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Abstract

There have been numerous studies on the effectiveness of partition and random testing. In partic-

ular, the proportional sampling strategy has been proved, under certain conditions, to be the only form

of partition testing that outperforms random testing regardless of where the failure-causing inputs are.

This paper provides an integrated synthesis and overview of our recent studies on the proportional

sampling strategy and its related work. Through this synthesis, we offer a perspective that properly

interprets the results obtained so far, and present some of the interesting issues involved and new

insights obtained during the course of this research.
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1 Introduction

There have been numerous studies in the last two decades on the effectiveness of the two major

testing approaches in software testing: partition testing and random testing (Duran and Ntafos, 1984;

Hamlet and Taylor, 1990; Weyuker and Jeng, 1991; Tsoukalas et al., 1993; Chen and Yu, 1994;

Gutjahr, 1999). In particular, the proportional sampling (PS) strategy has been proved, under certain

conditions, to be the only form of partition testing that outperforms random testing regardless of where

the failure-causing inputs are, in terms of the probability of detecting at least one fault (Chen and Yu,

1994; Chen and Yu, 1996c; Chen and Yu, 2000).

This paper aims at providing an integrated synthesis and an informative overview of our studies

on the fault-detecting effectiveness of partition and random testing, and in particular the proportional

sampling strategy. Each of these studies has been done with a different focus and emphasis. Gradually,

a rich body of knowledge has emerged and evolved as each individual study builds on the knowledge

of earlier results. Through the synthesis in this paper, we hope to offer a holistic perspective and set the

context for a comprehensive interpretation of the results that have been obtained so far. Furthermore,

such a synthesis is also useful for highlighting some of the interesting issues involved and the insights

obtained during the course of this research.

Section 2 sets the stage for discussion by introducing the background, outlining the scope of this

paper, the terminologies and major assumptions used in the formal model under study. Section 3

summarizes the previous related empirical and analytical studies. Section 4 presents an overview and

synthesis of our work on the proportional sampling strategy, discusses its applicability and clarifies

issues that were recently misinterpreted. Section 5 discusses the interesting research issues involved

and the insights obtained in the further generalisation and relaxation of some major assumptions of

the formal model. Section 6 summarizes other related work. Section 7 concludes this paper.

2 Preliminaries

2.1 Background

Input partitioning has been considered as the “natural solution to the two fundamental testing problems

of systematic method and test volume” (Hamlet and Taylor, 1990). Partition testing strategies divide

the program’s input domain (which is the set of all possible inputs) into subdomains, from each of

which one or more test cases are selected for execution. These subdomains are formed from some

pre-defined criteria, usually based on the program specification or implementation. For example the

category-partition method (Ostrand and Balcer, 1988) divides the input domain according to different

aspects identified from the specification to be relevant for the purpose of testing, whereas in path

coverage testing (Myers, 1979), a subdomain corresponds to all inputs that execute a certain path in

the program.

The motivation underpinning the use of partition testing is that the information from the speci-

fication or the program code will be useful to construct subdomains that are homogeneous (Hamlet

and Taylor, 1990; Weyuker and Jeng, 1991) or revealing (Weyuker and Ostrand, 1980), in the sense

that either all members of a subdomain will cause the program to succeed or all cause it to fail. If so,

one representative from each subdomain will be sufficient to reveal the program faults. Unfortunately,

as Weyuker and Jeng (1991) have noted, it is extremely unusual for every subdomain to be truly

homogeneous. In practice, subdomains have to be sampled often enough to improve the chance of

detecting failures (Hamlet and Taylor, 1990).
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In contrast to the systematic approach of partition testing, random testing simply selects test cases

from the entire input domain randomly and independently (Hamlet, 1994). Random testing makes

minimal use of the information from the specification or the program code. Its advantages are that it

is intuitively simple, does not bear the overhead of input domain subdivision, and allows statistical

quantitative estimation of the program’s reliability.

The origin of the debate on partition testing versus random testing can be dated back to the strong

disagreement of their values between two classic books on software testing and reliability (Thayer

et al., 1978; Myers, 1979). Myers (1979) described random testing as “probably the poorest [test case

design] methodology” whereas Thayer et al. (1978) recommended the use of random testing at the

final testing of a program. Motivated by their contrary opinions, Duran and Ntafos (1984) performed

the now well-known simulations and experiments for evaluating the effectiveness of the two testing

approaches. Their results were considered by many to be surprising and counter-intuitive. Other

researchers have subsequently performed more simulations and experiments (Loo and Tsai, 1988;

Hamlet and Taylor, 1990) that essentially confirmed the original findings of Duran and Ntafos (1984).

In search for theoretical explanations of the empirical results, Weyuker and Jeng (1991) conducted

the first analytical analysis of partition testing by means of a formal model. Based on this model, their

work has been substantially extended and generalized by many subsequent studies. In the rest of this

section, we shall state the scope of this paper, introduce the notation and terminology used throughout

this paper, and briefly discuss the assumptions that underlie the formal model. A more comprehensive

account of the justification and validity of these assumptions can be found in (Duran and Ntafos, 1984;

Hamlet and Taylor, 1990; Weyuker and Jeng, 1991; Chen and Yu, 1996a). As will be seen, most of

these assumptions have also been used in one way or another in many other related studies. The effects

of relaxing some of these assumptions have been investigated in some recent studies, which will be

discussed in Section 5.

2.2 Scope of this paper

Testing serves a variety of purposes, of which two are considered fundamental (Li and Malaiya, 1994;

Bache, 1997; Hamlet, 1997; Frankl et al., 1998). The first is the detection of faults for removal. For

example, Myers (1976, 1979) defines testing as “the process of executing a program with the intent

of finding errors”. The terms debug testing (Frankl et al., 1998) and directed testing (Michael and

Voas, 1997) have been used to refer to testing with the purpose of finding bugs. The second is the

assessment of the software. The most common concern is with the prediction of the program’s relia-

bility (Tsoukalas et al., 1993; Li and Malaiya, 1994; Hamlet, 1997; Hierons and Wiper, 1997; Michael

and Voas, 1997; Frankl et al., 1998), but other aspects are also of interest, such as the estimation of

trustability (Howden and Huang, 1995), failure cost (Gutjahr, 1995) and failure rate (Hierons and

Wiper, 1997). This paper focuses on the first purpose of testing, that is, it is primarily concerned with

fault-detecting effectiveness.

We limit the scope of our discussion in this paper to the case that all subdomains are disjoint.

This is also the case considered in most empirical and analytical studies of partition testing, such

as in (Duran and Ntafos, 1984; Loo and Tsai, 1988; Hamlet and Taylor, 1990; Miller et al., 1992;

Tsoukalas et al., 1993; Li and Malaiya, 1994; Gutjahr, 1995; Howden and Huang, 1995; Hierons

and Wiper, 1997). The disjointness condition is actually not as unduly unrealistic as it appears to be.

First, many testing strategies do satisfy this condition. They include the path coverage criteria (My-

ers, 1979; Beizer, 1990), the partition analysis method (Richardson and Clarke, 1985) and many

functional and specification-based testing strategies such as the decision-table method (Goodenough

and Gerhart, 1975), the category-partition method (Ostrand and Balcer, 1988), the classification-tree

3



method (Grochtmann and Grimm, 1993; Chen and Poon, 1997), and others (Vagoun and Hevner,

1997; Nair et al., 1998). Secondly, in principle, overlapping subdomains can be refined to form true

partitions, as discussed in (Hamlet and Taylor, 1990; Weyuker and Jeng, 1991). The problem of

analysing overlapping subdomains has been known to be very difficult (Hamlet and Taylor, 1990;

Weyuker and Jeng, 1991) and some limited progress has been achieved in (Chen and Yu, 1996a).

Some work has been done in comparing a few specific testing strategies (with overlapping subdo-

mains) satisfying certain special relations (Frankl and Weyuker, 1993a; Frankl and Weyuker, 1993b),

but a more general and more comprehensive analysis remains to be done.

