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Abstract

This paper addresses the problem of recovering the 3D shape of a surface of revolution
from a single uncalibrated perspective view. The algorithm introduced here makes use of
the invariant properties of a surface of revolution and its silhouette to locate the image of
the revolution axis, and to calibrate the focal length of the camera. The image is then nor-
malized and rectified such that the resulting silhouette exhibits bilateral symmetry. Such a
rectification leads to a simpler differential analysis of the silhouette, and yields a simple
equation for depth recovery. It is shown that under a general camera configuration, there
will be a 2-parameter family of solutions for the reconstruction. The first parameter corre-
sponds to an unknown scale, whereas the second one corresponds to an unknown attitude
of the object. By identifying the image of a latitude circle, the ambiguity due to the un-
known attitude can be resolved. Experimental results on real images are presented, which
demonstrate the quality of the reconstruction.
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1 Introduction

2D images contain cues to surface shape and orientation. However, their interpre-
tation is inherently ambiguous because depth information is lost during the image
formation process when 3D structures in the world are projected onto 2D images.
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Multiple images from different viewpoints can be used to resolve these ambigui-
ties, and this results in techniques likestereo vision andstructure from motion. On
the other hand, under certain appropriate assumptions, it is also possible to infer
scene structure, like surface orientation and curvature, from a single image. In this
paper, a simple technique for recovering the 3D shape of a surface of revolution
from a single view is introduced. The symmetry properties exhibited in the image
of a surface of revolution are exploited to calibrate the focal length of the camera,
and to rectify the image so that the resulting silhouette exhibits bilateral symmetry.
Surface normals along the contour generator are then determined from the recti-
fied silhouette, and depth information can then be recovered using a coplanarity
constraint between the surface normal and the revolution axis.

This paper is organized as follows. Section 2 briefly reviews existing techniques in
the literature for shape from contour using single view. Section 3 gives the theoret-
ical background necessary for the development of the algorithm presented in this
paper. A parameterization for surfaces of revolution is presented and the symme-
try properties exhibited in the silhouettes are summarized. In particular, the surface
normal and the revolution axis are shown to be coplanar. This coplanarity constraint
is exploited in Section 4 to derive a simple technique for reconstructing a surface
of revolution from its silhouette in a single view. It is shown that under a general
camera configuration, there will be a 2-parameter family of solutions for the recon-
struction. The first parameter corresponds to an unknown scale in the reconstruction
resulting from the unknown distance of the surface from the camera. The second
parameter corresponds to the ambiguity in the orientation of the revolution axis on
they-z plane of the camera coordinate system1 . The algorithm and implementa-
tion are described in Section 5 and results of real data experiments are presented in
Section 6. Finally conclusions are given in Section 7.

2 Previous Works

The earliest study of silhouettes in single views dates back to 1978, when Barrow
and Tenenbaum [1] showed that surface orientation along the silhouette can be
computed directly from image data. In [2], Koenderink showed that the sign of
the Gaussian curvature is equal to the sign of the curvature of the silhouette, and
convexities, concavities and inflections of the silhouette indicate convex, hyperbolic
and parabolic surface points respectively. In [3], Cipolla and Blake showed that the
curvature of the silhouette has the same sign as the normal curvature along the
contour generator under perspective projection. A similar result was derived for
orthographic projection by Brady et al. in [4].

1 Here we assume a right-handed coordinate system, where the optical center is at the
origin, thex-axis and they-axis point right and down, respectively, and thez-axis is the
viewing direction.
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In all the above studies, the authors only made use of a single monocular image
to infer geometric information from the silhouette. In fact, if some strong a priori
knowledge of the object is available, such as the class of shapes to which the object
belongs, then a single view alone allows shape recovery. The invariant properties
of straight homogeneous generalized cylinders (SHGCs) [5,6] and their silhouettes
had been studied by various researchers [7–9], and exploited for object recognition
and object pose estimation. In [10–12], algorithms for segmentation and 3D re-
covery of SHGCs under orthographic projection were presented. In [13], Ulupinar
and Nevatia addressed the recovery of curved-axis planar right constant generalized
cylinders (PRCGCs) under orthographic projection. Their idea was further devel-
oped by Zerroug and Nevatia [14] who implemented a technique for segmentation
and 3D recovery of both PRCGCs and circular planar right generalized cylinders
(circular PRGCs) from a single real image under orthographic projection.

