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A DENSITY THEOREM ON AUTOMORPHIC L-FUNCTIONS
AND SOME APPLICATIONS

YUK-KAM LAU AND JIE WU

Abstract. We establish a density theorem on automorphic L-functions and
give some applications on the extreme values of these L-functions at s = 1 and
the distribution of the Hecke eigenvalue of holomorphic cusp forms.

1. Introduction

The distribution of zeros is an important area of the study of L-functions. There
are many arithmetical problems related to the location of the zeros. It is widely
believed that the generalized Riemann hypothesis (GRH) holds, but a proof for this
seems out of reach at present. In the absence of GRH, the zero density estimates
are often used as a substitute in many applications, especially for the number of
possible zeros close to the boundary of the critical strip. The result of such an
estimate is called a density theorem. The first zero density result for the symmet-
ric square L-function of Maass forms with large eigenvalues was obtained by Luo
[15]. Very recently Kowalski & Michel [13] have proved a very general density the-
orem for automorphic L-functions with large conductors, which includes the case
of holomorphic cusp forms for large levels.

In this paper, we shall consider the analogue on the weight aspect. Our work
is motivated by two factors. First it is natural to investigate the behaviour of an
automorphic L-function by varying each intrinsic parameter. Second we are inter-
ested in the following applications: the extreme values of automorphic L-functions
at s = 1 and the distribution of Fourier coefficients of holomorphic cusp forms.

Let us begin with our notation. For a positive even integer k and a positive
square-free integer N , we denote by H∗

k(N) the set of all normalized Hecke primitive
eigencuspforms of weight k for the congruence modular group Γ0(N). Then, H∗

k(N)
forms an orthogonal basis of the space of holomorphic cuspidal newforms (of weight
k and of level N). We have

|H∗
k(N)| =

k − 1
12

∏
p |N

(p − 1) + O
(
(kN)2/3

)
,(1.1)

where the implied constant is absolute.
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The Fourier series expansion of f ∈ H∗
k(N) at the cusp ∞ is

f(z) =
∞∑

n=1

λf (n)n(k−1)/2e2πinz (�mz > 0),

where λf (n) is the n-th eigenvalue of the (normalized) Hecke operator Tn, in par-
ticular it is a multiplicative function of n. According to Deligne, for any prime
number p there are αf (p) and βf (p) such that

λf (pν) =
αf (p)ν+1 − βf (p)ν+1

αf (p) − βf (p)
(ν ≥ 1)(1.2)

and {
αf (p) = εf (p)p−1/2, βf (p) = 0 if p | N ,

|αf (p)| = αf (p)βf (p) = 1 if p � N
(1.3)

with εf (p) = ±1. In particular λf (1) = 1 and λf (n) is real.
The m-th symmetric power L-function attached to f ∈ H∗

k(N) is defined as

L(s, symmf) :=
∏
p

∏
0≤j≤m

(
1 − αf (p)m−jβf (p)jp−s

)−1(1.4)

for σ > 1, where and in the sequel σ and τ mean tacitly the real and imaginary
part of s, i.e. s = σ + iτ . The product over primes admits a Dirichlet series
representation: for σ > 1,

L(s, symmf) =
∞∑

n=1

λsymmf (n)n−s,(1.5)

where λsymmf (n) is a multiplicative function. Following from (1.3) and (1.4), we
have for n ≥ 1,

|λsymmf (n)| ≤ dm+1(n),(1.6)

where dm+1(n) is the divisor function whose associated Dirichlet series is ζ(s)m+1

(ζ(s) is the Riemann zeta-function). The case m = 1 in (1.6) is commonly known
as Deligne’s inequality.

According to [1, Section 3.2.1], the gamma factors of L(s, symmf) are

L∞(s, symmf) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∏
ν=0

ΓC

(
s + (ν + 1

2 )(k − 1)
)

if m = 2n + 1,

ΓR(s + δ2�n)
n∏

ν=1

ΓC

(
s + ν(k − 1)

)
if m = 2n,

(1.7)

where ΓR(s) := π−s/2Γ(s/2), ΓC(s) := 2(2π)−sΓ(s) and

δ2�n :=
{

1 if 2 � n,
0 otherwise.

For m = 1, 2, 3, 4, it is known (see [7] for m = 1, [2] for m = 2 and [9, 10, 11] for
m = 3, 4) that the function

(1.8) Λ(s, symmf) := Nms/2L∞(s, symmf)L(s, symmf)
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is entire on C and satisfies the functional equation

Λ(s, symmf) = εsymmfΛ(1 − s, symmf),(1.9)

where εsymmf = ±1.

1.1. The density theorem for L(s, symmf). We consider the possibility of the
existence of a zero ρ = β + iγ of L(s, symmf) for which β is near 1. It is hopeful
to show that such f ∈ H∗

k(1) are very few. In other words, “almost all” f ∈ H∗
k(1)

satisfy the quasi-hypothesis of Riemann. Let N(α, T, symmf) be the number of
zeros ρ = β + iγ of L(s, symmf) with β ≥ α and 0 ≤ γ ≤ T .

Our result is as follows.

Theorem 1. Let m = 1, 2, 3, 4 and r ≥ 1 be given. Define Em,r = (m+1)(m+r)+4.
Then for any ε > 0, we have∑

f∈H∗
k(1)

N(α, T, symmf) �ε,r T 1+1/rkEm,r(1−α)/(3−2α)+ε

uniformly for 1
2 + ε ≤ α ≤ 1, 2 | k and T ≥ 1. The implied constant depends on ε

and r only.

Remark 1. (i) This theorem is nontrivial only when α is very close to 1 and the
T -aspect is essentially irrelevant. We have not put any effort into reducing the
exponents 1 + 1/r and Em,r.

(ii) Since we are interested in the k-aspect, we restrict ourselves to the case
N = 1 for simplicity. All results of this paper can be generalized (without too
much difficulty) to H∗

k(N) with square-free N .
(iii) Theorem 1 is established only for the case 1 ≤ m ≤ 4 due to the lack of

knowledge about the high symmetric powers. One can extend the result to the
general case for all positive integers m under suitable assumptions (Hypothesis
Symm(f)). Interested readers are referred to [1] for an excellent paradigm.

For each η ∈ (0, 1
2 ), define

H+
k,symm(1; η) :=

{
f ∈ H∗

k(1) : L(s, symmf) �= 0, s ∈ S
}
,(1.10)

where S := {s : σ ≥ 1 − η, |τ | ≤ 100kη} ∪ {s : σ ≥ 1}, and

H−
k,symm(1; η) := H∗

k(1)�H+
k,symm(1; η).

Then an immediate consequence of Theorem 1 (with r = 1) is∣∣H−
k,symm(1; η)

∣∣ ≤ ∑
f∈H−

k,symm (1;η)

N(1 − η, 100kη, symmf)(1.11)

≤
∑

f∈H∗
k(1)

N(1 − η, 100kη, symmf)

�η k31η.

Combining this with (1.1), we obtain the following result.

Corollary 1. Let 2 | k, let m = 1, 2, 3, 4 and let η ∈ (0, 1
31 ). Then we have, for

k → ∞, ∣∣H+
k,symm(1; η)

∣∣ ∼ ∣∣H∗
k(1)

∣∣.
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This shows that for m = 1, 2, 3, 4, the functions L(s, symmf) of almost all f ∈
H∗

k(1) satisfy a weak form of GRH. Thus the zero density result is very useful and
often partially replaces the role of GRH in practice. As opposed to previous works
(see [18], [19], [20], [21], [5] and [1]), we shall consider H+

k,symm(1; η) instead of
H∗

k(1). An advantage of this choice is that we can avoid some assumptions there
(such as GRH in [21] and Cogdell & Michel’s hypothesis LSZm(N) in [1]). Next we
shall present some applications of Theorem 1 and Corollary 1.

1.2. Extreme values of L(1, symmf). Motivated by problems in spectral defor-
mation theory, Luo [15] studied the distribution of the values of the symmetric
square L-functions of Maass forms at s = 1. Luo’s work was extended and further
developed in [18], [19], [20], [21], [5] and [1], where the symmetric power L-functions
attached to holomorphic cusp forms with large square-free levels were investigated.
Here we are interested in the extreme values of L(1, symmf) on the weight aspect.

The Hoffstein-Lockhart bounds for L(1, symmf) are (see [6] and [3])

[log(kN)]−1 � L(1, symmf) � log(kN)(1.12)

for all f ∈ H∗
k(N) and m = 1, 2, where the implied constants are absolute. When

m ≥ 3, the relevant results can be found in [1] on the level aspect and in Proposi-
tion 3.2 below on the weight aspect for N = 1. The order of magnitudes of both the
upper and lower bounds are (respectively positive and negative) powers of log k.

We prove the following result in the opposite direction. As usual, we denote by
logj the j-fold iterated logarithm.

Theorem 2. Let η ∈ (0, 1
31 ) be fixed, let m = 1, 2, 3, 4 and let 2 | k. Then there

are f±
m ∈ H+

k,symm(1; η) such that, for k → ∞,

L(1, symmf+
m) ≥ {1 + o(1)}(B+

m log2 k)A+
m ,(1.13)

L(1, symmf−
m) ≤ {1 + o(1)}(B−

m log2 k)−A−
m ,(1.14)

where A±
m and B±

m are positive constants given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A+
m = m + 1, B+

m = eγ (m ∈ N),
A−

m = m + 1, B−
m = eγζ(2)−1 (2 � m),

A−
2 = 1, B−

2 = eγζ(2)−2,

A−
4 = 5

4 , B−
4 = eγB−

4,∗,

(1.15)

and

B−
4,∗ =

∏
p

{(
1 − 1

p

)[
2p

27

(
−1 +

10
p

+
6
p2

+
3
p3

− 3
p4

− 6
p5

− 10
p6

+
1
p7

)(1.16)

+
2p

27

(
1 +

2
p

+
5
p2

− 5
p3

− 2
p4

− 1
p5

)√
1 +

3
p

+
8
p2

+
3
p3

+
1
p4

]4/5 }
.