The discussions in this paper are predicated on a complete lack of any information on the failure-

causing inputs, even though some non-trivial results have been obtained when assuming otherwise

(Weyuker and Jeng, 1991; Chen and Yu, 1996a; Chan et al., 1997; Nair et al., 1998). This is mainly

because, in practice, it is very difficult to obtain information on failure-causing inputs with adequate

accuracy prior to testing, and also partly because this paper would be substantially lengthened other-

wise.

2.3 Notation and terminology

Let D denote the program’s input domain, d be the size of D and m be the number of failure-causing

inputs in D. The overall failure rate of the input domain, denoted by θ, is the proportion of failure-

causing inputs in the input domain, that is, θ =
m

d
. We shall assume that 0 < m < d (and hence

0 < θ < 1) in order to exclude the trivial cases of a program being perfectly correct or everywhere

incorrect.

We shall denote by n the total number of test cases to be selected from the entire input domain. The

overall sampling rate, denoted by σ, is the proportion of test cases selected from the input domain,

that is, σ =
n

d
. Normally, because of limited resources, the number of test cases is so small that n is

only a small fraction of d. In other words, we would normally expect that n ≪ d, or σ ≪ 1.

A partition testing strategy is composed of two components: a partitioning scheme which divides

the input domain D into k subdomains D1, D2, . . . , Dk, and a test allocation scheme which determines

the number of test cases selected from the subdomains. For i = 1, 2, . . . , k, we denote the size of

subdomain Di by di, the number of failure-causing inputs in Di by mi, and the number of test cases

selected from Di by ni, respectively. The failure rate and sampling rate of subdomain Di are then equal

to θi =
mi

di

and σi =
ni

di

, respectively.

Owing to the disjointness condition, we have
k

∑
i=1

di = d and
k

∑
i=1

mi = m. Moreover, for a fair

comparison, the same total number of test cases is selected from both partition and random testing,

thus giving
k

∑
i=1

ni = n.

2.4 Basic assumptions and effectiveness measures

It is assumed that the selection of test cases is done independently, with replacement and based on a

uniform probability distribution. The assumption of selection with replacement is common in most

formal models of software testing and reliability, and is made primarily to facilitate the tractability

of analysis. In reality, although duplicated test cases are usually not useful and should be avoided,

they should occur rarely since usually the number of test cases selected is small relative to the domain
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size. In many parts of the analysis, the assumption of low failure rate is actually made explicit in the

statement of the results. The effect of selection without replacement was recently addressed in (Leung

and Chen, 1999; Leung et al., 2000), and we will discuss it later in Sections 5.2 and 5.3.

Next, we discuss the choice of the uniform distribution in selecting test cases. For selection

from subdomains, the reason for this choice is obvious: subdomains are usually so designed that,

within the same subdomain, all inputs are considered “equivalent” with no known difference for the

purpose of testing (Goodenough and Gerhart, 1975; Weyuker and Ostrand, 1980; Ostrand and Balcer,

1988; Grochtmann and Grimm, 1993). As Hamlet and Taylor (1990) put it, “Were the appropriate

distribution skewed in any way it would be a basis for further refinement [of the subdomains].” Note

that this does not contradict with the possibility that only some inputs in the subdomain are actually

failure-causing while others are not. Prior to testing, there is simply no knowledge on which inputs

are failure-causing, and hence there is no ground for having a preference of certain inputs over others.

Many authors have argued for the selection of test cases based on the operational distribution,

which is the probability distribution of inputs that the program will encounter during its use. Although

this choice is appealing and seems ideal, there are considerable difficulties with the operational

distribution, both in practice and in theory.

First, the actual operational distribution is frequently not available in practice, especially for brand

new software products. Beizer (1990), for instance, argued that “there may be no rational basis for

predicting the statistical characteristics of the users. In such cases it isn’t even random testing, it’s

arbitrary testing.” Secondly, the operational distribution may change significantly during the use of

the software (Hamlet, 1994). Thirdly, a software product is often used by different users with different

usage patterns. This is particularly true for re-usable software components, for which predicting their

possible usage patterns would be very difficult.

More fundamentally, as Hamlet (1989) put it, “the lack of a distribution exposes a larger concep-

tual flaw: software quality does not intuitively depend on normal usage.” Voas et al. (1996) argued

that it is also essential to assess the failure tolerance of the “rare region” of the input domain, in which

the inputs are highly unlikely to be selected for execution under typical operation. Otherwise, they

argued, the software may not be robust enough to perform acceptably in case unusual events occur

during operation.

Furthermore, one primary reason of using the operational distribution is that it tends to detect

faults that are most likely to occur during operation. In our investigation, the focus is on the fault-

detecting ability of the testing strategy without special preference on detecting any particular fault

over another, and hence using a uniform distribution seems even more appropriate (Weyuker and Jeng,

1991). Hamlet (1997) argued that, for failure finding, a uniform distribution eases the requirement that

ultimate usage be correctly modelled.

The fault-detecting effectiveness of a testing strategy has to be quantified before analytical com-

parisons can be meaningfully made. The most common measures used are the probability of detecting

at least one failure (abbreviated as the P-measure) (Duran and Ntafos, 1984; Loo and Tsai, 1988;

Hamlet and Taylor, 1990; Weyuker and Jeng, 1991; Nair et al., 1998; Gutjahr, 1999), and the expected

number of failures (abbreviated as the E-measure) (Loo and Tsai, 1988; Frankl and Weyuker, 1993b;

Chen and Yu, 1996a; Chen and Yu, 1997). We shall first consider these two measures and later

introduce other measures as necessary in Section 5.3.

The P-measure is more popular since it is the same as the probability of detecting at least one

fault. On the other hand, the E-measure has a simpler formula and it can identify the ability of a

testing strategy in detecting more than one failure (Chen and Yu, 1996a). Moreover, the two measures

bear simple and yet very close relations. In particular, when all the failure rates involved are small

enough, the E-measure can be used as a first approximation of the P-measure (Chen and Yu, 1996a).
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In this paper, the P-measure is used as the primary metric when evaluating the fault-detecting ability of

testing strategies. However, when an exact analysis involving the P-measure is intractable, using the

E-measure often helps the understanding of the essential properties or behaviour under investigation.

For random testing, the values of the P-measure and the E-measure are given by Pr = 1− (1−θ)n

and Er = nθ, respectively. The corresponding values for partition testing are given by Pp =

1−
k

∏
i=1

(1−θi)
ni and Ep =

k

∑
i=1

niθi, respectively.

3 Previous work

3.1 Early empirical studies

Intuitively, there are strong reasons to believe that partition testing should perform better than random

testing in revealing failures. First, partition testing strategies make use of more information of the

specification or the program code in selecting test cases. Secondly, a subdomain usually consists of

inputs that “exercise” a particular function or feature of the program or specification. By explicitly re-

quiring at least one test case from every subdomain, partition testing aims at covering all the functions

or features in a systematic manner. This is in contrast to random testing in which some functions or

features may never get “exercised”, thereby failing to detect any faults associated with these functions

or features. Thirdly, many partition testing strategies are fault-based, that is, the subdomains are

designed in the hope of better revealing certain types of faults. Partition testing represents what

Howden and Huang (1995) regard as “intelligent” or “guided” choices that are commonly accepted to

be “more likely to reveal faults than random sampling”.

Despite all these popular conceptions, the well-known empirical study by Duran and Ntafos (1984)

has produced results that are surprising and counterintuitive to many. Essentially, they found that

with the same number of test cases, partition testing is slightly more effective in detecting faults than

random testing, but the difference is marginal. They concluded that random testing is likely to be more

cost-effective in terms of the cost per fault identified, if the overhead of partitioning is substantial.