This paper addresses the problem of recovering the 3D shape of a surface of rev-
olution (SOR) from a single view. Surfaces of revolution belong to a subclass of
SHGCs, in which the planar cross-section is a circle centered at and orthogonal
to its axis. This work is different from the previous ones in that, rather than the
orthographic projection model, which is a quite restricted case, the perspective
projection model is assumed. In [15], Lavest et al. presented a system for mod-
elling SORs from a set of few monocular images. Their method only works with
calibrated cameras, and requires the presence of a perspective image of a latitude
circle of the object and some zero-curvature curve points in the silhouette. The al-
gorithm introduced here works with an uncalibrated camera, and it estimates the
focal length of the camera directly from the silhouette. Besides, a latitude circle is
not necessary as the algorithm will produce a 2-parameter family of SORs under
an unknown attitude and scale of the object.

3 Properties of Surfaces of Revolution

Let C̃r(s) = [X(s) Y (s) 0]T be a regular and differentiable planar curve on the
x-y plane whereX(s) > 0 for all s. A surface of revolution can be generated by
rotatingC̃r about they-axis, and is given by

S̃r(s, θ) =




X(s) cos θ

Y (s)

X(s) sin θ



, (1)
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whereθ is the angle parameter for a complete circle. The tangent plane basis vectors

∂S̃r

∂s
=




Ẋ(s) cos θ

Ẏ (s)

Ẋ(s) sin θ




and
∂S̃r

∂θ
=




−X(s) sin θ

0

X(s) cos θ




(2)

are independent sincėX(s) andẎ (s) are never simultaneously zero andX(s) > 0
for all s. HenceS̃r is immersed and has a well-defined tangent plane at each point,
with the normal given by

n(s, θ) =
∂S̃r

∂s
× ∂S̃r

∂θ
(3)

=




X(s)Ẏ (s) cos θ

−X(s)Ẋ(s)

X(s)Ẏ (s) sin θ



. (4)

Through any point̃Sr(s0, θ0) on the surface, there is ameridian curve which is
the curve obtained by rotating̃Cr about they-axis by an angle−θ0, and alatitude
circle which is a circle on the planey = Y (s0) and with its center on they-axis.
Note that the meridian curves and the latitude circles are orthogonal to each other,
and they form the principal curves of the surface (see fig. 1). It follows from (4)
that the surface normal at̃Sr(s0, θ0) lies on the plane containing they-axis and the
point S̃r(s0, θ0), and is normal to the meridian curve throughS̃r(s0, θ0). By circular
symmetry, the surface normals along a latitude circle will all meet at one point on
they-axis.

meridian curve

latitude circle

Fig. 1. The meridian curves and latitude circles form the principal curves of the surface of
revolution.

Under perspective projection, the image of a surface of revolution will be invariant
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to aharmonic homology [16,17], given by

W = �3 − 2
vxl

T
s

vT
x ls

, (5)

wherels is the image of the revolution axis andvx is the vanishing point corre-
sponding to the normal direction of the plane that contains the camera center and
the revolution axis. Note thatW has four degrees of freedom, and thatvx and ls
are related by [18]

ωvx = ls, (6)

whereω = K−TK−1 is the image of the absolute conic andK is the3 × 3 cal-
ibration matrix of the camera. When the camera is pointing directly towards the
revolution axis,vx will be at infinity and the harmonic homology will reduce to a
skew symmetry, given by

S =
1

cos(φ− θ)




− cos(φ+ θ) −2 cosφ sin θ 2dl cosφ

−2 sinφ cos θ cos(φ+ θ) 2dl sin φ

0 0 cos(φ− θ)



, (7)

wheredl = u0 cos θ + v0 sin θ. The image of the revolution axis and the vanishing
point are given byls = [cos θ sin θ − dl]

T andvx = [cosφ sin φ 0]T respectively,
andS has only three degrees of freedom. If the camera also has zero skew and unit
aspect ratio, the harmonic homology will then become abilateral symmetry, given
by

B =




− cos 2θ − sin 2θ 2dl cos θ

− sin 2θ cos 2θ 2dl sin θ

0 0 1



. (8)

While ls will have the same form as in the case of skew symmetry, the vanishing
point will now be both at infinity and has a direction orthogonal tols. As a result,
B has only two degrees of freedom. These three different cases of symmetry are
illustrated in fig. 2.

