)) are more
informative and explicit than actual test cases (such as
a = 1.3, b = -2.8, c = 3.6) in identifying defects, and
may even give clues to the correction of the program. In
terms of failure-revealing ability, we have observed that a
stronger metamorphic relation is not necessarily better than
a weaker metamorphic relation that can be derived from
it. As future research, it will be interesting to find out the
desirable characteristics of metamorphic relations that are
good at revealing failures.

References

B. Beizer, Software Testing Techniques, Van
Reinhold, New York, 1990.

[2] M. Blum and S. Kannan, “Designing programs that
check their work”, In Proceedings of the 31st Annual
ACM Symposium on Theory of Computing (STOC

ACM Press, New York, 1989, pp. 86-97. Also
Journal of the 42 1995, pp. 269-291.

[3] M. Blum, M. Luby, and R. “Self-
testing / correcting with applications to numerical
problems”, Journal of Computer and System Sciences,
47 1993, 549-595.

[4] T.Y. Chen, S.C. Cheung, and S.M. “Meta-
morphic testing: a new approach for generating
next test cases”, Technical Report
01, Department of Computer Science, Hong Kong
University of Science and Technology, Hong Kong,
1998.

[5] T. Chen, J. Feng, and T. H. Tse, “Metamorphic
testing of programs on partial differential equations:
a case study”, In Proceedings of the 26th Annual
International Computer Software and Applications
Conference (COMPSAC IEEE Computer
Society Press, California, 2002, pp.

[6] T.Y. Chen, D. H. T. H. Tse, and Z. Zhou,
“A case study on the selection of useful relations in
metamorphic testing”, paper in preparation.

[7] Chen, F.-C. Kuo, and A. Tang,
“Metamorphic testing and testing with special values”,
In Proceedings of the 5th International Conference
on Engineering, Intelligence,
Networking, and Computing
(SNPD International Association for Computer
and Information Science, Mt. Pleasant, Michigan,
2004.

T. Chen, T. H. Tse, and Z. Zhou, “Semi-proving:
an integrated method based on global symbolic
evaluation and metamorphic testing”, In
of the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ACM
Press, New York, 2002, 191-195.

[9] T. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based
testing without the need of oracles”, Information and

Technology, 45 2003, 1-9.

[L. A. Clarke and D. J. Richardson, “Symbolic
evaluation methods: implementations and appli-
cations”, In B. Chandrasekaran and S. Radicchi,
editors, Computer Program Testing, North-Holland,
Amsterdam, 1981, pp. 65-102.

[I I] L. A. Clarke and D. J. Richardson, “Applications
of symbolic evaluation”, Journal of Systems and
Software, 5 1985, pp. 15-35.

W. J. Cody, Jr. and W. Waite, Manual for
the Elementary Functions, Prentice Hall, Englewood
Cliffs, New Jersey, 1980.

T. Fahringer and B. Scholz, “A unified symbolic
evaluation for compilers”,
IEEE Transactions on Parallel and Distributed

11 2000, pp. 105-1125.

T. Fahringer and B. Scholz, Advanced Symbolic
Analysis for Compilers: New Techniques and
Algorithms for Symbolic Program Analysis and
Optimization, Volume 2628 of Lecture Notes in
Computer Science, Springer, Berlin, 2003.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Gerald and Wheatley, Applied Numerical
Analysis, Addison Wesley, Reading, Massachusetts,
1999.

A. and B. Botella, “Automated metamor-
phic testing”, In Proceedings of the 27th Annual
International Computer Software and Applications
Conference (COMPSAC IEEE Computer
Society Press, Los California, 2003, pp.
40.

M. Hall, Jr., The Theory of Groups, AMS Chelsea,
Providence, Rhode Island, 1999.

[D. Hamlet, “Predicting dependability by testing”,
In Proceedings the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA

ACM Press, New York, 1996, pp. 1.

J. Jaffar, S. P. J. and R. H. C. Yap,
“The language and system”, ACM Transac-
tions on Programming Languages and Systems, 14
1992, pp.

L. I. Manolache and D. G. Kourie, “Software testing
using model programs”, Software: Practice and
Experience, 31 2001, pp.

L. J. “A theory of fault-based testing”, IEEE
Transactions on Software Engineering, 1990,

G. J. Myers, The Art of Software Testing, Wiley, New
York, 1979.

E. J. Weyuker, “On testing non-testable programs”,
The Computer Journal, 25 1982, pp.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