Considering it “certainly counterintuitive that the best systematic method is little improvement

over the worst”, Hamlet and Taylor (1990) performed more experiments by varying the relevant

parameters, and yet obtained similar results. Independently, Loo and Tsai (1988) conducted even

more experiments that simulated a wider range of situations, and again confirmed that random testing

performs better under certain conditions, particularly at the early stages of testing.

3.2 A formal analysis

Weyuker and Jeng (1991) are the first to analyse partition testing analytically using a formal model.

Their model, on which our work is based, proves to be very useful in exposing the strengths and

weaknesses of partition testing that are less obvious and sometimes ignored. It helps to explain why

partition testing is not unconditionally better. Essentially, the strength of a partition testing strategy lies

in its ability to group together the failure-causing inputs. With a well-designed partitioning scheme,

there is at least one subdomain with a high density of failure-causing inputs so that the chance of

detecting failures will be high. A poor partitioning scheme forms subdomains with low failure rates,

and if these subdomains are not sampled frequently enough, the fault-detecting effectiveness can be

many times weaker than random testing.

Moreover, Weyuker and Jeng have identified several precise conditions under which partition

testing outperforms random testing. Most of the conditions are, however, of limited practical use
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as they involve failure rates that are rarely known prior to testing. One notable exception is the

observation that partition testing is at least as effective as random testing when all subdomains have the

same size and an equal number of test cases are selected from each subdomain. We shall refer to this

condition as the “equal-size-and-equal-sampling” condition. We now quote their result, Observation 4

in (Weyuker and Jeng, 1991), formally as follows.

Theorem 1 If d1 = . . . = dk and n1 = . . . = nk, then Pp ≥ Pr. If, in addition, the failure-causing inputs

are equally divided among the subdomains, so that m1 = . . . = mk, then Pp = Pr.

Weyuker and Jeng have further introduced the notion of “subdomain refinement” as follows.

Given that ni test cases are to be selected from a subdomain Di and ni > 1, it is possible to algo-

rithmically construct a refinement of the subdomain Di without a priori knowledge of faults and yet

is guaranteed not to decrease Pp. This can be achieved by subdividing Di into equal-sized subdomains

of Di and selecting an equal number of test cases from each resulting subdomain. It then follows

from Theorem 1 that the value of Pp for the refined partition is no worse than the original value of Pp.

Obviously, this refinement process can be continued until ni = 1 for all i without ever diminishing the

value of Pp.

4 The proportional sampling strategy

The “equal-size-and-equal-sampling” condition, required by Theorem 1, is obviously unduly restric-

tive, since most partition testing strategies do not form subdomains of equal sizes. The restriction of

equal subdomain sizes has subsequently been relaxed in (Chen and Yu, 1994; Chen and Yu, 1996a),

where the proportional sampling (PS) strategy, which is of much wider applicability, was proposed.

In this section, we first show that the PS strategy is a universally safe testing strategy, and when it is

not feasible, how it can be approximated by the maximin algorithms. We then discuss the merits of

partition testing, and when it should be used with proportional sampling. Finally, we shall clarify the

issues that were recently misinterpreted.

4.1 A universally safe partition testing strategy

4.1.1 Definitions and the proportional sampling theorem

For a given program to be tested with respect to its specification, the number of failure-causing inputs

is fixed and independent of the testing strategy.1 However, the number and locations of the failure-

causing inputs are usually not known before testing. To play safe, it is desirable to know the testing

strategies that would perform at least as well as random testing. This motivates the introduction of the

notions of “safeness” and “universal safeness” (Chen and Yu, 1996c) as follows.

Definition 1 A partition testing strategy is said to be safe for a program if Pp ≥ Pr no matter where

the failure-causing inputs are located.

Definition 2 A partition testing strategy is said to be universally safe if it is safe for every program.

Theorem 1 shows that the “equal-size-and-equal-sampling” condition is sufficient to guarantee a

partition testing strategy to be universally safe. As discussed at the beginning of this section, such

a condition is unduly restrictive. A more general condition, known as the proportional sampling

condition, was defined in (Chan et al., 1996; Chen and Yu, 1996a) as follows:

1For the economy of expression, references to the specification of a program will be made implicit hereafter.
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Definition 3 A partition testing strategy is said to satisfy the proportional sampling (PS) condition if
n1

d1

= · · · =
nk

dk

. Such a strategy is known as a proportional sampling (PS) strategy.

Chen and Yu (1994, 1996a, 1996c) have found that the PS condition also guarantees universal

safeness:

Theorem 2 A partition testing strategy is universally safe if it satisfies the PS condition.

Since Theorem 1 requires all subdomains to be of equal sizes while Theorem 2 does not have this

constraint, the latter is more useful in practice.

4.1.2 A necessary and sufficient condition for universal safeness

Knowing that the PS condition is sufficient to ensure universal safeness of a partition testing strategy, it

is natural to ask the following question: “Is there any other universally safe strategy that is independent

of or more general than the PS strategy?” This problem was recently solved in (Chen and Yu, 2000),

where it was proved that the PS condition is not only sufficient, but also necessary for a partition

testing strategy to be universal safe.

Theorem 3 A partition testing strategy is universally safe if and only if it satisfies the PS condition.

Note that the PS condition is necessary only if we require partition testing to be safe for every

program. Indeed, there do exist partition testing strategies that are safe for a particular program under

test and yet do not satisfy the PS condition (Chen and Yu, 2000). More precisely, the following

necessary condition for a partition testing strategy to be safe was identified in (Chen and Yu, 1996c).

Theorem 4 If a partition testing strategy is safe and d > (k−1)[m(n−1)−1], then for all i,

⌊

ndi

d

⌋

≤

ni ≤

⌈

ndi

d

⌉

, where ⌊α⌋ denotes the largest integer that does not exceed α, and ⌈α⌉ denotes the smallest

integer that is greater than or equal to α.

Note that, when the PS condition holds, the number of test cases selected from subdomain Di is

given by ni =
ndi

d
. Thus, when the input domain is large enough with respect to the number of test

cases and failure-causing inputs, a safe partition testing strategy must allocate test cases in such a way

that does not deviate from the PS condition other than rounding ni to an integer.

The practical implication of Theorems 3 and 4 is clear. With no prior information whatsoever

of the failure-causing inputs, proportional sampling is the only right direction towards the goal of

safeness or universal safeness. Any search of other conditions is doomed to be in vain. Whether the

goal of safeness is appropriate, though, depends on the context. We defer the discussion of when

to recommend the use of the proportional sampling strategy to Section 4.3. Meanwhile, we shall

show in the next section that the notion of “subdomain refinement”, first introduced by Weyuker and

Jeng (1991), can also be modified for the PS condition.
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4.1.3 Refinement of the PS strategy

Given ni test cases to be selected from a subdomain Di, where ni > 1, we may refine Di into smaller

subdomains such that the ni test cases are allotted proportionately among the smaller subdomains.

By Theorem 2, the resulting testing strategy should be no worse than the original one in terms of the

P-measure. This is a more general way of refinement than as suggested in (Weyuker and Jeng, 1991),

since the smaller subdomains need not be of the same size.

If we continue this refinement process for all subdomains Di with ni > 1, then the process ends

when every subdomain has one test case selected. Applying such a refinement process to the PS

strategy will result in n equal-sized subdomains with ni = 1 for all i. The resulting strategy is known

as the optimally refined proportional sampling (ORPS) strategy (Chan et al., 1997; Chan et al., 1999).

Clearly, the ORPS strategy is a special form of the PS strategy as it also satisfies the PS condition. Al-

ternatively, the ORPS strategy can also be obtained from the “equal-size-and-equal-sampling” strategy

through the refinement process suggested in (Weyuker and Jeng, 1991).

