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1. Introduction. Delaunay triangulation and Voronoi diagram, duals of one
another, are two fundamental geometric constructs in computational geometry. These
two geometric constructs for a set of points as well as their variations have been
extensively studied [17, 3, 4]. Among these variations, Lee and Lin [15] considered
two problems related to constrained Delaunay triangulation:1

(i) the Delaunay triangulation of a set of points constrained by a set of noncross-
ing line segments, and

(ii) the Delaunay triangulation of the vertices of a simple polygon constrained by
its edges.

They proposed an O(n2) algorithm for the first problem and an O(n log n) al-
gorithm for the second one. While the O(n2) upper bound for the first problem was
later improved to Θ(n log n) by several researchers [6, 21, 18], the upper bound for
the second has remained unchanged and the quest for an improvement has become a
recognized open problem [1, 3, 4].

Recently, there have been some results related to this open problem on the De-
launay triangulation of simple polygons. Aggarwal et al. [2] showed that the con-
strained Delaunay triangulation of a convex polygon can be constructed in linear time.
Chazelle [5] presented a linear-time algorithm for finding an “arbitrary” triangulation
of a simple polygon. Klein and Lingas showed that the aforementioned open problem
for L1 metrics can be solved in linear time [12], and this problem for the Euclidean
metrics can be solved in expected linear time by a randomized algorithm [13]. These
efforts all seem to point toward a linear solution to the Delaunay triangulation of
simple polygons and support the intuition that the simple polygon problem is easier
than the noncrossing line segment problem.

In this paper, we settle this open problem by presenting a deterministic linear-
time worst-case algorithm. Our approach follows that of [13]:
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(i) first decomposing the given simple polygon into a set of simpler polygons,
called pseudonormal histograms (PNHs),

(ii) constructing the constrained Delaunay triangulation of each normal
histogram (NH), and

(iii) merging the constrained Delaunay triangulations of all these NHs to get the
result.

In this three-step process, the first and third steps were shown to be possible in
linear time, but the second step was done in expected linear time by a randomized
algorithm. Our contribution is to show how this second step can be done in linear
worst-case time deterministically.

The organization of the paper is as follows. In section 2, we review some definitions
and known facts, which are related to our method. In section 3, we concentrate on how
to construct the constrained Delaunay triangulation or constrained Voronoi diagram
of a normal histogram in linear time. We conclude the paper in section 4.

2. Preliminaries. In this section,
(i) we define the constrained Delaunay triangulation and its dual, the constrained

Voronoi diagram,
(ii) we define PNHs, and
(iii) to put our solution of how to construct the constrained Voronoi diagram of a

PNH into perspective, we explain the approach taken to first partition any
simple polygon into PNHs and then merge constrained Voronoi diagrams of
these pseudodiagrams for the solution of the original polygon.

2.1. Constrained Delaunay triangulations and constrained Voronoi dia-
grams. The constrained Delaunay triangulation [15, 6, 21, 18] of a set of noncrossing
line segments L, denoted by CDT (L), is a triangulation of the endpoints S of L
satisfying the following two conditions:
(i) the edge set of CDT (L) contains L, and
(ii) the line segments in L are treated as obstacles and the interior of the circumcircle

of any triangle of CDT (L), say ∆ss′s′′, does not contain any endpoint in S
visible2 to all vertices s, s′, and s′′.

Essentially, the constrained Delaunay triangulation is the Delaunay triangulation
with the further constraint that the triangulation must contain a set of designated line
segments. Figure 1a shows the constrained Delaunay triangulation of two obstacle
line segments and a point (a degenerated line segment). In particular, if L forms a
nonintersecting chain C, monotone with respect to a horizontal line l, we are only
interested in the portion of CDT (C) between C and l. If L forms a simple polygon
P , we only consider the portion of CDT (P ) internal to P .

Given a set of line segments L, we can define the Voronoi diagram with respect
to L as a partition of the plane into cells, one for each endpoint set S of L, such that
a point p belongs to the cell of an endpoint v if and only if v is the closest endpoint
visible from p. Figure 1b illustrates the corresponding Voronoi diagram for the set
of line segments given in Figure 1a. Unfortunately, this Voronoi diagram is not the
complete dual diagram of CDT (L) [3]; i.e., some of the edges in CDT (L) may not
have a corresponding edge in this Voronoi diagram.