Here γ is Euler’s constant.

There are wide gaps between the results mentioned in (1.12) and those in The-
orem 2: the former is of size powers of log k while the latter is of powers of log2 k.
Our next result suggests that the latter estimates should be closer to the truth.
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For almost all f ∈ H∗
k(1), the magnitude of L(1, symmf) lies between the pow-

ers of log2 k shown in (1.13) and (1.14), so Theorem 2 is the best possible up to
a constant factor. To determine the plausible constants, we consider the condi-
tional result under GRH. The constants obtained turn out to be quite near those
in Theorem 2.

Theorem 3. Let m = 1, 2, 3, 4 and let 2 | k.
(i) For any fixed η ∈ (0, 1

31 ) and all f ∈ H+
k,symm(1; η), we have

(log2 k)−A−
m � L(1, symmf) � (log2 k)A+

m .(1.17)

(ii) For any f ∈ H∗
k(1), under GRH for L(s, symmf) we have, for k → ∞,

{1 + o(1)}(2B−
m log2 k)−A−

m ≤ L(1, symmf) ≤ {1 + o(1)}(2B+
m log2 k)A+

m .(1.18)

The constants A±
m and B±

m are defined as in (1.15) and (1.16).

Remark 2. (i) In the extreme value problem of L(1, symmf), the result on the
weight aspect is different from that on the level aspect. As proved in [20] and [21],
the extreme values of L(1, symmf) are attained only for special levels (free of small
prime factors).

(ii) Only the factor 2 in (1.18) remains in doubt on either side, in view of (1.13)
and (1.14).

1.3. Asymptotic distributions of λf (p). The distribution of Fourier coefficients
of modular forms is one of the most important problems in the theory of modular
forms. Various questions are raised and studied: upper bound estimate, equidistri-
bution property, lacunarity, etc. Let τ (n) be Ramanujan’s function, defined by

∆(z) := e2πiz
∞∏

n=1

(1 − e2πinz)12 =
∞∑

n=1

τ (n)e2πinz (�mz > 0).

The function ∆(z) is a holomorphic cusp form of weight 12, i.e. ∆(z) ∈ H∗
12(1).

The classical Ramanujan’s conjecture states

|τ (n)| ≤ d(n)n11/2 (n ≥ 1),(1.19)

which is essentially optimal since Rankin [17] showed that

lim sup
n→∞

τ (n)
n11/2

= ∞.(1.20)

Ramanujan’s conjecture was proved by Deligne in 1974 as a particular case of his
well-known inequality (1.6). In particular this inequality gives us

|λf (p)| ≤ 2(1.21)

for all f ∈ H∗
k(N) and all prime number p. Serre [24, page 81] showed that this

inequality is essentially optimal: for any fixed prime number p and for any ε > 0,
there is a constant x0 = x0(ε) such that for k + N ≥ x0 with p � N there is a
primitive form f ∈ H∗

k(N) having the following property:

|λf (p)| ≥ 2 − ε.(1.22)

Later he proved that (1.22) holds for any fixed finite set of prime numbers ([24,
page 87]). Very recently, under GRH for L(s, sym1f), Royer and Wu [21] extended
it to the case of the unbounded set of primes for some primitive forms of sufficiently
large levels.
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Here we shall establish an analogue of [21, corollaire H] for large weights, but
the assumption of GRH is removed!

Theorem 4. Let A > 0, let η ∈ (0, 1
31 ) fixed, let 2 | k and let ξ(k) → ∞ (k → ∞)

be a function satisfying ξ(k) ≤ log3 k. Then there are two forms f± ∈ H+
k,sym1(1; η)

such that, for k → ∞, ∑
p≤(log k)A

λf+ (p)≥2−ξ(k)/ log3 k

1
p

= (log3 k)
{

1 + OA,η

(
1

ξ(k)

)}
,(1.23)

∑
p≤(log k)A

λf− (p)≤−2+ξ(k)/ log3 k

1
p

= (log3 k)
{

1 + OA,η

(
1

ξ(k)

)}
,(1.24)

respectively.

Remark 3. The well-known Sato-Tate conjecture describes the distribution of the
Fourier coefficients, as follows: for any −2 ≤ α ≤ β ≤ 2 and any f ∈ H∗

k(N), one
has

|{p ≤ x : α ≤ λf (p) ≤ β}| ∼ x

log x

∫ β

α

√
4 − t2

2π
dt (x → ∞).

Theorem 4 shows that almost all initial terms of {λf (p)}p cluster around 2 or −2.
Hence Sato-Tate’s conjecture is not yet valid for x = (log k)A → ∞, as k → ∞.

Another problem of significant interest concerns the nonvanishing of Fourier
coefficients of modular forms. A famous open problem is the conjecture on the
Ramanujan function τ (n) due to Lehmer [14]. Lehmer found that τ (n) �= 0 for
n ≤ 1015 and conjectured that this is true for every integer n. Although this
conjecture remains open, Serre [23, page 179] has made substantial progress by
proving that τ (n) is nonzero for the vast majority of n.

The next result gives some complementary information, which is an analogue of
[21, corollaire I], but the assumption of GRH is also removed.

Theorem 5. Let A > 0, let η ∈ (0, 1
31 ) fixed, let 2 | k and let ξ(k) → ∞ (k → ∞)

be a function satisfying ξ(k) ≤ log3 k. Then there is f ∈ H+
k,sym2(1; η) such that,

for k → ∞, ∑
p≤(log k)A

|λf (p)|≤(ξ(k)/ log3 k)1/2

1
p

= (log3 k)
{

1 + OA,η

(
1

ξ(k)

)}
.(1.25)

In what follows, η ∈ (0, 1
2 ) is a suitably fixed constant and we use c1, c2, . . . to

denote positive constants depending on η at most, which may take different values
at each occurrence. Since all results of this paper are trivial when k is bounded, we
can suppose that k ≥ k0(η), where k0(η) is a sufficiently large constant depending
on η such that both inequalities (log k)1000/η ≤ kη and log3 k ≥ 1000 hold for
k ≥ k0(η).

2. Archimedean factors

In order to prove our density theorem, we need a large sieve inequality. It is
then necessary to investigate the corresponding Rankin-Selberg L-function. Since
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we are interested in the k-aspect, we have to explicitly evaluate the associated
archimedean local factor, which is one of the main difficulties. Thanks to the
recent work of Cogdell & Michel [1] and the explanation of Cogdell (in private
communication), we can compute the factor along the same line—via the local
Langlands correspondence.

For m ∈ N, f ∈ H∗
k(1) and g ∈ H∗

k(1), the Rankin-Selberg L-function of symmf
and symmg is given by

L(s, symmf × symmg) :=
∏
p

∏
0≤i, j≤m

(
1 − αf (p)m−2iαg(p)m−2jp−s

)−1
,(2.1)

where αf (p) and αg(p) are the “local roots” of Lp(s, symmf) and Lp(s, symmg),
determined by (1.2) and (1.3).

The next result provides all the information we need.

Proposition 2.1. Let 2 | k, let f ∈ H∗
k(1) and let g ∈ H∗

k(1).

(i) For m ∈ N, the archimedean local factor of L(s, symmf × symmg) is

L∞(s, symmf × symmg)

= ΓR(s)δ2|mΓC(s)[m/2]+δ2�m

m∏
ν=1

ΓC

(
s + ν(k − 1)

)m−ν+1
,

where ΓR(s) := π−s/2Γ(s/2), ΓC(s) := 2(2π)−sΓ(s) and δ2|n := 1 − δ2�n.

(ii) Let m = 1, 2, 3, 4. Then the function

Λ(s, symmf × symmg) := L∞(s, symmf × symmg)L(s, symmf × symmg)

is entire except possibly for simple poles at s = 0, 1 and satisfies the functional
equation

Λ(s, symmf × symmg) = εsymmf×symmgΛ(1 − s, symmf × symmg)

with
εsymmf×symmg = ±1.

Proof. Part (ii) comes from RS 2 and RS 3 of [22], and part (i) with m = 1 is well
known (see [7, Theorem 13.8]). Thus we only prove the assertion (i) for m ≥ 2,
which is done by the method in [1].

Following the notation in [1], we let � ≥ 2 be an integer and let D� be the discrete
series representation of GL2(R) of weight �. The representation D� corresponds to
the infinite component of the automorphic representation associated to a classical
cusp form of weight �. Let WR be the Weil group of R, which can be realized as
WR = C×∪ jC× with j2 = −1 ∈ C× and jzj−1 = z for z ∈ C×. Then we introduce
the following Weil group representations.

Let ρ±0 be the one-dimensional representations of WR defined by ρ±0 (z) = 1,
ρ+
0 (j) = 1 and ρ−0 (j) = −1. Let µ ∈ C such that 2µ = � − 1 ∈ Z. Define

the two-dimensional representation ρ� of WR on the two-dimensional vector space
V2 = 〈e0, e1〉 given by

ρ�(z)e0 = (z/z)µe0, ρ�(z)e1 = (z/z)µe1,

ρ�(j)e0 = e1, ρ�(j)e1 = (−1)�−1e0.



448 YUK-KAM LAU AND JIE WU

In matrix form, for z = reiθ, we can write

ρ�(z) =

(
ei(�−1)θ

e−i(�−1)θ

)
, ρ�(j) =

(
(−1)�−1

1

)
.

Then under the local Langlands correspondence ρ� corresponds to D�.
Now we compute symm(ρk) ⊗ symm(ρk). From Proposition 3.1 in [1], we have

symm(ρk) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n⊕
ν=0

ρ(2ν+1)(k−1)+1 if m = 2n + 1,

ρ±0 ⊕
n⊕

ν=1

ρ2ν(k−1)+1 if m = 2n,
(2.2)

where ρ+
0 or ρ−0 is selected when n is even or odd, respectively.