The properties regarding the bounds of the P-measure of the ORPS strategy and its comparison

with random testing have been studied in (Chan et al., 1997). An empirical study of the effectiveness

of the ORPS strategy using seeded errors in published programs has been reported in (Chan et al.,

1999). There the improvement of the ORPS strategy over random testing is found to range from as

much as 27% to as little as statistically insignificant, with an average of about 7.5%, for the programs

under study. This confirms the theoretical result that the ORPS strategy should outperform random

testing. Thus, when the overhead of partitioning the input domain into equal-sized subdomains is

small, the ORPS strategy may be used on its own right as a preferred strategy to random testing.

4.2 Optimal improvement of lower bound effectiveness

4.2.1 Problem formulation

The PS condition requires that ni =
ndi

d
for all i. Since the right hand side is not always an integer

but ni must be integral, it is often necessary to approximate the PS condition rather than to satisfy it

strictly. Intuitively, to retain the benefits of universal safeness as much as possible, the approximation

should be as close as one can make it. Theorem 4 suggests rounding up or down the fractions
ndi

d
,

but it is not entirely clear what the effect will be. Some intuitive guidelines have been provided

in (Chan et al., 1996), but it is preferable to have a theoretical basis on which the approximations can

be done methodically. More fundamentally, when the PS condition has to be satisfied approximately

and not strictly, by Theorem 3, universal safeness can only be approached but never reached. In

such situations, random testing will outperform partition testing under some rare and yet unfavourable

circumstances, but the difference is expected to be fairly small if the approximation to the PS condition

is close enough (Chen and Yu, 1996c; Chen and Yu, 2000). Even so, however, partition testing

still retains its merits, as it can be significantly better than random testing when circumstances are

favourable (such as when there is a subdomain full of failure-causing inputs). In other words, by

following the PS condition even only approximately, partition testing can be much better and will not

be much worse than random testing.

An entirely different approach is taken in the work reported in (Chen and Yu, 1997). Rather

than trying to achieve safeness “approximately”, it examines ways of optimally improving the lower

bound effectiveness of partition testing. It makes use of the maximin criterion, which is well known in

operations research, artificial intelligence and decision theory. The essence of the maximin criterion

is to try to achieve the best possible out of the worst-case scenarios.
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Technically, the problem is formulated as follows. When the desired partitioning scheme has been

chosen, the values of k (the number of subdomains) and d1, d2, . . . , dk (the subdomain sizes) are fixed.

The effectiveness of the testing strategy depends on the failure distribution m = (m1, m2, . . . , mk)
and the test allocation n = (n1, n2, . . . , nk). Let φ(m,n) be an effectiveness measure of the partition

testing strategy. The maximin effectiveness problem is to find feasible test allocations n̂ that satisfy

the following relation:

min
m

φ(m, n̂) = max
n

[

min
m

φ(m,n)
]

. (1)

The problem is also called a MaxiMin E-measure (MME) problem or a MaxiMin P-measure (MMP)

problem when the effectiveness measure used is the E-measure and the P-measure, respectively.

Detailed analysis of the MME and MMP problems can be found in (Chen and Yu, 1997; Chen and

Yu, 2001). Here we highlight some of the main results and discuss their relationships with the PS

condition.

4.2.2 The Basic Maximin Algorithm

Basically, the MME problem has been completely solved in (Chen and Yu, 1997; Chen and Yu, 2001)

for small values of m. Algorithms have been found for computing the optimal test allocations that are

solutions to the MME problem. The most fundamental of these algorithms, called the Basic Maximin

Algorithm, is shown in Figure 1. Its main idea is to initially allocate one test case to every subdomain

to ensure coverage, and then in each subsequent iteration, allocate additional test cases one by one to

the subdomain whose sampling rate is currently the lowest. For the ease of reference, we shall refer

to a test allocation computed by the Basic Maximin Algorithm as a maximin test allocation.

The Basic Maximin Algorithm

1. Set ni := 1 and σi :=
1

di

for i = 1, 2, . . . , k.

2. Set q := n− k.

3. While q > 0, repeat the following:

(a) Find j such that σ j = minσi.

(b) Set n j := n j +1.

(c) Set σ j := σ j +
1

d j

.

(d) Set q := q−1.

Figure 1: The Basic Maximin Algorithm

The correctness of this algorithm, which can be stated as follows, has been proved in (Chen and

Yu, 1997).

Theorem 5 The Basic Maximin Algorithm always produces solutions to the MME problem, provided

that m ≤
d

n
or for all i, m ≤ di.
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Regarding the MMP problem, an exact analysis is more difficult because of the complexity of the

formula for the P-measure. For fixed m and n, the failure distribution m that would lead to the lower

bound P-measure of n, together with the value of the lower bound, have been identified in (Chen and

Yu, 1996b), but an exact solution for the MMP problem remains to be found. Nevertheless, it has

been shown in (Chen and Yu, 1996a) that the P-measure possesses properties very similar to those

of the E-measure, and in particular the former can be approximated by the latter when all the failure

rates involved are small. Thus, when the number of failure-causing inputs is small, it is reasonable

to conjecture that the Basic Maximin Algorithm should produce test allocations that are close to the

solutions of the MMP problem.

The maximin test allocations possess several interesting properties, some of which are related

to the PS strategy. First, the rationale of the Basic Maximin Algorithm is to allocate test cases

incrementally to the most “under-sampled” subdomains so far (that is, those currently having the

lowest sampling rate), thereby gradually uplifting their sampling rates. With enough test cases,

the “under-sampled” subdomains will eventually “catch up” with other subdomains, bringing the

sampling rates of all subdomains closer to being equal. If the number of test cases and the subdomain

sizes are such that the PS condition can actually be strictly satisfied, the Basic Maximin Algorithm

will always produce such a test allocation. Otherwise, the algorithm will produce test allocations that

approach the PS condition as much as practically possible. Thus, the algorithm may be used as an

elegant and systematic way of approximating the PS condition, and it has the added merit of being

founded on a sound theoretical basis, namely the certainty of achieving the optimal lower bound in

terms of the E-measure.

Secondly, the Basic Maximin Algorithm is an “incremental” algorithm, even though it has been

described as if the total number of test cases, n, is predetermined and fixed. In fact, the algorithm may

be interpreted as one that produces solutions to the MME problem for t test cases, where t successively

takes the value of k, k + 1, . . . , n, or even beyond. Thus, the tester may decide to execute more or

fewer tests than as originally planned, and yet the resulting test allocations are still solutions to the

MME problem.

The Basic Maximin Algorithm keeps picking additional test cases from subdomains with the

lowest sampling rate so far, until the targeted number of test cases have been selected. In the lack

of other information, a sampling rate lower than the average may be treated as an indicator that

the subdomain might have been inadequately tested. This suggests a more general guideline that

is actually applicable no matter what test allocation strategy has been chosen initially: look for

subdomains that have been relatively ignored and test them more thoroughly.

4.2.3 The conservative nature of the PS strategy

With the clearer understanding gained from the relevant studies, it is not too difficult to see that the

similarity between the PS condition and the maximin criterion is not entirely coincidental. The PS

condition is a necessary and sufficient one for partition testing to be universally safe, that is, better

than random testing no matter what the failure distribution is. This certainly includes the worst-case

scenario when the failure-causing inputs are adversely spread across the subdomains. Thus, both the

maximin criterion and the PS condition attempt to improve the performance of partition testing so that

it will not become unduly ineffective, and therefore reflect an attitude that is more conservative.

One may wonder whether it is appropriate to adopt a conservative approach in the context of

partition testing. There are ample reasons for such an approach. First, if the overall failure rate is

high, or if the failure-causing inputs are located favourably (so that there is a subdomain with a high

failure rate), the faults will probably be easily caught with most test allocations anyway. In other

11



words, there is no need to worry too much about the favourable circumstances. On the other hand,

testers do need to be concerned with the possibility of the tests being too ineffective, especially when

the cost of failures is high. Ineffective tests not only leave possible faults undetected, but also reduce

our confidence on the reliability of the program. Under the premise of a complete lack of information

about the actual faults, it appears more advisable to avoid unnecessary risks than to hope wishfully

for the best.