In [18, 16, 9], the proper dual for the constrained Delaunay triangulation has
been defined as the constrained (or bounded) Voronoi diagram of L, denoted by Vc(L).

2Two points are visible to each other if the straight line joining them does not intersect any line
segments in L.
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Fig. 1. Constrained Delaunay triangulation and constrained Voronoi diagram.

Imagine two sheets or half-planes attached to each side of the obstacle line segments;
for each sheet, there is a well-defined Voronoi diagram that is induced only by the
endpoints on the other side of the sheet excluding the obstacle line segment attached
to the sheet. The constrained Voronoi diagram extends the standard Voronoi diagram
by including the Voronoi diagrams induced by the sheets, i.e., the extended Voronoi
diagrams beyond both sides of each line segment in L. Figure 1c gives an example
of Vc(L), the Voronoi diagrams on the plane and on the two sheets of the obstacle
line segment ab. Note that the Voronoi diagrams on the two sheets of the obstacle
line segment cd happened to be the same as the Voronoi diagram on the plane. With
this definition of Vc(L), there is a one-to-one duality relationship between edges in
Vc(L) and edges in CDT (L). It was further proved in [18, 9] that the dual diagrams,
CDT (L) and Vc(L), can be constructed from each other in linear time. For simplicity,
we omit the word “constrained” over Voronoi diagrams in this paper as all the Voronoi
diagrams are deemed to be constrained unless they are explicitly stated to be standard
Voronoi diagrams.
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Fig. 2. NH and PNH.

2.2. PNHs. A NH [8] is a monotone polygon with respect to one of its edges,
called the bottom edge, such that all the vertices of the polygon lie on the same side of
the line extending the bottom edge (Figure 2a gives an example). A PNH [13] with a
bottom edge e is a simple polygon which, by adding at most one right-angle triangle
flush with e, can be transformed into a NH whose bottom edge is the extension of e by
the colinear edge of the triangle. Intuitively, a PNH can be viewed as a NH missing
one of its bottom corners; i.e., a PNH can be transformed into a NH by adding a
right-angle triangle at its bottom3 (Figure 2b).
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Fig. 3. A decomposition of P into a tree of PNHs.

2.3. Decomposition of a simple polygon into PNHs. Figure 3 illustrates
how a polygon P is decomposed into 13 PNHs. PNH1 is associated with the vertical
bottom edge e missing its upper bottom corner; PNH2, associated with the horizontal
bottom edge e′, is missing its left bottom corner, etc.

A simple polygon P with n vertices can be decomposed into PNHs in O(n) time
according to [13] when provided with what are known as the horizontal and vertical
visibility maps of P (Figure 4), which in turn can be obtained in linear time according
to [5]. A diagonal of P is a line segment joining two vertices of P and lying entirely
inside P , while a chord of P is a line segment which

3Our definition of PNH is different from that given in [13], in which a PNH might be missing both
bottom corners. Following the same approach as given in [13], decomposition of a simple polygon
into PNHs is also possible with our definition.
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P

Fig. 4. Horizontal and vertical visibility maps of simple polygon P .

(i) lies entirely inside P ,
(ii) is parallel to the designated bottom edge, and
(iii) joins a vertex and a boundary point of P (such a boundary point is called a

pseudovertex).
The horizontal visibility map of a simple polygon P is the set of horizontal chords

associated with every vertex of P . Note that every vertex of P is associated with at
most two chords, and the horizontal visibility map partitions P into a number of hor-
izontal trapezoids (horizontal trapezoidal decomposition or horizontal trapezoidation).
The vertical visibility map can be defined similarly.

The decomposition of P into PNHs starts with an arbitrary edge e of P as the
bottom edge of the first PNH. The interior of the PNH refers to the part of P that
is illuminated by the parallel light emanating into PNH perpendicular to e from its
pseudobottom edge e ∪ es, where es is the edge (if any) incident to e at an interior
angle between 90◦ and 180◦, i.e., the hypotenuse of the missing right-angle triangle.
The boundary edges of the PNH that are not edges of P will be the bottom edges in
the next step.