We first consider the case m = 2n + 1. By using (2.2), we have

symm(ρk) ⊗ symm(ρk) =
n⊕

ν1=0

ρ(2ν1+1)(k−1)+1 ⊗
n⊕

ν2=0

ρ(2ν2+1)(k−1)+1

=
n⊕

ν1=0

n⊕
ν2=0

ρ(2ν1+1)(k−1)+1 ⊗ ρ(2ν2+1)(k−1)+1.

It reduces to calculate ρa ⊗ ρb where a, b ≥ 2. Tensoring the corresponding
matrices, it follows that

ρa ⊗ ρb(reiθ) =

⎛
⎜⎜⎜⎝

ei(a+b−1−1)θ

ei(a−b)θ

e−i(a−b)θ

e−i(a+b−1−1)θ

⎞
⎟⎟⎟⎠

and

ρa ⊗ ρb(j) =

⎛
⎜⎜⎜⎝

(−1)a+b−1−1

(−1)a−1

(−1)b−1

1

⎞
⎟⎟⎟⎠ .

Thus ρa ⊗ ρb is decomposable with

ρa ⊗ ρb

∣∣
〈e0⊗e0, e1⊗e1〉

∼= ρa+b−1.

Moreover, for a > b, we see that ρa ⊗ ρb

∣∣
〈e0⊗e1, e1⊗e0〉

∼= ρa−b+1 via the change of
basis

e0 ⊗ e1 �→ e0 ⊗ e1, e1 ⊗ e0 �→ (−1)b−1e1 ⊗ e0.

Reversing the roles of a and b, we obtain ρa ⊗ ρb

∣∣
〈e0⊗e1, e1⊗e0〉

∼= ρb−a+1 for a < b.

In the case a = b, it is reducible and indeed, ρa ⊗ ρa

∣∣
〈e0⊗e1, e1⊗e0〉

∼= ρ+
0 ⊕ ρ−0 =: ρ1,

say. Therefore for any a, b ≥ 2, we have

ρa ⊗ ρb
∼= ρa+b−1 ⊕ ρ|a−b|+1.
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This immediately yields that

symm(ρk) ⊗ symm(ρk) =
n⊕

ν1=0

n⊕
ν2=0

ρ2(ν1+ν2+1)(k−1)+1 ⊕ ρ2|ν1−ν2|(k−1)+1.

From [12], we know that for � ≥ 2,

L(s, ρ�) = ΓC

(
s + 1

2 (� − 1)
)
, L(s, ρ+

0 ) = ΓR(s), L(s, ρ−0 ) = ΓR(s + 1).(2.3)

In view of the definition of ρ1 and ΓR(s)ΓR(s+1) = ΓC(s), the first relation in (2.3)
also holds for � = 1 from the last two. Thus we obtain

L∞(s, symmf × symmg)(2.4)

=
n∏

ν1=0

n∏
ν2=0

ΓC

(
s + (ν1 + ν2 + 1)(k − 1)

)
ΓC

(
s + |ν1 − ν2|(k − 1)

)
,

which is equivalent to the required formula, in view of∑
0≤ν1,ν2≤n
ν1+ν2+1=ν

1 =
{

ν if 1 ≤ ν ≤ n,
m − ν + 1 if n < ν ≤ m,

and ∑
0≤ν1,ν2≤n
|ν1−ν2|=ν

1 =
{

n + 1 if ν = 0,
m − 2ν + 1 if 1 ≤ ν ≤ n.

For the case m = 2n, a similar argument yields the following formula:

symm(ρk) ⊗ symm(ρk) = ρ+
0 ⊕

n⊕
ν=1

ρ2ν(k−1)+1 ⊕
n⊕

ν=1

ρ2ν(k−1)+1

⊕
n⊕

ν1=1

n⊕
ν2=1

ρ2(ν1+ν2)(k−1)+1 ⊕ ρ2|ν1−ν2|(k−1)+1.

From this and (2.3), we can obtain, as before, the desired result. �

3. Bounds for symmetric power L-functions

In this section, we shall establish some estimates for the symmetric power L-
functions in the weight aspect, which will be needed later. Since they are known
or easy to prove, we shall briefly sketch the proof. We begin with the convexity
bounds for L(s, symmf) and L(s, symmf × symmg) on the k-aspect.

Proposition 3.1. Let m = 1, 2, 3, 4, 2 | k, let f ∈ H∗
k(1) and let g ∈ H∗

k(1). For
any ε > 0, we have

L(s, symmf) �ε

{
(k + |τ |)([m/2]+1)(1−σ)+ε if 2 � m,

(1 + |τ |)(1−σ)/2(k + |τ |)[m/2](1−σ)+ε if 2 | m
(3.1)

and

L(s, symmf × symmg) �ε (1 + |τ |)Am(1−σ)(k + |τ |)Bm(1−σ)+ε(3.2)

uniformly for 2 | k, 0 ≤ σ ≤ 1 and τ ∈ R, where [t] is the integral part of t,
Am = (m + 1)/2 and Bm = m(m + 1)/2.

We need an estimate for Γ(s) in order to prove Proposition 3.1.
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Lemma 3.1. Let A > 0 be a fixed number and let k0 = k0(A) be a sufficiently large
constant. Then for all sufficiently large k ≥ k0, we have

Γ(k − s)
Γ(k + s)

�A (k + |τ |)−2σ

uniformly for |σ| ≤ A, where the implied constants depend on A only.

Proof. As usual we define the function log on C�(−∞, 0], the argument of which
varies from −π to π anticlockwise. We apply Stirling’s formula (see [26, § 4.42])

log Γ(s) =
(

s − 1
2

)
log s − s +

log(2π)
2

+
∫ ∞

0

φ(u)
(s + u)2

du,(3.3)

where φ(u) := −
∫ u

0
({v}− 1

2 ) dv ({v} is the fractional part of v). It is easy to show
that

|φ(u)| ≤ 1 and
∣∣∣∣
∫ ∞

0

φ(u)
(s + u)2

du

∣∣∣∣ ≤ 1 (σ ≥ 1).(3.4)

The relations (3.3) and (3.4) allow us to deduce that for |σ| ≤ A and k ≥ k0,

−�e

(
log

Γ(k − s)
Γ(k + s)

)
= σ log

(
(k − σ)2 + τ2

)
+ τ arctan

(
2στ

k2 − σ2 + τ2

)

+
1
2

(
k + σ − 1

2

)
log

(
(k + σ)2 + τ2

(k − σ)2 + τ2

)
+ OA(1)

= σ log
(
(k − σ)2 + τ2

)
+ OA(1),

which implies the required inequality. �

We are now ready to prove Proposition 3.1. By (1.6), we have

L(s, symmf) � ζ(1 + ε)m+1 �ε 1 (s = 1 + ε + iτ).(3.5)

On the other hand, in view of the relation Γ(s + 1) = sΓ(s) and (1.7), we have

L∞(1 − s, symmf)
L∞(s, symmf)

= (2π)(n+1)(2s−1)
n∏

ν=0

(
(ν + 1

2 )(k−1)−s
)Γ((ν + 1

2 )(k − 1) − s)
Γ((ν + 1

2 )(k − 1) + s)

if m = 2n + 1, and

L∞(1 − s, symmf)
L∞(s, symmf)

= πs−1/2(2π)n(2s−1) Γ
( 1+δ2�n−s

2

)
Γ
( δ2�n+s

2

)
×

n∏
ν=1

(
ν(k − 1) − s

)Γ(ν(k − 1) − s)
Γ(ν(k − 1) + s)

if m = 2n.
From these, we use Stirling’s formula or Lemma 3.1 (for k small or large respec-

tively) to deduce that for s = −ε + iτ ,

L∞(1 − s, symmf)
L∞(s, symmf)

�ε,m

{
(k + |τ |)[m/2]+1+ε if 2 � m,

(1 + |τ |)1/2(k + |τ |)[m/2]+ε if 2 | m.

Thus (3.5) and the functional equation (1.9) imply that for s = −ε + iτ ,

∣∣L(s, symmf)
∣∣ �ε,m

{
(k + |τ |)[m/2]+1+ε if 2 � m,

(1 + |τ |)1/2(k + |τ |)[m/2]+ε if 2 | m.
(3.6)
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Now the desired inequality (3.1) follows from (3.5) and (3.6) with the Phragmén-
Lindelöf theorem [26, §5.65]. The other one follows in the same way, with Proposi-
tion 2.1. �

The next proposition contains the k-analogues of Lemmas 4.1 and 4.2 in [1]. We
skip the proofs, as the methods are identical to the level cases.

Proposition 3.2. (i) Let m = 1, 2, 3, 4, let 2 | k and let f ∈ H∗
k(1). Then we have

L(s, symmf) � [log(k|s|)]m+1

uniformly for σ ≥ 1 − 1/ log(k|s|).
(ii) Let m ∈ {1, 2, 4}, let 2 | k and let f ∈ H∗

k(1). There is an absolute constant
c > 0 such that

L(s, symmf) � [log(k|s|)]−c

uniformly for σ = 1.

Remark 4. The case m = 3 in part (ii) is unknown due to the possibility of the
exceptional zeros. (See [1] for a further discussion.)

Next we introduce the function log L(s, symmf) and prepare some results for
later use.