Moreover, although the maximin criterion aims principally at improving the worst-case perfor-

mance, it actually improves the effectiveness of the testing in other ways as well. In a sense, improving

the worst case also helps to increase our confidence that the program is correct, particularly when

no failures are detected. Indeed, the reliability and dependability of a program are often based on

conservative measures rather than optimistic ones. By improving the worst-case performance, the

conservative estimate of the reliability or dependability of the program is also raised.

To better understand what this may mean quantitatively, consider the following argument put

forward by Nair et al. (1998). Let

ρ = 1−
k

∏
i=1

(1−θi)
ni/n .

Then

Pp = 1− (1−ρ)n . (2)

Thus, in terms of the effectiveness of fault detection, partition testing is equivalent to random testing

as if the program has a failure rate of ρ. Therefore, partition testing is better than, equal to, or worse

than random testing according to whether ρ > θ, ρ = θ or ρ < θ, respectively. Note that the PS strategy

always gives ρ ≥ θ, and that a solution to the maximin P-measure problem will give the greatest lower

bound value of ρ among the different test allocations under a given partitioning scheme.

For n randomly selected test cases from a program with failure rate θ, if no failures are found,

the quantity 1−α1/n provides an exact (1−α)-level upper confidence bound (Nair et al., 1998) for

the unknown value of θ. In a similar way, if no failures are found by partition testing, equation (2)

shows that 1−α1/n is an exact (1−α)-level upper confidence bound for the unknown value of ρ.

Now, suppose we have two testing strategies A and B, such that their corresponding values of ρ are

ρA and ρB, where ρA ≥ ρB. Then we have at least as much confidence in the program based on testing

strategy A as we will have using testing strategy B.

Since the PS strategy always has a better P-measure than random testing, the above argument

shows that the PS strategy gives a sharper upper confidence bound. Moreover, a test allocation

that gives the maximin P-measure will also provide the best upper confidence bound among all

test allocations, under the most unfavourable distribution of failure-causing inputs for the chosen

partitioning scheme.

4.3 Guidelines on when to use the PS strategy

We now offer some suggestions as to when the PS strategy or the maximin test allocations should be

considered. Such a decision would depend on particular situations as detailed as follows:

• With no preferred partitioning scheme

Suppose that the tester has no preferred partitioning scheme in mind and considers the use of

random testing. Then, from the point of view of improving the fault-detecting ability, we rec-

ommend the use of a proportional sampling strategy that requires as little partitioning overhead
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as possible. That is, the tester should attempt to divide the input domain into subdomains across

some “natural boundaries” so that the selection of test cases from the subdomains is easy. Test

cases should be allocated to satisfy the PS condition if possible or the maximin criterion if not.

If, however, it is preferred to optimally improve the fault-detecting effectiveness, then the ORPS

strategy (Chan et al., 1997; Chan et al., 1999) can be used instead of random testing. Recall

in Section 4.1.3 that the ORPS strategy divides the input domain into n equal-sized subdomains

with one test case selected from each subdomain. Depending on the program, such an equal-size

partitioning of the input domain frequently requires only minimal overhead. In such cases, the

ORPS strategy not only provides better fault-detecting ability than random testing, but is also

cost-effective as well.

• With pre-determined partitioning scheme but no preferred test allocation scheme

When the tester has a pre-determined partitioning scheme to follow but no associated test

allocation scheme preferred and no information whatsoever of the failure-causing inputs, we

recommend the use of the PS condition if possible, and the use of the maximin test allocations

if not. The reasons have already been elaborated in Section 4.2.3. However, the tester should

be aware of the conservative nature of the maximin criterion.

• With pre-determined partitioning scheme and preferred test allocation scheme

When the tester has a pre-determined partitioning scheme together with a preferred test allo-

cation scheme, they should not be obliged to change the test allocation scheme to satisfy the

PS condition or the maximin criterion if they find these conditions disagreeable. However,

we recommend the tester to ensure the validity of the reasons behind their choice, taking into

account the possible risk that the resulting tests may be very ineffective in certain circumstances.

Although the choices are frequently due to legitimate reasons such as the distribution of failure-

causing inputs, sometimes these reasons may be based on ungrounded beliefs or unjustified

risk-taking attitude that the tester should dispense with upon careful introspection.

4.4 Concerns and clarifications

The PS strategy has been criticized to be infeasible and unrealistic in (Ntafos, 1998), where a number

of queries have been raised. This shows that some of the issues related to the PS strategy have been

misinterpreted. We take this opportunity to clarify these issues, explain our position and answer these

queries and concerns.

4.4.1 Is PS the best way to perform partition testing?

Ntafos (1998) stated that our results “led [us] to suggest proportional partition testing (where the

number of test cases per subdomain is proportional to the probability/size of the subdomain) as the

optimum way to do partition testing (Chan et al., 1996; Chen and Yu, 1996c).” In fact, we have never

made this suggestion.

In (Chan et al., 1996), the fact that the PS condition is sometimes not strictly satisfiable has been

acknowledged, and several intuitive guidelines have been proposed to get around with this difficulty.

Some other factors affecting the effectiveness of the PS strategy, such as the pattern of failure-causing

inputs, have also been investigated. However, it was not suggested in (Chan et al., 1996) that the PS

strategy is optimum. It simply provided some practical advice on how to use the PS strategy were it

considered desirable.
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In (Chen and Yu, 1996c), the focus of investigation was the constraints that a partition testing

strategy must satisfy in order to be safe. The paper concluded that a safe strategy must allocate test

cases in a way that does not deviate from proportional sampling other than rounding the number of test

cases to integers (Theorem 4). Again, it has not suggested that the PS strategy, or even a (universally)

safe strategy, is optimal.

The fact that the PS strategy has been proved to be at least as effective as random testing in detect-

ing faults does not qualify it to be unconditionally the best strategy. The proper way of interpreting

this and other derived results from our point of view has been discussed in (Chan et al., 1996) and

in Section 4.3 of this paper. The recommendations are based on a premise of no knowledge on the

failure-causing inputs; otherwise other test allocation schemes may be better (Weyuker and Jeng,

1991; Chen and Yu, 1996a; Chan et al., 1997; Nair et al., 1998). Besides, the PS strategy is not

suitable for a tester who prefers better results despite higher risks.

4.4.2 Does PS require an inordinately large number of test cases?

The feasibility of the PS strategy was queried on the basis that, in some cases, true proportional

allocation is only possible with an inordinately large number of test cases. However, it should be

clarified that none of the work on the PS strategy advocated to achieve true proportional allocation by

increasing the number of test cases. The need for approximating the PS condition when it cannot be

satisfied strictly has been acknowledged in almost every related study. Intuitive guidelines have been

suggested in (Chan et al., 1996) and the maximin criterion proposed in (Chen and Yu, 1997) to deal

with the problem of how the PS condition may be approximated.

4.4.3 Does PS force a “stronger” strategy to imitate a “weaker” one?

It was argued that

(1) the only difference [between random testing and the PS strategy] is that random testing will re-

sult in proportional allocation “on average” while [the PS strategy] can force such an allocation;

(2) as the number of test cases increases, partition testing with proportional allocation and random

testing will tend to become the same; and,

(3) proportional allocation forces the “stronger” [partition testing] strategy to imitate the “weaker”

[random testing] strategy.

Concerning (1), we think that the fundamental differences between partition and random testing

has been discarded too lightly. Suffices here to reiterate two of the fundamental differences that

are true regardless of the choice of the test allocation. First, the PS strategy forces at least one test

case from every subdomain (thereby ensuring the coverage of the software features based on which

subdomains are formed), whereas random testing does not. This is particularly significant when there

exist very small subdomains which may have very little chance of being hit by random test cases,

unless the number of test cases is extraordinarily large. Secondly, the strength of a partition testing

strategy comes principally from a good partitioning scheme that it comprises, and only secondarily

from the test allocation scheme. Note that, for any j,

Pp = 1−
k

∏
i=1

(1−θi)
ni ≥ 1− (1−θ j)

n j ≥ 1− (1−θ j) = θ j ,
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and hence Pp ≥ max
j

θ j. Thus, with a good partitioning scheme that forms at least one subdomain Di

with θi close to 1, the testing must be highly effective. This is because, regardless of the allocation

scheme being used, it must be true that Pp ≥ max
j

θ j ≥ θi. Random testing does not have this property.