4 Reconstruction from a Single View

Consider a surface of revolutioñSr whose revolution axis coincides with they-axis,
and a pin-hole camerâP = [�3 t] wheret = [0 0 dz]

T anddz > 0. Let the contour
generator be parameterized bys as

Γ̃(s) = c̃ + λ(s)p(s), where (9)
p(s) · n(s) = 0. (10)
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(a) (b) (c)

Fig. 2. (a) Silhouette of a surface of revolution under general perspective projection. The
symmetry of the silhouette is described by a harmonic homology defined by the image
of the revolution axis and a vanishing point. (b) When the camera is pointing directly to-
wards the revolution axis, the harmonic homology reduces to a skew symmetry, where the
vanishing point is at infinity. (c) If the camera also has zero skew and unit aspect ratio,
the harmonic homology becomes a bilateral symmetry, in which the vanishing point is at
infinity and has a direction orthogonal to the image of the revolution axis.

In (9), c̃ indicates the camera center at[0 0 −dz]T, p(s) is the viewing vector from
c̃ to the focal plane at unit distance for the pointΓ̃(s), andλ(s) is the depth of the
point Γ̃(s) from c̃ along thez direction. Note thatp(s) has the form[x(s) y(s) 1]T,
where(x(s), y(s)) is a point in the bilaterally symmetric silhouette. The tangency
constraint is expressed in (10), wheren(s) is the unit surface normal at̃Γ(s) and
can be determined up to a sign by [3]

n(s) =
p(s) × d p(s)

d s∣∣∣p(s) × d p(s)
d s

∣∣∣ (11)

=
1

αn(s)




−ẏ(s)
ẋ(s)

x(s)ẏ(s) − ẋ(s)y(s)



, (12)

whereαn(s) =
∣∣∣p(s) × d p(s)

d s

∣∣∣. In Section 3, it has been shown that the surface

normaln(s) will lie on the plane containing they-axis and the point̃Γ(s). This
coplanarity constraint can be expressed as

n(s)T[ny]×Γ̃(s) = 0, (13)

whereny = [0 1 0]T. Let n(s) = [n1(s) n2(s) n3(s)]
T and expanding (13) gives
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[
n1(s) n2(s) n3(s)

]



0 0 1

0 0 0

−1 0 0







λ(s)x(s)

λ(s)y(s)

λ(s) − dz




=0

[
n1(s) n2(s) n3(s)

]



λ(s) − dz

0

−λ(s)x(s)




=0

n1(s)(λ(s) − dz) − n3(s)λ(s)x(s) = 0. (14)

By rearranging (14), the depth of the pointΓ̃(s) is given by

λ(s) =
dzn1(s)

n1(s) − n3(s)x(s)
. (15)

Hence, the contour generator can be recovered from the silhouette using (9). In
homogeneous coordinates, the contour generator is given by

Γ(s) =


 c̃ + λ(s)p(s)

1




=


 c̃ + dzn1(s)

n1(s)−n3(s)x(s)
p(s)

1




=




dzẏ(s)x(s)

dz ẏ(s)y(s)

dzαΓ(s)

ẏ(s) − αΓ(s)



, (16)

whereαΓ(s) = (ẋ(s)y(s) − x(s)ẏ(s))x(s). Since the distancedz cannot be re-
covered from the image, the reconstruction is determined only up to asimilarity
transformation. The surface of revolution can then be obtained by rotating the con-
tour generator about they-axis, and is given by

S̃r(s, θ) =




X(s) cos θ

Y (s)

X(s) sin θ



, (17)

whereX(s) =
√

(λ(s)x(s))2 + (λ(s) − dz)2 andY (s) = λ(s)y(s).
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Now consider an arbitrary pin-hole cameraP by introducing the intrinsic param-
eters represented by the camera calibration matrixK to P̂, and by applying the
rotationR to P̂ about its optical center. HenceP = KR[�3 t] or P = HP̂, where
H = KR. From the discussions presented in Section 3, the resulting silhouette of
S̃r will be invariant to a harmonic homologyW. GivenK andW, it is possible to
rectify the image by a planar homographyHr so that the silhouette becomes bilat-
erally symmetric about the linêls = [1 0 0]T (i.e. they-axis). This corresponds to
normalizing the camera byK−1 and rotating the normalized camera until the rev-
olution axis ofS̃r lies on they-z plane of the camera coordinate system. Note that
Hr is not unique, as any homographyH′

r, given byH′
r = Rx(ψ)Hr whereRx(ψ)

is a rotation about thex-axis by an angleψ, will yield a silhouette which will be
bilaterally symmetric about̂ls. There exists aψ0 such thatRx(ψ0)HrP = P̂ and
the surface of revolution can be reconstructed from the rectified image using the
algorithm presented above. In general,ψ0 cannot be recovered from a single image
and hence there will be a 2-parameter family of solutions for the contour generator,
given by