Let m ∈ N, 2 | k, f ∈ H∗
k(1). Define

Λsymmf (n) =

{[
αf (p)mν + αf (p)(m−2)ν + · · · + αf (p)−mν

]
log p if n = pν ,

0 otherwise.
(3.7)

Then it is apparent that |Λsymmf (n)| ≤ (m + 1) log n (n ≥ 1) and we have

L(s) := −L′

L
(s, symmf) =

∞∑
n=1

Λsymmf (n)
ns

(3.8)

for σ > 1. This follows easily from taking a logarithmic derivative on both sides of
(1.4):

−L′

L
(s, symmf) =

∑
p

∑
0≤j≤m

αf (p)m−2jp−s log p

1 − αf (p)m−2jp−s

=
∑

p

∑
ν≥1

∑
0≤j≤m

αf (p)(m−2j)ν log p

psν
,

which is equivalent to (3.8).
Suppose f ∈ H+

k,symm(1; η), where η ∈ (0, 1
2 ). Then L(s) is holomorphic and

zero-free in the region S (see (1.10)), hence the integral of L(s) from 2 to s (s ∈ S)
defines the logarithm log L(s, symmf), with the initial value taken as the usual
natural logarithm of L(2, symmf). In particular, we have the absolutely convergent
series

log L(s, symmf) =
∞∑

n=1

Λsymmf (n)
ns log n

(σ > 1)(3.9)

and the rather crude estimate

| log L(s, symmf)| ≤ (m + 1)ζ(σ) �m (σ − 1)−1 (σ > 1).(3.10)
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Let us write σ0 = 1− η for simplicity. The Borel-Carathedory theorem with the
estimate (3.1) implies that for σ > σ0 and |τ | ≤ 100kη,

log L(s, symmf) � log k

σ − σ0
,(3.11)

where the implied constant is absolute. (See [4] for a detailed proof of the Dirichlet
L-function case.) Similar to Lemma 7.1 of [21], we can easily prove a better estimate
under GRH.

Proposition 3.3. Let m = 1, 2, 3, 4, let 2 | k and let f ∈ H∗
k(1). If GRH for

L(s, symmf) holds, then for any ε > 0 and any α > 1
2 we have

log L(s, symmf) �ε,α [log(k|s|)]2(1−σ)+ε(3.12)

uniformly for α ≤ σ ≤ 1 and τ ∈ R.

Even without GRH, (3.11) can be refined for f ∈ H+
k,symm(1; η). To this end, we

provide the k-analogue of Lemma 4.3 in [1].

Proposition 3.4. Let η ∈ (0, 1
2 ) fixed, let σ0 = 1 − η, let m = 1, 2, 3, 4, let 2 | k,

and let f ∈ H+
k,symm(1; η). Then we have

log L(s, symmf) =
∞∑

n=2

Λsymmf (n)
ns log n

e−n/T + R(3.13)

uniformly for 2 | k, 3 ≤ T ≤ kη, σ0 < σ ≤ 3
2 and |τ | ≤ T , where

R �η T−(σ−σ0)/2(log k)/(σ − σ0)2.(3.14)

Further for any 0 < ε < 1
4 and 1

2 < α < 1, under GRH for L(s, symmf) where
f ∈ H∗

k(1), the asymptotic formula (3.13) holds uniformly for α ≤ σ ≤ 3
2 and

T ≥ 1, with

R �ε,α T−(σ−α)(log k)2(1−α)+ε.(3.15)

Proof. From the absolute convergence of (3.9) and the lemma in [27, § 7.9], we have

∞∑
n=2

Λsymmf (n)
ns log n

e−n/T =
1

2πi

∫ 2+i∞

2−i∞
Γ(z − s) log L(z, symmf) T z−s dz.(3.16)

Now we deplace the line of integration �e z = κ to the path C consisting of straight
lines joining

κ − i∞, κ − i2T, σ1 − i2T, σ1 + i2T, κ + i2T, κ + i∞,

where κ := 1 + 1/ log T and σ1 := (σ + σ0)/2. By the residue theorem, it follows
that

∞∑
n=2

Λsymmf (n)
ns log n

e−n/T = log L(s, symmf)

+
1

2πi

∫
C

Γ(z − s) log L(z, symmf) T z−s dz.
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Then we estimate the contribution from each line segment of C in the last integral.
Applying (3.10) and (3.11), we infer that the integral over C is

� Tσ1−σ log k

σ − σ0

∫
|y|≤3T

|Γ(σ1 − σ + iy)| dy

+
log k

σ − σ0

∫ κ

σ1

T x−σ|Γ(x − σ + i(T − τ ))| dx

+ T 1−σ

∫
|y|≥T

|Γ(κ − σ + iy)| dy.

To handle the gamma function, we use Stirling’s formula of the form: for any fixed
constant ci > 0 (i = 1, 2, 3),

|Γ(σ + iτ)| =
√

2π |τ |σ−1/2e−π|τ |/2
{
1 + O

(
|τ |−1

)}
(3.17)

for −c1 ≤ σ ≤ c2 and |τ | ≥ c3. Together with |Γ(w)| � |w|−1 when −1
2 ≤ �e w ≤ c2

and |�m w| ≤ c3, the formula (3.13) with (3.14) follows plainly.
Under GRH, we can shift the line of integration in (3.16) to �e z = α′ := α−ε′ >

1
2 where ε′ := 1

2 min(ε, α − 1
2 ) > 0. Repeating the same argument, the remainder

term in this case is

R :=
1

2πi

∫ α′+i∞

α′−i∞
Γ(z − s) log L(z, symmf) T z−s dz

�ε,α Tα′−σ(log k)2(1−α′)+ε

∫ ∞

−∞
|Γ(α′ − σ + iy)|[log(|y| + 3)]2(1−α′)+ε dy

�ε,α T−(σ−α)−ε′
(log k)2(1−α)+2ε

�ε,α T−(σ−α)(log k)2(1−α)+2ε

by (3.12) and α′ − σ ≤ −ε′. This ends the proof after replacing 2ε by ε. �

Proposition 3.5. Let η ∈ (0, 1
2 ) fixed, let m = 1, 2, 3, 4 and let 2 | k. Then for any

f ∈ H+
k,symm(1; η), we have

log L(s, symmf) �η
(log k)4α/η − 1

α log2 k
+ log3(8k)(3.18)

uniformly for σ ≥ 1 − α > 1 − 1
2η and |τ | ≤ (log k)4/η.

Proof. It suffices to consider k ≥ 16 and 1−α ≤ σ ≤ 3
2 in view of (3.10) and (3.11).

We take T = (log k)4/η in Proposition 3.4 (recall σ0 = 1 − η), therefore the error
term R in (3.14) is O(1), because of σ − σ0 ≥ 1

2η. Clearly the sum in (3.13) is

�
∑

p

p−σe−p/T + O(1),(3.19)

so we may assume 1
2 ≤ σ ≤ 1. By Lemma 3.2 of [25], partial integration leads to

the inequality

∑
p≤y

1
pσ

� y1−σ − 1
(1 − σ) log y

+ log2 y(3.20)
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uniformly for 1
2 ≤ σ ≤ 1 and y ≥ 3. Hence we have

∑
p≤T

p−σe−p/T ≤
∑
p≤T

p−σ(3.21)

� (log k)4(1−σ)/η − 1
(1 − σ) log2 k

+ log3 k

� (log k)4α/η − 1
α log2 k

+ log3 k.

The contribution of p > T can be estimated as

∑
p>T

p−σe−p/T �
∫ ∞

T

t−σe−t/T

log t
dt(3.22)

= T 1−σ

∫ ∞

1

u−σe−u

log(Tu)
du

� T 1−σ

log T
� (log k)4(1−σ)/η − 1

(1 − σ) log2 k
.

Our assertion follows from inserting (3.21) and (3.22) into (3.19). �

4. A large sieve inequality

Proposition 4.1. Let m = 1, 2, 3, 4, let Dm := m(m + 1)/4 + 1, let L ≥ 1 and let
{a�}�≤L be a sequence of complex numbers. Then for any ε > 0, we have

∑
f∈H∗

k(1)

∣∣∣∑
�≤L

a�λsymmf (�)
∣∣∣2 �ε kε

(
L + kDmL1/2+ε

)∑
�≤L

|a�|2.

Proof. By the duality principle (which follows from the same norms of a Hilbert
space operator and its adjoint), it suffices to show

∑
�≤L

∣∣∣ ∑
f∈H∗

k(1)

bfλsymmf (�)
∣∣∣2 �ε kε

(
L + kDmL1/2+ε

) ∑
f∈H∗

k(1)

|bf |2(4.1)

for any sequence of complex numbers {bf}f∈H∗
k(1).

The left-hand side of (4.1) is

�
∑
�≥1

∣∣∣ ∑
f∈H∗

k(1)

bfλsymmf (�)
∣∣∣2e−�/L(4.2)

=
∑

f,g∈H∗
k(1)

bf bg

∑
�≥1

λsymmf (�)λsymmg(�)e−�/L.

From the well-known formula

1
2πi

∫
(c)

Γ(w)yw dw = e−1/y (for c > 0),(4.3)
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we obtain, together with a shift of line of integration,∑
�≥1

λsymmf (�)λsymmg(�)e−�/L(4.4)

=
1

2πi

∫
(2)

L(s, symmf × symmg)Γ(s)Ls ds

= Res
s=1

L(s, symmf × symmg)Γ(s)Ls

+
1

2πi

∫
(1/2+ε)

L(s, symmf × symmg)Γ(s)Ls ds.

The residue term comes only for f = g by [1, Section 5.1]. With the estimate (3.2),
we have

Res
s=1

L(s, symmf × symmg)Γ(s)Ls = lim
s→1+

(s − 1)L(s, symmf × symmg)Γ(s)Ls

�ε kεδf,gL,

where δf,g = 1 if f = g, and = 0 otherwise.
The last integral in (4.4) is � km(m+1)/4+εL1/2+ε, by (3.2) again and (3.17).

Therefore,∑
�≥1

λsymmf (�)λsymmg(�)e−�/L � kε
(
δf,gL + km(m+1)/4L1/2+ε

)
.(4.5)

Inserting (4.5) into (4.2) with H∗
k(1) � k, we obtain the result. �

5. Proof of Theorem 1

Our proof is based on the method of Montgomery in [16], but at first, we show
a factorization to prepare a convenient mollifier for zero detection. The approach
here was kindly suggested by the referee.