The decomposition of P can then be represented by a tree such that each tree
node is a PNH and each tree edge represents the adjacency of two PNHs sharing a
chord. Consider the example as given in Figure 3: PNH1, with an edge of P as its
bottom edge, is classified as the root. For each edge in PNH1 which is not an edge of
P , we regard it as the bottom edge for a son of PNH1. PNH2, PNH3, and PNH4

are sons of PNH1 whose bottom edges are all horizontal, whereas PNH2 is on one
side facing PNH3 and PNH4, which are on the other. Similarly, the grandsons of
PNH1 are those with vertical bottom edges adjacent to sons of PNH1, etc.

2.4. Merging the Voronoi diagrams of PNHs. It has been proved [13] that
a Voronoi cell in Vc(P ) of a vertex in a PNH would not share any boundary edge with
a Voronoi cell of a vertex in another PNH as long as these two vertices are not shared
by these two PNHs, and these two PNHs are
(i) at the same depth not facing each other, or
(ii) with their corresponding depths at least two apart.

The Voronoi diagram of a PNH is first merged with the extended Voronoi diagram
of its parent, then with those of its sons on one side, and finally with those of the
remaining sons on the other. Condition (ii) ensures that the extended Voronoi diagram
of its parent will not share any boundary with those of its sons, and thus, only those of
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its neighbors (sons and parent) have to be considered in the construction of the part of
the Voronoi diagram Vc(P ) in a PNH. Condition (i) ensures that merging the Voronoi
diagram of a PNH with the extended ones of its sons will trace the bisectors between
sites of the PNH at most twice (once for sites on each side) [10, 11, 14, 17, 19]. So, the
merging of Voronoi diagrams at each PNH can be done in time linearly proportional
to the total size of the PNH and all its sons. Thus, the Voronoi diagram Vc(P ) can
be obtained in time linearly proportional to the size of P by merging the Voronoi
diagram of each PNH together with the extended ones of its neighbors.

In order to find Vc(P ) in deterministic linear time, what remains to be solved
is the efficient construction of the constrained Voronoi diagram of a PNH. In [13], a
randomized algorithm is introduced to find the Voronoi diagram of a NH in expected
linear time. The Voronoi diagram of the corresponding PNH can then be obtained by
removing the bottom vertex from the Voronoi diagram of this NH, and this can be
done in time linearly proportional to the size of the NH. In the next section, we shall
concentrate our effort to design a linear-time deterministic algorithm for constructing
the Voronoi diagram of a NH.

3. Finding the constrained Voronoi diagram of an NH. Given a normal
histogram H with a horizontal bottom edge e, H is decomposed recursively into a
tree, say TI , of smaller normal histograms called influence normal histograms (INH),
where a node of TI corresponds to an INH and an edge of TI indicates an adja-
cency between two INHs. A formal definition of INH with an algorithmic method
of construction will be given in section 3.2. In Figure 5, node 0 (the root INH) is
(v1, v

′
3, v3, v

′′
3 , v5, v6, v7, v8, v9, v10, v

′
12, v12, v13, v

′
13, v25, v

′
25, v28, v

′
28, v33, v34, v35).

Nodes 1–6 form the second level and are sons of node 0.
Node 1 = (v′3, v2, v3),
Node 2 = (v3, v4, v

′′
3 ),

Node 3 = (v′12, v11, v12),
Node 4 = (v13, v14, v

′
14, v

′
13),

Node 5 = (v25, v26, v27, v
′
25), and

node 6 = (v28, v
′
30, v30, v

′
32, v32, v

′
28).

Nodes 7–9 form the third level with
Node 7 = (v14, v15, v16, v17, v

′
17, v19, v20, v21, v22, v23, v24, v

′
14),

Node 8 = (v′30, v29, v30),
Node 9 = (v′32, v31, v32).

Node 10 = (v17, v18, v
′
17) is on the fourth level.