Γψ(s) =




dzẏ(s)x(s)

dz ẏ(s)(y(s) cosψ − sinψ)

dzα
ψ
Γ(s)

ẏ(s)(y(s) sinψ + cosψ) − αψΓ(s)




(18)

whereαψΓ(s) = {(ẋ(s)y(s) − x(s)ẏ(s)) cosψ − ẋ(s) sinψ}x(s). The 2-parameter
family of surfaces of revolutioñSψr can be obtained by rotatingΓψ about they-
axis. Note that the ambiguities in the reconstruction correspond to (1) the unknown
distance of the surface from the camera and (2) the ambiguity of the orientation
of the revolution axis on they-z plane of the camera coordinate system. It can be
shown that such ambiguities in the reconstruction cannot be described by a pro-
jective transformation (see [19] for the proof). If the image of a latitude circle in
the surface of revolution can be located, the orientation of the revolution axis rel-
ative to they-axis of the camera coordinate system can be estimated [20], which
removes one degree of freedom in the ambiguities of the reconstruction. Further,
if the radius of such a latitude circle is also known, then all the ambiguities in the
reconstruction can be resolved.

It is worth mentioning that sometimes due to self-occlusions, it might not be always
possible to recover the whole surface of revolution from its silhouette. This situa-
tion is illustrated in fig. 3, where part of the neck and the bottom of the vase can-
not be reconstructed. Nonetheless, if more images of the surface of revolution are
available, it is possible to recover the whole meridian curve, and hence the whole
surface of revolution, by combining fragments of the meridian curve obtained from
different images.
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(a) (b)

Fig. 3. Due to self-occlusions, it might not be always possible to recover the whole surface
of revolution from its silhouette. (a) It is possible to recover the whole surface from the side
view of a vase. (b) Part of the neck and the bottom of the vase cannot be reconstructed from
this top view due to self-occlusions.

5 Algorithm and Implementation

5.1 Estimation of the Harmonic Homology

The silhouetteρ of a surface of revolution is first extracted from the image by
applying a Canny edge detector [21], and the harmonic homologyW that maps
each side ofρ to its symmetric counterpart is then estimated by minimizing the
geometric distances between the original silhouetteρ and its transformed version
ρ′ = Wρ (see fig. 4). This can be done by samplingN evenly spaced pointsxi
alongρ and optimizing the cost function

Cost(vx, ls) =
N∑
i=1

dist(W(vx, ls)xi, ρ)
2, (19)

wheredist(W(vx, ls)xi, ρ) is the orthogonal distance from the transformed sample
pointx′

i = W(vx, ls)xi to the original silhouetteρ. A very good initialization ofls
andvx can be obtained using the bitangents of the silhouette (see [18] for details).

5.2 Image Rectification

After the estimation of the harmonic homologyW, the image can be rectified so
that the silhouette becomes bilaterally symmetric about the linel = [1 0 0]T. Such a
rectified image resembles an image that would have been observed by a normalized
camera when the axis of the surface of revolution lies on they-z plane of the camera
coordinate system.
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sl

ρ

Fig. 4. The silhouetteρ of a surface of revolution (candle holder) is extracted by apply-
ing a Canny edge detector and the axisls of the harmonic homology associated with the
silhouette is estimated.

By assuming that the principal point is located at the image center and that the
camera has unit aspect ratio, the focal length can be computed fromvx andls using
(6). The image can then be normalized byK−1 to remove the effects of the intrinsic
parameters of the camera. The axisls of W, and hence the image of the revolution
axis, is transformed tolns = KTls.

The normalized image is then transformed by a rotation matrixRb that bringsxp
0 ,

the orthogonal projection of the principal pointx0 = [0 0 1]T on the axislns ,
to x0. This corresponds to rotating the normalized camera until it points directly
towards the axis of the surface of revolution, and the resulting silhouette will then
be bilaterally symmetric about the image of the revolution axis. The axisnb and
the angleφb of the rotationRb are given by

nb =
xp

0 × x0

|xp
0 × x0| , and (20)

φb = arccos(
xp

0 · x0

|xp
0 | |x0|), respectively. (21)

After transforming the normalized image by the homographyRb, the resulting sil-
houetteρb = RbK

−1ρ will be bilaterally symmetric about the transformed image
of the revolution axis, given bylbs = Rbl

n
s = [cos θb sin θb 0]T.