Lemma 5.1. Let m ∈ N, z > (m+1)2 be any fixed number and let P (z) =
∏

p≤z p.
For any σ > 1, we have

L(s, symmf)−1 = Gf (s)
∑

(n,P (z))=1

λsymmf (n)µ(n)n−s,

where the Dirichlet series Gf (s) converges absolutely for σ > 1
2 , and Gf (s) �m,z,ε 1

uniformly for σ > 1
2 + ε.

Proof. By (1.6), we have |λsymmf (p)| ≤ m + 1 so 1 − λsymmf (p)p−s is nonzero for
σ ≥ 1

2 and p > z, from our choice of z. Formally, we can write

Gf (s) :=
∏
p≤z

m∏
j=0

(
1 − αf (p)m−2jp−s

)

×
∏
p>z

{(
1 − λsymmf (p)p−s

)−1
m∏

j=0

(
1 − αf (p)m−2jp−s

)}
,

by (1.4). If p > z, the p-local factor of Gf (s) is of the form 1 + Om(p−2σ), whence
both the absolute and uniform convergence of Gf (s) are justified in our specified
regions. �
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Remark 5. Such a factorization (together with other delicate methods) is applied
in Kowalski & Michel [13] to count the zeros of automorphic L-functions on GL(n).

Now we are in a position to prove Theorem 1. Let us make two simple observa-
tions. First an argument similar to [27, §9.2] yields that

N( 1
2 , j, symmf) − N( 1

2 , j − 1, symmf) � log(kj).(5.1)

Thus the result of Theorem 1 is trivial if T ≥ kr, in view of (1.1).
Second the case 1 ≤ T ≤ (log k)3 can be deduced from the particular case

T = (log k)3, by (5.1) again. Therefore we assume

(log k)3 ≤ T ≤ kr.(5.2)

We cut the rectangle α ≤ σ ≤ 1 and 0 ≤ τ ≤ T horizontally into boxes of width
2(log k)2. By (5.1) each box α ≤ σ ≤ 1 and Y ≤ τ ≤ Y + 2(log k)2 contains at
most O((log k)3) zeros. Let nsymmf be the number of boxes which contain at least
one zero ρ of L(s, symmf). Then

N(α, T, symmf) � nsymmf (log k)3.

We shall complete the proof by showing that∑
f∈H∗

k(1)

nsymmf �r,ε TkEm,r(1−α)/(3−2α)+ε.(5.3)

Consider α ≥ 1
2 + 2ε. Let x, y ∈

[
1, k10m2(1+r)

]
and define

Mx(s, symmf) = Gf (s)
∑
�≤x

(�,P (z))=1

µ(�)λsymmf (�)�−s,

where Gf (s) and P (z) are defined as in Lemma 5.1. By Lemma 5.1, for σ > 1
2 we

have

1 =
(
1 − L(s, symmf)Mx(s, symmf)

)
+ L(s, symmf)Mx(s, symmf).

Let ρ = β + iγ with β ≥ α (> 1
2 + ε) and 0 ≤ γ ≤ T be a zero of L(s, symmf), and

write

κ = 1/ log k, κ1 = 1 − β + κ (> 0) and κ2 = 1
2 − β + ε (< 0).

In view of the preceding identity and (4.3) with c = κ1, we obtain

e−1/y =
1

2πi

∫
(κ1)

(
1 − L(ρ + w, symmf)Mx(ρ + w, symmf)

)
Γ(w)yw dw

+
1

2πi

∫
(κ1)

L(ρ + w, symmf)Mx(ρ + w, symmf)Γ(w)yw dw.

Observing that the zero of L(ρ + w, symmf) cancels the simple pole of Γ(w) at
w = 0, we translate the line of integration of the second integral to �e w = κ2

without introducing extra terms. Thus we have

e−1/y =
1

2πi

∫
(κ1)

(
1 − L(ρ + w, symmf)Mx(ρ + w, symmf)

)
Γ(w)yw dw(5.4)

+
1

2πi

∫
(κ2)

L(ρ + w, symmf)Mx(ρ + w, symmf)Γ(w)yw dw.
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Next we estimate the contribution of |�mw| ≥ (log k)2 in the integrals of (5.4).
Note that for �e w = κ2 = 1

2 − β + ε, we have the convexity bound (by (3.1))

L(ρ + w, symmf) � (k + T + |�m w|)(m+1)/4+ε(5.5)

and the trivial estimate (with (1.6) and Gf (s) �ε 1 by Lemma 5.1)

Mx(ρ + w, symmf) �ε x1/2+ε.(5.6)

Thus the contribution of |�mw| ≥ (log k)2 to the second integral of (5.4) is

�ε x1/2+εy1/2−α

∫
|�m w|≥(log k)2

(k + T + |�mw|)(m+1)/4+ε|Γ(w)| | dw|(5.7)

�ε x1/2+εy1/2−α(k + T )(m+1)/4+εe−(log k)2

�ε,r 1/k,

by (5.5) and T ≤ kr.
By (1.5) and (1.6), L(s, symmf) � ζ(σ)m+1 for σ > 1. Together with Lemma 5.1,

we get that for �e w = κ1 = 1 − β + κ and x ≥ 1,

1 − L(ρ + w, symmf)Mx(ρ + w, symmf)(5.8)

= L(ρ + w, symmf)Gf (ρ + w)
∑

�>x, (�,P (z))=1

µ(�)λsymmf (�)
�ρ+w

�ε ζ(1 + κ)m+1
∑
�≥1

dm+1(�)�−(1+κ)

�ε kε.

Hence the portion of |�m w| ≥ (log k)2 in the first integral of (5.4) is

�ε y1−αkεe−(log k)2 �ε 1/k.(5.9)

Inserting (5.7) and (5.9) into (5.4), the remnant of the right side in (5.4) is � 1.
Noting the fact that 1 ≤ C(a + b) ⇒ 1 ≤ 2C2(a + b2) (where a > 0, b > 0, C ≥ 1),
we deduce with Cauchy-Schwarz’s inequality that

1 � kεy2(1−α)

×
∫ K

−K

∣∣1 − L(1 + κ + i(γ + v), symmf)Mx(1 + κ + i(γ + v), symmf)
∣∣2 dv

+ y1/2−α

∫ K

−K

∣∣L( 1
2 + ε + i(γ + v), symmf)Mx( 1

2 + ε + i(γ + v), symmf)
∣∣dv,

where K := (log k)2.
We label the boxes and separate them into two groups, for the odd-indexed and

the even-indexed, respectively. This ensures the separation between two zeros from
distinct boxes in the same group of at least 2(log k)2. Therefore, the number of
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boxes which contain at least a zero is

nsymmf(5.10)

� kεy2(1−α)

∫ 2T

0

∣∣1 − L(1 + κ + iv, symmf)Mx(1 + κ + iv, symmf)
∣∣2 dv

+ y1/2−α

∫ 2T

0

∣∣L( 1
2 + ε + iv, symmf)Mx( 1

2 + ε + iv, symmf)
∣∣ dv

=: kε
(
y2(1−α)I ′symmf + y1/2−αI ′′symmf

)
, say.

Apparently (5.5) and (5.6) imply

I ′′symmf �r,ε Tx1/2+εkr(m+1)/4+rε,(5.11)

for T ≤ kr. Similarly to (5.8), we can write

1 − L(1 + κ + iv, symmf)Mx(1 + κ + iv, symmf)

�ε,m kε

∣∣∣∣ ∑
x<�≤X

(�,P (z))=1

µ(�)λsymmf (�)
�1+κ+iv

∣∣∣∣ + kε
∑
�>X

dm+1(�)
�1+κ

,

where X = e4(log k)2 . Splitting �−κ/2 out of the second sum, this term is

�ε,m kεX−κ/2ζ(1 + κ/2)m+1 � k−1.

Thus

∑
f∈H∗

k(1)

I ′symmf � kε

∫ 2T

0

∑
f∈H∗

k(1)

∣∣∣∣ ∑
x<�≤X

(�,P (z))=1

µ(�)λsymmf (�)
�1+κ+iv

∣∣∣∣
2

dv + T.(5.12)

For any L ∈ [x, X], we apply Proposition 4.1 with the sequence a� = µ(�)�−(1+κ+iv)

for L < � ≤ 2L with (�, P (z)) = 1 and 0 otherwise to get

∑
f∈H∗

k(1)

∣∣∣∣ ∑
L<�≤2L

(�,P (z))=1

µ(�)λsymmf (�)
�1+κ+iv

∣∣∣∣
2

� kε
(
L + kDmL1/2+ε

)
L−1−2κ.

Separating the range x < � ≤ X in (5.12) into dyadic intervals, it follows with
Cauchy-Schwarz’s inequality that∑

f∈H∗
k(1)

I ′sym2f �r,ε k2εT
(
1 + kDmx−1/2+ε

)
.

Thus we conclude from (5.10) and (5.11) that∑
f∈H∗

k(1)

nsymmf �r,ε Txεk2rε
{
y2(1−α)

(
1 + kDmx−1/2

)
+ y1/2−αx1/2kr(m+1)/4

}
.

Taking x = k2Dm and y = kEm,r/(2(3−2α)), the proof of (5.3), hence Theorem 1, is
complete with ε/(2(Dm + r)) in place of ε. �
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6. Moments of L(1, symmf)

The aim of this section is to prove Proposition 6.1 below. We first introduce the
preliminary notation: for θ ∈ R, m ∈ N and |x| < 1,

g(θ) := diag
[
eiθ, e−iθ

]
,

symm[g(θ)] := diag
[
eimθ, ei(m−2)θ, . . . , e−imθ

]
,

tr
(
symm[g(θ)]

)
:=

∑
0≤j≤m

ei(m−2j)θ = sin[(m + 1)θ]/ sin θ,

D
(
x, symm[g(θ)]

)
:= det

(
I − x · symm[g(θ)]

)−1 =
∏

0≤j≤m

(
1 − ei(m−2j)θx

)−1
.