On the other hand, a poor partitioning scheme spreads the failure-causing inputs across many large

subdomains so that all failure rates are small. Together with an arbitrary test allocation, the testing

may happen to perform very poorly. The PS strategy provides the remedy that prevents testing from

becoming too ineffective.

Random testing and the PS strategy will exhibit the same effectiveness only when the number of

test cases increases beyond what is practically affordable. Statement (2), therefore, is unlikely to have

much practical significance even though it may be theoretically true.

Concerning (3), we have reservations on the unqualified use of the words “stronger” and “weaker”

to describe, respectively, partition and random testing. Many empirical and analytical studies have

confirmed that partition testing is not necessarily stronger than random testing (Duran and Ntafos,

1984; Loo and Tsai, 1988; Hamlet and Taylor, 1990; Weyuker and Jeng, 1991; Chen and Yu, 1994;

Chen and Yu, 1996a). On the contrary, it is precisely because partition testing can be weaker than

random testing under certain circumstances that the PS condition is proposed to ensure that the former

is truly “stronger”.

The differences between random and partition testing are more fundamental than as suggested

by statements (1) to (3). That is why we disagree that the PS strategy is trying to “imitate” random

testing.

4.4.4 Is PS cost effective?

Two simulations have been done in (Ntafos, 1998) to compare between proportional partition testing

and random testing for certain ranges of values of n. Results show that the difference Pp−Pr is small in

most of the cases studied, and that Pp only increases from 93% to 99.95% when n increases from 100

to 4000. These observations were put forward as evidences that the PS strategy is not cost-effective

because “it simply makes no sense to use an additional 3,900 test cases to increase the probability of

detecting at least one error from 93% to 99.95%” (Ntafos, 1998).

We would like to point out that these observations are somewhat irrelevant to the use of the PS

strategy and can be readily explained by the fact that Pp and Pr are probabilities. Therefore, the

claim put forward that the PS strategy is not cost-effective was not properly justified. First, in these

simulations, the difference Pp −Pr is necessarily small simply because, in all but a few cases shown

there, both Pp and Pr are close to 1. (Note that since Pp and Pr are probabilities, they can never exceed

1.) There is no room for Pp to grow significantly greater than Pr when Pr is, say, greater than 90%.

Secondly, because of the law of diminishing marginal returns, once a probability reaches a value close

to 1, it will probably take an extraordinary amount of effort to increase it substantially. This is true

to both partition and random testing. Moreover, whether doing so is worthwhile or not depends on

the context. (In safety-critical systems, the difference between 93% and 99.95% may mean life and

death.) In any case, as discussed in Section 4.4.2, none of the work related to the PS strategy has

advocated to increase the number of test cases inordinately for whatever purpose. Our position is that,

if the PS condition is not strictly satisfiable because n is too small, it may be approximated or the

maximin criterion may be used.

It is true that the cost factor has not been considered in many studies that compare random and

partition testing. One reason is that the cost issue is rather complex, since it “is hard to measure

[and] data are not easy to obtain” (Ntafos, 1998). More fundamentally, most studies are primarily
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concerned with the ability of testing strategies to detect faults, which is related to but not the same

as cost-effectiveness. (For example, it is not entirely clear what it will mean to include a cost factor

into the formula for the probability of detecting at least one fault.) Fault-detecting ability is at least

important enough to be investigated on its own right. As Weyuker et al. (1991) have noted, cost

considerations should be secondary to effectiveness, because “an ineffective criterion, no matter how

cheap, is a poor choice”. This is even more true when testing software that is safety-critical.

The above arguments, however, should not be interpreted as to say that the cost issue is not

important at all. Rather, they only serve to clarify that there may be legitimate reasons for different

studies to focus on different aspects. Indeed, we agree that the cost factor may be included in a formal

model when investigating various aspects of testing strategies, such as failure cost estimation (Gutjahr,

1995) and reliability estimation (Tsoukalas et al., 1993). Interestingly, the PS condition is found

in (Tsoukalas et al., 1993) to be optimal (with respect to minimizing the weighted sum of failure

costs) in the case when all the cost factors are equal.

5 Extensions and interesting issues

The formal study of partition testing strategies not only results in practically applicable guidelines

based on solid theoretical bases, but also highlights some interesting issues that provide new insights

to further research work. This section discusses some of the recent findings from attempts to further

generalize our work on the PS strategy.

5.1 Generalized proportional sampling

Recently, the notion of proportional sampling was re-examined and generalized (Chen et al., 1999;

Leung and Chen, 2000). Let n be a test allocation. If all the subdomain sampling rates are equal, then

n satisfies the PS condition. Otherwise, there are at least two subdomains Di and D j, such that the

former has a higher sampling rate than the latter. Intuitively, if n is close to proportional sampling, we

would expect the difference between the sampling rates of Di and D j to be so small that moving a test

case from Di to D j would reverse the order of the two sampling rates. This intuition was formalized

into a definition of the generalized proportional sampling (GPS) strategy in (Chen et al., 1999; Leung

and Chen, 2000) as follows:

Definition 4 A test distribution n = (n1, n2, . . . , nk) is said to satisfy the generalized proportional

sampling (GPS) strategy if, for any i and j such that
ni

di

>
n j

d j

, we have
ni −1

di

<
n j +1

d j

. In this case, n

is called a generalized proportional test distribution (GPTD).

Obviously, the PS strategy may be considered as a special case of the GPS strategy since a test

distribution with equal subdomain sampling rates will, by definition, necessarily satisfy the GPS

condition. Unlike the PS strategy, the GPS strategy is always feasible. In fact, if the PS strategy is

feasible, then the GPTD will be unique. Otherwise, there may be more than one GPTD, and at least one

of them will perform better than random testing unless all the failure rates are the same. These results

were found in (Chen et al., 1999; Leung and Chen, 2000), and can be formally stated as follows:

Theorem 6 There exists a unique GPTD if and only if
ndi

d
is an integer for all i.

Theorem 7 Suppose that the failure rates of the subdomains are not all the same. Then there must

exist a GPTD with a P-measure greater than that of random testing.
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However, Theorem 7 does not tell us which GPTD outperforms random testing. Intuitively, this

GPTD is likely to depend on how the failure-causing inputs are distributed among the subdomains.

Even so, since the PS strategy is universally safe and the GPS strategy is an approximation of the PS

strategy, it is reasonable to expect the GPS strategy to be better than random testing most of (though

not all) the time.

In order to verify the above intuition, a set of simulation experiments were performed in (Chen

et al., 1999). Six approximation methods were used to generate feasible test allocations from which

only GPTDs were selected. For each approximation method, 40000 GPTDs were obtained, and the av-

erage of the P-measures over 100 failure distributions were computed. Results of the experiment show

that about 99% of the GPTDs thus found have an average P-measure greater than the corresponding

average for random testing. In other words, if we arbitrarily pick a GPTD generated from the methods

of approximating the PS strategy, we have a high chance that Pp ≥ Pr.

5.2 Number of distinct test cases

A major assumption in almost all the formal analyses on the effectiveness of testing is that the selection

of test cases is done with replacement. This is due to the well-known difficulty of dealing with

probabilities related to selection without replacement. Also, it is frequently taken for granted that

the effect of this assumption is negligible, particularly when the sampling rates involved are small. In

real life, it is not easy to justify the selection of the same test cases more than once. Recently, the effect

of the assumption of “selection with replacement” was investigated and hence better understood (Chen

et al., 1999; Leung and Chen, 1999; Leung et al., 2000; Leung and Chen, 2000), leading to several

interesting results, some of which are discussed here and some in Section 5.3.