The resulting image is then rotated about the pointx0 until the axis of symme-
try aligns with they-axis, and the transformation is given byRa which is a rota-
tion about thez-axis by an angle−θb. This corresponds to rotating the normalized
camera, which is now pointing directly towards the axis of the surface of revolu-
tion, about itsz-axis until the axis of the surface of revolution lies on itsy-z plane.
The resulting silhouetteρa = Raρ

b is now bilaterally symmetric about the line
las = Ral

b
s = [1 0 0]T. The overall transformation for the rectification is given by

Hr = RaRbK
−1, and the rectification process is illustrated in fig. 5.
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(a) (b) (c)

Fig. 5. (a) The harmonic homology associated with the silhouette of the surface of revolu-
tion is estimated, which yields the image of the revolution axis. The image is then normal-
ized byK−1, and the orthogonal projectionxp

0 of the pointx0 = [0 0 1]T on the image of
the revolution axis is located. (b) The image is transformed by the homographyRb so that
the pointx0 lies on the image of the revolution axis and the silhouette becomes bilaterally
symmetric about the image of the revolution axis. (c) Finally, the image is rotated about the
pointx0 until the image of the revolution axis aligns with they-axis.

5.3 Depth Recovery

Since the rectified silhouetteρa is bilaterally symmetric about they-axis, only one
side ofρa needs to be considered during the reconstruction of the surface of revolu-
tion. The apparent contour is first segmented manually from the rectified silhouette.
This can usually be done easily by removing the topmost and bottommost elliptical
parts of the silhouette, which are the images of the topmost and bottommost lati-
tude circles, respectively. Points are then sampled from the apparent contour and
the tangent vector (i.e.̇x(s) and ẏ(s)) at each sample point is estimated by fitting
a polynomial to the neighboring points. Points that do not have well-defined tan-
gents are discarded. The surface normal associated with each sample point is then
computed using (12). Finally, the depth of each sample point is recovered using
(15), and the contour generator and the surface of revolution follow. Forψ �= 0, the
viewing vectorp(s) and the associated surface normaln(s) at each sample point
are first transformed byRx(ψ). The transformed viewing vector is then normalized
so that its3rd coefficient becomes 1, and (15) can then be used to recover the depth
of the sample point.

6 Experiments and Results

Fig. 6 shows the reconstruction of a candle holder. The rectification of the silhou-
ette (see fig. 6(b)) was done using the algorithm described in Section 5. An ellipse
was fitted to the bottom of the rectified silhouette for computing the orientation of
the revolution axis. The radius of the topmost circle and the height of the candle
holder, measured manually using a ruler with a resolution of 1 mm, were 5.7 cm
and 17.1 cm respectively. The ratio of the radius of the topmost circle to the height
of the reconstructed candle holder (see fig. 6(c)) was 0.3360. This ratio agreed with
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the ground truth value (5.7/17.1 = 0.3333) and had a relative error of 0.81% only.
Another example is given in fig. 7, which shows the reconstruction of a bowl. The
radius of the topmost circle and the height of the bowl were 6.4 cm and 6.2 cm
respectively. The ratio of the radius of the topmost circle to the height of the recon-
structed bowl (see fig. 7(c)) was 1.0474. This ratio was close to the ground truth
value (6.4/6.2 = 1.0323) and had a relative error of 1.46%.

(a) (b) (c)

Fig. 6. (a) Image of a candle holder. (b) Rectified silhouette of the candle holder which
exhibits bilateral symmetry. (c) Reconstructed model of the candle holder.

(a) (b) (c)

Fig. 7. (a) Image of a bowl. (b) Rectified silhouette of the bowl which exhibits bilateral
symmetry. (c) Reconstructed model of the bowl.

7 Conclusions

By exploiting the coplanarity constraint between the revolution axis and the surface
normal, a simple technique for recovering the 3D shape of a surface of revolution
from a single view has been developed. The technique presented here assumes per-
spective projection and uses information from the silhouette only. The invariant
properties of the surface of revolution and its silhouette have been used to calibrate
the focal length of the camera, and to rectify the image so that the silhouette be-
comes bilaterally symmetric about they-axis. This simplifies the analysis of the
general camera configuration case to one in which the revolution axis lies on the
y-z plane of the camera coordinate system. If the image of a latitude circle in the
surface of revolution can be located, the orientation of the revolution axis relative
to they-axis of the camera coordinate system can be estimated, which removes one
degree of freedom in the ambiguities of the reconstruction. The remaining degree
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of freedom (i.e. scale) can be resolved by knowing the radius of the located latitude
circle.
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