(6.1)

Let z ∈ C. For m ∈ N and ν ≥ 0, we define λz,ν
m [g(θ)] by

D
(
x, symm[g(θ)]

)z =
∑
ν≥0

λz,ν
m [g(θ)]xν (|x| < 1).(6.2)

Following the definitions, we have

λ1,1
m [g(θ)] = tr

(
symm[g(θ)]

)
=

sin[(m + 1)θ]
sin θ

,(6.3)

log D
(
x, symm[g(θ)]

)
= tr

(
symm[g(θ)]

)
x + O(x2) (|x| < 1).(6.4)

Besides, let θf (p) ∈ [0, π] such that αf (p) = eiθf (p) which is admissible by (1.3).
Then it is seen that by (1.2) and (1.3),

λf

(
pm

)
=

sin[(m + 1)θf (p)]
sin θf (p)

= tr
(
symm[g(θf (p))]

)
= λ1,1

m [g(θf (p))].(6.5)

Moreover, it is evident that from (6.1) and (1.4),

L(s, symmf)z =
∏
p

D
(
p−s, symm[g(θf (p))]

)z (σ > 1),(6.6)

whence L(s, symmf)z admits a Dirichlet series

L(s, symmf)z =
∑
n≥1

λz
symmf (n)n−s (σ > 1),(6.7)

where λz
symmf (n) is multiplicative and by (6.2),

λz
symmf (pν) = λz,ν

m [g(θf (p))].(6.8)

Remark 6. The symbols in (6.1), though a bit heavy, carry interpretations in repre-
sentation theory. The coefficients λz,ν

m [g(θ)] can be viewed as a function generated
by the characters of SU(2). The combinatorial structure of λz

symmf (pν) is encrypted
in the decomposition of λz,ν

m [g(θ)] into irreducible characters. Furthermore, the Pe-
tersson formula (a main ingredient in our proof) embodies the interpretation as the
equidistribution of a certain family of tuples of conjugacy classes. These are part
of the salient points in [1], where readers will find the details.

In the sequel, we write

ω(f) :=
2π2

(k − 1)L(1, sym2f)
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and

Mz
symm :=

∏
p

2
π

∫ π

0

D
(
p−1, symm[g(θ)]

)z sin2 θ dθ.

Proposition 6.1. Let η ∈ (0, 1
31 ) fixed, let m = 1, 2, 3, 4 and let 2 | k. Then there

are two positive constants δ = δ(η) and c = c(η) such that∑
f∈H+

k,symm (1;η)

ω(f)L(1, symmf)z = Mz
symm + Oη

(
e−δ log k/ log2 k

)

uniformly for

2 | k and |z| ≤ c log k/ log2(8k) log3(8k).

The same asymptotic formula with H∗
k(1) in place of H+

k,symm(1; η) also holds if
either �e z ≥ 0 or �e z < 0, but m �= 3.

We need a couple of lemmas to prove Proposition 6.1. Our first lemma is to
express λz

symmf (pν) in terms of λf (pν′
). Cogdell & Michel [1] achieve it in a more

general context of compact groups. But for the case SU(2), we choose to give a
direct and “elementary” approach which is more straightforward to the reader not
used to the language of representation theory.

Lemma 6.1. Let 2 | k, let m ∈ N, let z ∈ C and let f ∈ H∗
k(1). Then for any

prime p and integer ν ≥ 0, we have

λz
symmf (pν) =

∑
0≤ν′≤mν

µz,ν
m,ν′λf

(
pν′)

,(6.9)

where

µz,ν
m,ν′ =

2
π

∫ π

0

λz,ν
m [g(θ)] sin[(ν′ + 1)θ] sin θ dθ.(6.10)

Further, letting δ(a, b) be 1 for a = b and 0 otherwise, we have

µz,1
m,ν′ = z δ(m, ν′) (0 ≤ ν′ ≤ m),(6.11) ∣∣µz,ν

m,ν′

∣∣ ≤
(

(m + 1)|z| + ν − 1
ν

)
(0 ≤ ν′ ≤ mν).(6.12)

Proof. We start with the observation that θ �→ D
(
x, symm[g(θ)]

)z is even and

λz,ν
m [g(θ)] =

1
ν!

dν

dxν
D

(
x, symm[g(θ)]

)z
∣∣∣
x=0

.

It follows that the function θ �→ λz,ν
m [g(θ)] is also even. Hence λz,ν

m [g(θ)] sin θ is an
odd function and a polynomial in eiθ of degree ≤ mν + 1. It is plain that µz,ν

m,ν′

defined in (6.10) is the coefficient of the Fourier (sine) series

λz,ν
m [g(θ)] sin θ =

∑
0≤ν′≤mν

µz,ν
m,ν′ sin[(ν′ + 1)θ].(6.13)

We thus obtain (6.9) in view of (6.8) and (6.5).
By the series expansion

(1 − x)−z =
∑
ν≥0

(
z + ν − 1

ν

)
xν
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valid for |x| < 1 and z ∈ C, where(
z

ν

)
:=

1
ν!

ν−1∏
j=0

(z − j)

with the convention
(
z
0

)
= 1, we have from the definition in (6.1) that

D
(
x, symm[g(θ)]

)z =
∏

0≤j≤m

∑
νj≥0

(
z + νj − 1

νj

)(
ei(m−2j)θx

)νj

=
∑
ν≥0

xν
∑

�ν∈Nm+1

|�ν|=ν

∏
0≤j≤m

(
z + νj − 1

νj

)
ei(m−2j)νjθ,

where �ν := (ν0, . . . , νm) and |�ν| := ν0 + · · · + νm. Thus by comparing with (6.2),
we get

λz,ν
m [g(θ)] =

∑
�ν∈Nm+1

|�ν|=ν

∏
0≤j≤m

(
z + νj − 1

νj

)
· ei[mν−2(ν1+···+mνm)]θ.(6.14)

In particular,

λz,1
m [g(θ)] = z

sin[(m + 1)θ]
sin θ

which yields (6.11) after a simple computation with (6.10).
Noting that∑
ν≥0

xν
∑

�ν∈Nm+1

|�ν|=ν

∏
0≤j≤m

(
|z| + νj − 1

νj

)
= D

(
x, symm[g(0)]

)|z| = (1 − x)−(m+1)|z|

and comparing the coefficients of xν , we obtain∑
�ν∈Nm+1

|�ν|=ν

∏
0≤j≤m

(
|z| + νj − 1

νj

)
=

(
(m + 1)|z| + ν − 1

ν

)
.

Thus we deduce from (6.14) that for any θ ∈ R,

∣∣λz,ν
m [g(θ)]

∣∣ ≤ (
(m + 1)|z| + ν − 1

ν

)
.

By using the Plancherel identity and the preceding inequality, we have∑
0≤ν′≤mν

∣∣µz,ν
m,ν′

∣∣2 =
2
π

∫ π

0

∣∣λz,ν
m [g(θ)] sin θ

∣∣2 dθ

≤
(

(m + 1)|z| + ν − 1
ν

)2

,

which implies (6.12). �

Lemma 6.2. Let m, n ∈ N, let 2 | k and let z ∈ C. Then we have∑
f∈H∗

k(1)

ω(f)λz
symmf (n) = λz

symm(n) + Om

(
k−5/6nm/4 log(2n)rz

m(n)
)
,(6.15)
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where λz
symm(n) and rz

m(n) are the multiplicative functions defined by

λz
symm(pν) := µz,ν

m,0 and rz
m(pν) := (mν + 1)

(
(m + 1)|z| + ν − 1

ν

)
,(6.16)

respectively. Further there is a constant c = c(m) such that∑
n≤t

rz
m(n) �m t[log(et)]zm−1ec|z| log2(|z|+3)(6.17)

uniformly for t ≥ 1 and z ∈ C, where zm := (m + 1)2z∗ and z∗ is the smallest
integer n such that n ≥ |z|.

Proof. Writing n = pν1
1 · · · pνr

r , the multiplicativity of λz
symm(n) and λf (n) allows

us to deduce∑
f∈H∗

k(1)

ω(f)λz
symmf (n) =

mν1∑
ν′
1=0

· · ·
mνr∑
ν′

r=0

r∏
j=1

µ
z,νj

m,ν′
j

∑
f∈H∗

k(1)

ω(f)λf

(
p

ν′
1

1 · · · pν′
r

r

)
.

We apply Corollary 2.2 in [8] with the choice m = p
ν′
1

1 · · · pν′
r

r , n = 1 and N = 1
there. The principal term contributes

∏
1≤j≤r µ

z,νj

m,0 = λz
symm(n), and the error term

constitutes a term

� k−5/6nm/4 log(2n)
∏

1≤j≤r

∑
0≤ν′

j≤mνj

∣∣µz,νj

m,ν′
j

∣∣
� k−5/6nm/4 log(2n)rz

m(n).

This proves (6.15). The estimate (6.17) is Lemma 4.3 of [21]. �

For notational convenience, we write

ωz
symmf (x) :=

∞∑
n=1

λz
symmf (n)

n
e−n/x.(6.18)

The lemmas below are devoted to studying its average over all primitive forms,
which leads to the integral formula in (6.20). This is a crucial step in the study of the
moments, and is discovered in [1] with the insightful idea of the “equidistribution”
properties of g(θf (p)) in (6.6).

Lemma 6.3. Let m ∈ N, let 2 | k, let x ≥ 3 and let z ∈ C. Then we have

∑
f∈H∗

k(1)

ω(f)ωz
symmf (x) =

∞∑
n=1

λz
symm(n)

n
e−n/x

+ Om

(
k−5/6xm/4[(zm + 1) log x]zm

)
.