When selection is done with replacement, some of the test cases may coincide with one another.

We would like to know the expected number of distinct test cases that are picked. For random testing

in which n elements are selected from the input domain of size d, the expected number of distinct test

cases is found in (Leung and Chen, 1999) to be given by nd = d − d(1− 1/d)n. The corresponding

number for partition testing is
k

∑
i=1

[

di −di

(

1−
1

di

)ni
]

. The following two results show that the PS

strategy is in fact optimal with respect to the expected number of distinct test cases selected (Leung

and Chen, 1999; Leung and Chen, 2000).

Theorem 8 When there are two or more subdomains, the expected number of distinct test cases

selected by the proportional sampling strategy is always greater than that selected by random testing.

Theorem 9 For a given partitioning scheme with two or more subdomains, the expected number of

distinct test cases selected by a test allocation scheme that satisfies the PS condition is always greater

than that selected by any other test allocation scheme.

Thus, when test cases are selected with replacement, the PS strategy is expected to produce

more distinct test cases than (a) random testing or (b) partition testing with any other test allocation

techniques. One may wonder whether the greater expected number of distinct test cases of the PS

strategy completely accounts for its better fault-detecting ability over random testing. However,

it should be noted that the PS strategy has the same effectiveness as random testing when all the

subdomain failure rates are equal (Weyuker and Jeng, 1991; Chen and Yu, 1996a). Hence, the number

of distinct test cases is clearly not the sole reason why the PS strategy is in general more effective. This

prompts a further study of precisely what the fault-detecting ability would be in the case of selection

without replacement, as will be discussed in the next subsection.
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5.3 Selection without replacement

In random testing, when selection is done with replacement, the probability of detecting at least one

failure is given by the function Pr(n) = 1− (1−θ)n. The value of this probability would be different

when selection is done without replacement. This new value has been named the Q-measure (Leung

et al., 2000) to distinguish it from the P-measure. The Q-measure for random testing and partition test-

ing are given by Qr(n) = 1−
(d −m)!(d −n)!

d!(d −m−n)!
and Qp(n) = 1−

k

∏
i=1

(di −mi)!(di −ni)!

di!(di −mi −ni)!
, respectively,

where n = (n1, n2, . . . , nk) donotes the test allocation chosen in partition testing.

It is obvious that Pr(n)≤ Qr(n), since selection with replacement will never result in more distinct

test cases than without replacement. In fact, selecting nr test cases without replacement always results

in nr distinct test cases, whereas selecting nr test cases with replacement will be expected to produce

nd = d −d

(

1−
1

d

)nr

(3)

distinct test cases. Hence, it would be more interesting to compare the values of Pr(nr) and Qr(nd).
On the other hand, we note that the formula for Pr(n) is well defined for any real number n, but that

for Qr(n) is only meaningful when n is an integer. We should therefore start with integral values of nd

and compute the equivalent value of nr for the purpose of comparing Pr(nr) and Qr(nd). This can be

done by changing the subject of equation (3) to give nr =
log(1−nd/d)

log(1−1/d)
.

While most researchers in the past assumed that selection with replacement is a good approxi-

mation of selection without replacement, the following result from (Leung et al., 2000) highlights a

fundamental difference between the two aspects:

Theorem 10 If nd distinct test cases are selected randomly, where nd is a non-negative integer smaller

than d, then Qr(nd) ≥ Pr(nr), where nr =
log(1−nd/d)

log(1−1/d)
.

Theorem 10 shows that, even after converting nd to the corresponding nr(≤ nd), the fault-detecting

effectiveness with nd distinct test cases is still not worse than nr test cases selected with replacement.

This means that selection without replacement outperforms selection with replacement not solely

because the former produces more distinct test cases.

The following observation helps to explain why this is so. When selection is done without

replacement, test cases that do not reveal failures would be discarded once executed, and hence the

non-failure-causing inputs will eventually be exhausted for sufficiently large nd , thus guaranteeing the

detection of failure-causing inputs afterwards, if any exist. Selection without replacement does not

have this advantage.

In order to know how close the values of Qr(nd) and Pr(nr) are, the following ratio is defined:

closeness(d) = min
m,nd

Pr(nr)

Qr(nd)
.

Through a series of simulations (Leung et al., 2000), it was found that the above ratio increases with

d and is very close to 1 for even modest values of d. For example, closeness(d) ≥ 0.999 for d ≥ 153.

The following conjecture was thus proposed in (Leung et al., 2000).

Conjecture 1 Pr(nr) is a close approximation of Qr(nd) when d is large.
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If this conjecture is true, then the analysis of fault-detecting effectiveness when test cases are

selected without replacement could be much simplified. It also provides an effectiveness conversion

formula for comparing selection with and without replacement. Roughly speaking, (nr −nd) × (cost

of executing a test case) provides an estimate of the cost of doing selection with replacement over that

without replacement. This cost may be compared with that required to filter out duplicated test cases

for deciding whether to perform selection with or without replacement.

5.4 Adaptive random testing

Unlike fault-based testing strategies, random testing makes little use of the information from the

specification and program code. In (Chan et al., 1996), it was observed that failure-causing inputs

of different faulty programs may form different patterns. For example, for a program with two-

dimensional input domain, the failure patterns may be classified into point pattern, strip pattern and

block pattern as illustrated in Figures 2, 3 and 4, respectively. In these figures, the bounding box

represents the input domain, and the black dots, strip or block indicate the locations of the failure-

causing inputs. It was also observed that a partitioning scheme could be more effective in detecting

failures of certain patterns than others (Chan et al., 1996).
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Figure 3: Strip Pattern Figure 4: Block Pattern

Except for the point pattern, failure-causing inputs are characterized by being clustered into one or

more regions of contiguous inputs. Within each region, the failure-causing inputs are very “dense” and

close to one another. Intuitively, a fault in a program is likely to cause the failure of many inputs that

are contiguous, and therefore failure-causing inputs that are not of point pattern should be common

in practice. For example, faults in program predicates, known as domain errors, typically result in

failure-causing inputs of the strip pattern (White and Cohen, 1980).

When failure-causing inputs indeed form contiguous regions, choosing a test case in the proximity

of other test cases does not seem to be a good idea. Instead, common sense dictates that, in such

situations, test cases should be spread evenly across the input domain to improve the chance of hitting

the failure regions. Based on this intuition, the adaptive random testing (ART) method was recently

proposed as a form of fault-based random testing (Mak, 1997). One way of implementing ART, as

used in (Mak, 1997), is now briefly described as follows.

Basically, two disjoint sets of test cases are maintained, namely the executed set and the candidate

set. Instead of randomly generating a test case at a time, a fixed number of test cases are randomly

generated to form the candidate set. The executed set keeps all the test cases that have been executed

but not yet revealed any failure. An initial test case is picked at random. If it does not reveal any

failure, an initial executed set is formed with this test case as the only element. From the candidate
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set, an element that is farthest away from the elements of the executed set is selected as the next test

case, which is then put into the executed set if it does not reveal a failure. The remaining elements

of the candidate set are then discarded and a new candidate set is constructed. The above process is

repeated, until a failure is revealed, or until the stopping condition is reached (such as having executed

the targeted number of test cases).

Empirical studies using published programs have been carried out to evaluate the effectiveness of

ART (Mak, 1997). The results have been very encouraging, showing that in 9 of the 12 programs under

study, ART requires much fewer test cases (with up to 50% savings) to detect the first failure. For the

remaining 3 programs, ART shows slight improvements over random testing, but the improvement is

statistically insignificant. This is expected, as the failures of these 3 programs follow the point pattern.

On closer examination, a comparison of ART with the PS strategy reveals an interesting similarity.