Proof. By (6.18) and (6.15), we can write

∑
f∈H∗

k(1)

ω(f)ωz
symmf (x) =

∞∑
n=1

λz
symm(n)

n
e−n/x

+ Om

(
1

k5/6

∞∑
n=1

log(2n)
n1−m/4

e−n/xrz
m(n)

)
.
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An integration by parts with (6.17) allows us to deduce

∞∑
n=1

log(2n)
n1−m/4

e−n/xrz
m(n) =

∫ ∞

1−

log(2t)
t1−m/4

e−t/x d
∑
n≤t

rz
m(n)

�m ec|z| log2(|z|+3)

∫ ∞

1

[log(3t)]zm

t1−m/4
e−t/x

(
1 +

t

x

)
dt.

But we have

∫ x

1

[log(3t)]zm

t1−m/4
e−t/x

(
1 +

t

x

)
dt � xm/4(log x)zm ,∫ ∞

x

[log(3t)]zm

t1−m/4
e−t/x

(
1 +

t

x

)
dt � xm/4

∫ ∞

1

um/4e−u[log(3ux)]zm du

� xm/4(log x)zm

zm∑
ν=0

(
zm

ν

)∫ ∞

1

um+νe−u du

� xm/4[(zm + 1) log x]zm .

This completes the proof. �

Lemma 6.4. Let m ∈ N, let z ∈ C and let z′m := (m + 1)|z| + 3. Then there is a
positive constant c = c(m) such that for any σ ∈ ( 1

2 , 1] we have

∑
n≥1

|λz
symm(n)|

nσ
≤ exp

{
cz′m

(
log2 z′m +

z
′(1−σ)/σ
m − 1

(1 − σ) log z′m

)}
.(6.19)

Further we have

∑
n≥1

λz
symm(n)

n
=

∏
p

2
π

∫ π

0

D
(
p−1, symm[g(θ)]

)z sin2 θ dθ.(6.20)

Proof. Using the multiplicativity of λz
symm(n) and (6.16), we obtain that for any

σ > 1
2 ,

∑
n≥1

|λz
symm(n)|n−σ =

∏
p

∑
ν≥0

|µz,ν
m,0|p−νσ.(6.21)

From (6.11) and (6.12), we have

∑
ν≥0

|µz,ν
m,0|

pνσ
≤

∑
ν≥0

1
pνσ

(
(m + 1)|z| + ν − 1

ν

)
− (m + 1)|z|

pσ
(6.22)

=
(

1 − 1
pσ

)−(m+1)|z|
− (m + 1)|z|

pσ
.
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Therefore, we deduce that by the estimate (3.20),

∏
pσ≤z′

m

∑
ν≥0

|µz,ν
m,0|

pνσ
≤

∏
pσ≤z′

m

(
1 − 1

pσ

)−(m+1)|z|
(6.23)

≤ exp
{

zm

( ∑
p≤z

′1/σ
m

p−σ + O(1)
)}

≤ exp
{

cz′m

(
log2 z′m +

z
′(1−σ)/σ
m − 1

(1 − σ) log z′m

)}
,

whereas for pσ > z′m,∏
pσ>z′

m

∑
ν≥0

|µz,ν
m,0|

pνσ
≤ exp

{ ∑
pσ>z′

m

cz′2m
p2σ

}
≤ ecz′1/σ

m / log z′
m(6.24)

via (6.22). (Note that the term for ν = 1 on the right of (6.22) vanishes.) Noting
that

z
′1/σ
m

log z′m
= z′m

z
′(1−σ)/σ
m

log z′m
≤ z′m

z
′(1−σ)/σ
m − 1

(1 − σ) log z′m
,

we obtain (6.19) by inserting (6.23) and (6.24) into (6.21).
The multiplicativity of λz

symm(n) and (6.10) imply

∑
n≥1

λz
symm(n)

n
=

∏
p

∑
ν≥0

µz,ν
m,0

pν

=
∏
p

2
π

∫ π

0

∑
ν≥0

λz,ν
m

[
g(θ)

]
pν

sin2 θ dθ

=
∏
p

2
π

∫ π

0

D
(
p−1, symm[g(θ)]

)z sin2 θ dθ,

by (6.2). This completes the proof. �
Lemma 6.5. Let m ∈ N, let σ ∈ [0, 1

2 ), let x ≥ 3 and let z ∈ C. There is a positive
constant c = c(m) such that

∞∑
n=1

λz
symm(n)

n
e−n/x = Mz

symm + Om

(
1
xσ

exp
{

cz′m

(
log2 z′m+

z
′σ/(1−σ)
m − 1
σ log z′m

)})
.

The implied constant depends on m only.

Proof. We first write
∞∑

n=1

λz
symm(n)

n
e−n/x =

∑
n≥1

λz
symm(n)

n
+ O(R1 + R2),

where

R1 :=
∑
n>x

|λz
symm(n)|

n
, R2 :=

∑
n≤x

|λz
symm(n)|

n

∣∣e−n/x − 1
∣∣.

Clearly for any σ ∈ [0, 1
2 ), we have

(n/x)σ �
{

1 if n > x,∣∣e−n/x − 1
∣∣ if n ≤ x.
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Thus Lemma 6.4 implies

R1 + R2 �
∑
n≥1

|λz
symm(n)|

n

(
n

x

)σ

� x−σ exp
{

cz′m

(
log2 z′m +

z
′σ/(1−σ)
m − 1
σ log z′m

)}
.

The proof is done. �

Lemma 6.6. Let η ∈ (0, 1
31 ) fixed, let m = 1, 2, 3, 4, let 2 | k and let f ∈

H+
k,symm(1; η). Then we have

L(1, symmf)z = ωz
symmf (x) + Oη

((
x−1/ log2 k + xc|z|e−(log k)2

)
ec|z| log3(8k)

)
uniformly for 2 | k, x ≥ 3 and z ∈ C, where the positive constant c = c(η) and the
implied constant depend at most on η.

Proof. The method of proof is similar to that of Proposition 3.4. We express (6.18)
with (4.3) and (6.7) into

ωz
symmf (x) =

1
2πi

∫
(1)

L(s + 1, symmf)zΓ(s)xs ds

and shift the line of integration (1) to the path C consisting of straight lines joining

κ1 − i∞, κ1 − iT, −κ2 − iT, −κ2 + iT, κ1 + iT, κ1 + i∞,

where κ1 := 1/ log x, κ2 := 1/ log2 k and T = (log k)2. Therefore,

ωz
symmf (x) = L(1, symmf)z +

1
2πi

∫
C

L(s + 1, symmf)zΓ(s)xs ds.(6.25)

By Proposition 3.5 with the choice α = κ2, log L(s + 1, symmf) �η log3(8k) for
all s ∈ C with |τ | ≤ 4T , and by (3.10), log L(s + 1, symmf) � log x for �e s = κ1.
It follows that

1
2πi

∫
C

L(s + 1, symmf)zΓ(s)xs ds �η x−κ2ec|z| log3 k

∫
|y|≤T

|Γ(1 − κ2 + iy)| dy

+ ec|z| log3 k

∫ κ1

−κ2

|Γ(1 + α + iT )| dα

+ ec|z| log x

∫
|y|≥T

|Γ(1 + κ1 + iy)| dy.

The proof is then complete with (3.17). �

Now we are ready to prove Proposition 6.1. We deduce from Lemma 6.6 that

∑
f∈H+

k,symm (1;η)

ω(f)L(1, symmf)z =
∑

f∈H+
k,symm (1;η)

ω(f)ωz
symmf (x) + Oη(R1),

(6.26)

where for c = c(η) a positive constant

R1 :=
(
x−1/ log2 k + xc|z|e−(log k)2

)
ec|z| log3(8k).
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Here we have used ∑
f∈H+

k,symm (1;η)

ω(f) ≤
∑

f∈H∗
k(1)

ω(f) = 1 + O(k−5/6).(6.27)

On the other hand, for ε > 0, f ∈ H∗
k(1), x ≥ 3 and z ∈ C, we have

ωz
symmf (x) =

1
2πi

∫
(ε)

L(s + 1, symmf)zΓ(s)xs ds � ι(ε)|�e z|xε,

where ι(ε) = ζ(1 + ε)m+1 > 0 is a constant depending on ε. Together with (1.11),
we see that ∣∣∣ ∑

f∈H−
k,symm (1;η)

ω(f)ωz
symmf (x)

∣∣∣ �η ι(ε)|�e z|xεk31η−1.

Hence we input the forms of H−
k,symm(1; η) into (6.21) with a negligible additional

error to get ∑
f∈H+

k,symm (1;η)

ω(f)L(1, symmf)z =
∑

f∈H∗
k(1)

ω(f)ωz
symmf (x) + Oη(R2),

where R2 := R1 + xεk31η−1ι(ε)|z|. Finally by using Lemmas 6.3 and 6.5, we have∑
f∈H+

k,symm (1;η)

ω(f)L(1, symmf)z = Mz
symm + Oη(R3),(6.28)

where

R3 :=
(
x−1/ log2 k + xc|z|e−(log k)2

)
ec|z| log3(8k) + k−(1−31η)xει(ε)|z|

+
xm/4

k5/6
[(zm + 1) log x]zm +

1
xσ

exp
{

cz′m

(
log2 z′m +

z
′σ/(1−σ)
m − 1
σ log z′m

)}
.

Now taking ε = 1
500m , xm = k1/10 and σ = 1/ log(|z| + 8), it is easy to verify

that there are two positive constants c and δ depending at most on η such that

R3 � e−δ log k/ log2 k

uniformly for 2 | k and |z| ≤ c log k/ log2(8k) log3(8k). This proves the desired
asymptotic formula.

Finally by using Proposition 3.2 (note L(1, symmf) > 0) and (1.11), for m =
1, 2, 3, 4 if �e z ≥ 0 or m = 1, 2, 4 if �e z < 0, we have∑

f∈H−
k,symm (1;η)

ω(f)L(1, symmf)z �η k31η−1(log k)c.

Hence the input of these forms into (6.28) causes a tolerable error there. The same
choice of parameters allows us to obtain the required result. �

7. Proof of Theorem 2

From Proposition 6.1, we have

1
2M±r

symm ≤
∑

f∈H+
k,symm (1;η)

ω(f)L(1, symmf)±r
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for 0 < r ≤ c log k/ log2(8k) log3(8k) and all sufficiently large even integer k. In
view of (6.27), there are f±

m ∈ H+
k,symm(1; η) such that

1
2M±r

symm ≤ 2L(1, symmf±
m)±r.(7.1)

According to [1] and [21], we have

log M±r
symm = A±

mr log
(
B±

m log r
)

+ Om

(
r

log r

)
,(7.2)

where ⎧⎪⎪⎨
⎪⎪⎩

A±
m := max

θ∈[0,π]
±tr

(
symm[g(θ)]

)
= ±tr

(
symm[g(θ±m)]

)
,

B±
m := exp

{
γ0 +

1
A±

m

∑
p

(
± log D

(
p−1, symm[g(θ±m,p)]

)
− A±

m

p

)}
.

(7.3)

Here γ0 is a constant determined by∑
p≤t

1
p

= log2 t + γ0 + O

(
1

log t

)
(7.4)

and θ±m,p ∈ [0, π] are real numbers such that⎧⎨
⎩

D
(
p−1, symm[g(θ+

m,p)]
)

= max
θ∈[0,π]

D
(
p−1, symm[g(θ)]

)
,

D
(
p−1, symm[g(θ−m,p)]

)
= min

θ∈[0,π]
D

(
p−1, symm[g(θ)]

)
.

(7.5)

The choice r = c log k/ log2(8k) log3(8k) in (7.1) gives the required result.
In view of (6.1), the constants A±

m, B±
m, θ±m and θ±m,p are indeed defined for all

m ∈ N. For completeness, we give a general discussion. It is easy to see that for all
primes p, θ+

m = θ+
m,p = 0 for m ∈ N, θ−m = θ−m,p = π for 2 � m and θ−2 = θ−2,p = 1

2π.
These give the listed values for A±

m and B±
m in (1.15) (see [5], [19] and [1] for the

computation).
When m ≥ 4 and 2 | m, a simple expression for B−

m does not seem available.
We only give the detailed computation for m = 4. It is plain to see that A−

4 =
−tr

(
sym4[g(θ−4 )]

)
= 5

4 , where θ−4 ∈ [0, π] satisfies cos θ−4 = −1
4 .

Clearly we have

D
(
p−1, sym4[g(θ−4,p)]

)−1 = max
θ∈[0,π]

D
(
p−1, sym4[g(θ)]

)−1
.

A simple calculation shows that

D
(
p−1, sym4[g(θ)]

)−1 = (1 − p−1)
{
(1 + p−2)2 + 2p−1hp(cos θ)

}
,

where
hp(t) := 4p−1t3 − 2(1 + p−2)t2 − (1 + p−1)2t + 1 + p−2.

It is then easy to show that θ−4,p ∈ [0, π] is determined by

cos θ−4,p =
(
1 + p−2 −

√
1 + 3p−1 + 8p−2 + 3p−3 + p−4

)
/(6p−1).

From these formulas, an elementary calculation leads to (1.16). This completes the
proof. �
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8. Proof of Theorem 3

The proofs for parts (i) and (ii) are essentially the same, both relying on Propo-
sition 3.4, except for different choices of parameters: s = 1 and T = (log k)4/η

without GRH (or s = 1, α = 3
4 and T = (log k)2+20ε under GRH). Then for

f ∈ H+
k,symm(1; η) where η ∈ (0, 1

31 ) is a fixed constant (or any f ∈ H∗
k(1) under

GRH), we derive that

log L(1, symmf) =
∞∑

n=2

Λsymmf (n)
n log n

e−n/T + o(1).(8.1)

With the trivial estimate for (3.7), Lebesgue’s dominated convergence theorem
implies that

∑
p

∑
ν≥2

Λsymmf (pν)
pν log pν

(
e−pν/T − e−νp/T

)
→ 0 (k → ∞).

Thus we manipulate with (3.7) as follows:

∞∑
n=2

Λsymmf (n)
n log n

e−n/T =
∑

p

∑
ν≥1

Λsymmf (pν)
pν log pν

e−pν/T

=
∑

p

∑
ν≥1

Λsymmf (pν)
pν log pν

e−νp/T + o(1)

=
∑

p

∑
ν≥1

∑
0≤j≤m

αf (p)(m−2j)ν

νpν
e−νp/T + o(1)

=
∑

p

∑
0≤j≤m

log
(

1 − αf (p)m−2j

ep/T p

)−1

+ o(1)

=
∑

p

log D
(
e−p/T p−1, symm[g(θf (p))]

)
+ o(1),

by (6.1), where θf (p) ∈ [0, π] such that αf (p) = eiθf (p).
On one hand, we have∣∣∣∣ ∑

p>T

log D
(
e−p/T p−1, symm[g(θf (p))]

)∣∣∣∣ � ∑
p>T

e−p/T

p
� 1

log T
→ 0

and on the other hand,

∣∣∣∣ ∑
p≤T

log
(

D
(
e−p/T p−1, symm[g(θf (p))]

)
D

(
p−1, symm[g(θf (p))]

) )∣∣∣∣ � ∑
p≤T

1 − e−p/T

p
� 1

log T
→ 0.

Inserting these relations into (8.1), we get

log L(1, symmf) =
∑
p≤T

log D
(
p−1, symm[g(θf (p))]

)
+ o(1).(8.2)
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Thus the definition of θ±m,p (see (7.5)) allows us to write

∑
p≤T

log D
(
p−1, symm[g(θ+

m,p)]
)
+ o(1) ≥ log L(1, symmf)(8.3)

≥
∑
p≤T

log D
(
p−1, symm[g(θ−m,p)]

)
+ o(1).

By (6.4) and (7.3), we have

0 ≤ ∓ log
(

D(p−1, symm[g(θ±m)])
D(p−1, symm[g(θ±m,p)])

)

= ∓
±A±

m − tr
(
symm[g(θ±m,p)]

)
p

+ O

(
1
p2

)
.

= −
A±

m ∓ tr
(
symm[g(θ±m,p)]

)
p

+ O

(
1
p2

)
.

Since A±
m ∓ tr

(
symm[g(θ±m,p)]

)
≥ 0, it follows that

A±
m ∓ tr

(
symm[g(θ±m,p)]

)
p

� 1
p2

.(8.4)

On the other hand, we have

log D
(
p−1, symm[g(θ±m,p)]

)
− tr

(
symm[g(θ±m,p)]

)
/p � 1/p2(8.5)

by (6.4) again. From (8.4) and (8.5), we deduce that

± log D
(
p−1, symm[g(θ±m,p)]

)
− A±

m/p � 1/p2

and hence,

∑
p>T

(
± log D

(
p−1, symm[g(θ±m,p)]

)
− A±

m

p

)
� 1

T log T
.

Combining these two, we infer that∑
p≤T

log D
(
p−1, symm[g(θ±m,p)]

)

= ±
∑
p≤T

A±
m

p
±

∑
p

(
± log D

(
p−1, symm[g(θ±m,p)]

)
− A±

m

p

)
+ O

(
1

T log T

)

= ±A±
m log

(
B±

m log T
)

+ O

(
1

T log T

)

with (7.3). Inserting it into (8.2), we obtain (1.17) and (1.18) accordingly, in view
of the parameters chosen at the beginning of the proof. We also remark that the
constant 2 before B±

m in (1.18) comes from the factor 2 in the exponent of log k in
(3.15). �
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9. Proofs of Theorems 4 and 5

According to (8.2), for m = 1, 2, 3, 4, 2 | k, T = (log k)4/η and f ∈ H+
k,symm(1; η)

where η ∈ (0, 1
31 ) is a fixed constant, we have by (8.2), (6.4) and (6.5),

log L(1, symmf) =
∑
p≤T

log D
(
p−1, symm[g(θf (p))]

)
+ o(1)(9.1)

=
∑
p≤T

λ1,1
m [g(θf (p))]

p
+ Oη(1)

=
∑
p≤T

λf (pm)
p

+ O(1).

By using (1.14) of Theorem 2, there is f−
m ∈ H+

k,symm(1; η) such that

∑
p≤T

λf−
m

(pm)

p
= log L(1, symmf−

m) + O(1) ≤ −A−
m log3 k + O(1).

From (6.8) and (7.3), λf−
m

(pm)+A−
m ≥ 0. As

∑
p≤T p−1 = log3 k +O(1), we obtain

by (9.1) that

0 ≤
∑
p≤T

λf−
m

(pm) + A−
m

p
� 1.

Therefore, for any function ξ(k) → ∞ (k → ∞) satisfying ξ(k) ≤ log3 k, we have
∑
p≤T

λ
f
−
m

(pm)≥−A−
m+ξ(k)/ log3 k

1
p
≤ log3 k

ξ(k)

∑
p≤T

A−
m + λf−

m
(pm)

p
� log3 k

ξ(k)
,

whence ∑
p≤T

λ
f
−
m

(pm)<−A−
m+ξ(k)/ log3 k

1
p

=
∑
p≤T

1
p
−

∑
p≤T

λ
f
−
m

(pm)≥−A−
m+ξ(k)/ log3 k

1
p

= log3 k + Oη

(
log3 k

ξ(k)

)
.

Our result ∑
p≤(log k)A

λ
f
−
m

(pm)<−A−
m+ξ(k)/ log3 k

1
p

= log3 k + OA,η

(
log3 k

ξ(k)

)

follows, since ∑
T<p≤(log k)A

1
p
�A,η 1.

Taking m = 1 and m = 2 give (1.24) and (1.25), but for the latter result (1.25), we
need the observation λf (p)2 = λf (p2) + 1 and A−

2 = 1. In other words, λf (p)2 =
λf (p2) + A−

2 .
To prove (1.23), it suffices to replace f−

m by f+
m and reverse the corresponding

inequalities.
�
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