Although the PS strategy is a kind of partition testing strategy, the test cases are still randomly selected

in each subdomain. In this aspect, there is still an element of randomness associated with the PS

strategy. It aims at having a uniform sampling rate across all subdomains, that is, more test cases

from larger regions than from smaller ones. Intuitively, enforcing a uniform sampling rate somehow

attempts, via the process of partitioning, to evenly spread out the test cases. In this perspective, the PS

strategy can be regarded as a form of ART.2

Such a similarity between the PS strategy and ART appears striking, at least in two aspects. First,

the two strategies were initially proposed for very different reasons. The PS strategy was motivated

by the need of providing a universally safe strategy, whereas ART attempts to improve random testing

in those situations where the failure-causing inputs tend to cluster. Secondly, no distribution of the

failure-causing inputs was assumed when deriving the PS strategy. Yet, it turns out that the PS strategy

has the same intrinsic properties as ART, and will therefore be more effective whenever the failure-

causing inputs do not follow a point pattern. Thus, in addition to guaranteeing at least as good a

P-measure as random testing, there is an inadvertent side effect of improving the effectiveness of

testing in situations where failure-causing inputs are clustered.

6 Related work

As mentioned in the introductory section, there have been numerous studies on partition testing

strategies since the pioneering work of Duran and Ntafos (1984). In this section, we briefly describe

some of these analytical studies.

The PS strategy has been proved to outperform random testing in terms of fault-detecting effec-

tiveness (Chen and Yu, 1994; Chen and Yu, 1996a). Other researchers have proposed test allocation

techniques that optimize different aspects of the quality of testing. Tsoukalas et al. (1993) compared

random and partition testing by looking at the upper confidence bounds for the cost weighted perfor-

mance of the two strategies. They showed that, when no failures are detected, a test allocation will be

optimal if the number of test cases selected from a subdomain Di is proportional to the product of the

cost of failure for Di and the probability that a randomly selected input will belong to Di.

Howden and Huang (1995) addressed the problem of estimating dependability, defined as the

degree on which the software under test can be considered as dependable. Their approach was

based on the concept of trustability, defined as the confidence in the absence of faults. Trustability

measurement was in turn related to the detectability of the testing method, measured by the probability

of detecting at least one fault (and hence the same as the P-measure in this paper). They distinguished

between two partition testing models: deterministic and statistical.

2Our apologies for the unintended pun.
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In the deterministic model, each subdomain is allocated the same number of test cases. In the

statistical model, one subdomain is chosen at a time, randomly with equal probabilities. A test

case is selected from each chosen subdomain. (Note that in the statistical model, the coverage of all

subdomains is not guaranteed.) Howden and Huang found that deterministic partition testing always

has a higher or the same detectability when compared with statistical partition testing. They also

found a few conditions relating the detectabiliy of random testing and that of either (deterministic

or statistical) model of partition testing. Then they further investigated the trustability, which is

computed from the detectability, of applying single or multiple testing methods that are each effective

for multiple fault classes.

Frankl et al. (1998) examined the relationship between debug testing and operational testing.

These two testing methods were distinguished by their goal to detect faults or to assess reliability,

respectively. They argued that “fault” is not a precise idea and hence is not tenable for analytical

reviews, and proposed the use of the notion of “failure region”, a collection of failure-causing inputs

that some change of the program fixes exactly. They considered different scenarios of single or mul-

tiple failure regions and debugging with or without subdomains. They suggested that, if the tester has

good intuition about the inputs that are likely to be failure-causing and belong to large failure regions,

such insights can be used to devise testing strategies. Otherwise, they argued, operational testing

may be better. However, they also warned of the risk to trust solely the debuggers’ own judgement

about their abilities, unless some measurements have been made for comparing the effectiveness of

the testing profiles chosen by the tester with that of operational profiles. Such measurement would be

a cost-effective step towards better quantitative decision-making.

Li and Malaiya (1994) showed that, for the purpose of defect removal, the optimal test allocation

depends on the operational profile and the defect detectability profile of the program. They sug-

gested that test inputs should have a distribution more biased than the operational profile towards

the frequently used domains if only limited testing can be afforded, but they should be more evenly

distributed if very high reliability is to be achieved through extensive testing.

Gutjahr (1995) presented a method to determine a test allocation that yields an unbiased estimator

of the software failure cost with minimum variance. Hierons and Wiper (1997), on the other hand,

derived certain conditions under which a functional partitioning scheme can provide a better estimator

of the operational failure rate than those based on random testing.

In another study, Gutjahr (1999) modelled the failure rates statistically by random variables. He

generalized a result by Weyuker and Jeng (1991) that partition testing is equal in fault-detecting

effectiveness to random testing when failure rates are equal. Gutjahr found that, for independent

random failure rates with equal expectations, the fault-detecting probability of partition testing can

be up to k times higher than that of random testing, where k is the number of subdomains. This

indicates that assumptions about failure rates have to be utilized with caution, as the uncertainty of

such information can lead to rather different conclusions from those expected. However, their work

clearly suggested that partition testing is well founded, particularly when subdomains are of largely

varying sizes and each subdomain is processed by the program in a rather homogeneous way.

One limitation common to all the above studies, including our own work, is that the subdomains

have to be disjoint. The problem of overlapping subdomains has been known to be very difficult (Ham-

let and Taylor, 1990; Weyuker and Jeng, 1991), and so far little progress has been made. The notable

exception is the work of Frankl and Weyuker (1993a). They used essentially the same formal model as

that of Weyuker and Jeng (1991) to investigate several types of relationships among different partition

testing criteria. They found that a testing criterion that subsumes another does not necessarily have

better fault-detecting effectiveness. These results have helped to establish the superiority of some data

flow criteria over branch testing (Frankl and Weyuker, 1993b). For a comparison between random
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testing and general partition testing strategies with possibly overlapping subdomains, some small but

non-trivial results have been reported in (Chen and Yu, 1996a). Clearly, more work on overlapping

subdomains has yet to be done.

7 Conclusions

We have shown that the proportional sampling strategy is universally safe and hence solved the

problem of whether there are other sufficient conditions for a partition testing strategy to always

outperform random testing. Our study of the test allocation problem of partition testing not only

yields this practically useful result, but also leads to interesting issues and suggests new insights on

intrinsic properties of partition and random testing. The potentials and limitations of these testing

strategies are now much better understood. We believe some of the results and observations should

have an impact not only on the field of software testing but also on other fields of software engineering

and computer science. These results and observations can be summarized as follows.

The striking similarity between the proportional sampling (PS) strategy and adaptive random

testing (ART) provides a new perspective for the PS strategy. It should be noted that the PS strategy

has actually been proposed as an improvement over random testing in the absence of any information

about the failure-causing inputs, while ART was aimed at effectively detecting faults which result in

non-point types of failure patterns. Since the PS strategy also possesses the most essential charac-

teristic of ART, namely an “even spread of random test cases”, it can be regarded as a form of ART,

and hence a fault-based testing strategy. Without the research on ART, it would be counter-intuitive to

comprehend the PS strategy as a fault-based testing strategy.

In response to the difficulty of imposing strictly the PS condition in practice, the intuition of

the definition for generalized proportional sampling strategy, or equivalently, a generalized notion

of uniform sampling rate, has been developed. It is anticipated that the intuition of the generalized

uniform sampling rate, despite its simplicity, can be applied in other areas where a uniform sampling

rate is targeted but cannot be realized as a result of integral constraints.

The follow-up studies of the the PS strategy also help us better understand the difference between

selecting test cases with and without replacement. We have proved that Qr(nd) ≥ Pr(nr). Intuitively

speaking, this result shows that selection of test cases without replacement is somehow better than

selection with replacement even if the repeated test cases had been compensated for by extra test

cases. Furthermore, our conjecture that Pr(nr) is a close approximation of Qr(nd) when d is large,

will facilitate the future study of the selection of test cases without replacement.
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