The decomposition ensures that the portion of Voronoi diagram Vc(H) in each
INH can only be affected by its own vertices and the vertices of its sons and nothing
beyond. In general, the Voronoi cells of Vc(H) associated with vertices of an INH
might cross its bottom edge and share edges with Voronoi cells associated with vertices
of its parent, but not with those of its brothers or its grandparents. Similarly, the
Voronoi cells of an INH would not share any boundary with those of its grandsons.
This property implies that, should the Voronoi diagrams of the INHs (Vc(INH)) be
given, the repeated merging of the Voronoi diagrams of the adjacent INHs can be
done in time linearly proportional to the sum of their sizes.

Let V (p) denote the Voronoi cell associated with vertex p in a Voronoi diagram.
A point p in a normal histogram H is called an influence point if the Voronoi cell V (p)
in Vc(H ∪ {p}) will cross H’s bottom edge e. The set of influence points is called the
influence region (IR) with respect to bottom edge e. Consider Figure 5: the IR of H
with respect to v1v35 (the bottom edge e) is the region enclosed by v̂1v5, v5v6, v6v7,
v7v8, v8v9, v9v10, v̂10v25, v̂25v28, v̂28v34, v34v35, and v35v1, where xy and x̂y represent,
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respectively, the straight line and the arc joining vertices x and y. The root (or root
INH) of TI is defined as the NH enclosing all influence points of H and consisting of
all horizontal trapezoids that intersect the IR. In other words, the root INH would
contain all its horizontal chords which will intersect the IR of H, i.e., the smallest
NH containing IR in the sense that the INH is bound above by the lowest horizontal
chords which do not intersect IR. As an example, the root INH is indicated by the
unshaded region in Figure 5. Let us now consider the part of H excluding the root
INH, which consists of zero or more disjoint polygons. Each polygon is also a NH with
a chord as its bottom edge. As given in Figure 5, H is decomposed into a root INH
and six other NHs, i.e., the NHs above chords v′3v3, v3v′′3 , v′12v12, v13v′13, v25v′25, and
v28v′28. For example, the NH above chord v28v′28 is (v28, v29, v30, v31, v32, v

′
28). The

decomposition can be recursively applied to each of these NHs.
Since any node of TI does not contain the influence points of its parent by the

definition of INH, the Voronoi cell associated with a vertex in any node of TI could
not cross the bottom edge of its parent. Thus, the part of Vc(H) within the root can
be formed by merging the Voronoi diagram of the root INH with those of its sons. As
the Voronoi cells associated with the internal vertices of an INH never share any edges
with the Voronoi cells of its brother INH (Theorem 1), the merging can be performed
in O(m0 +

∑s
i=1mi) time, where m0 is the number of vertices of the root, s is the

number of its sons, and mi is the number of vertices of its ith son.
Theorem 1. Let v1 be a vertex of INH1 with bottom edge u1w1 and v2 be a

vertex of INH2 with bottom edge u2w2. Assume that INH1 and INH2 are brothers
in TI , v1 6= u1, v1 6= w1, v2 6= u2, and v2 6= w2. Then, the Voronoi cell of v1 will
never share any point with the Voronoi cell of v2.

Proof. Without loss of generality, assume that u1w1 is on the left-hand side of
u2w2; i.e., u1 < w1 ≤ u2 < w2 according to their x-coordinates. We show that there
does not exist a point p in H
(i) that is equidistant to v1 and v2, and
(ii) for which there exists no other vertex in H closer to p than v1 and v2.

Assume p exists. Since p is in H, p has to lie directly under u1w1 in order to be
closer to v1 than to u1 or w1, i.e., u1 < p < w1. Similarly, p has to lie directly under
u2w2, i.e., u2 < p < w2. Obviously, p cannot simultaneously satisfy both conditions.

For example, the Voronoi cell of v14 in INH4 never shares any point with the
Voronoi cell of v26 or v27 in INH5. Let M(n) denote the merging time for constructing
Vc(H) with | H |= n when provided with the Voronoi diagram of every INH in TI .
Then, we have M(n) = k(m0 +

∑s
i=1mi) +

∑s
i=1M(ni), where k is a constant and

ni is the number of vertices of the ith subtree. As n = m0 +
∑s
i=1 ni, we can show

that M(n) = k(2n −m0) by induction. Thus, the total merging time is O(n). Note
that in the above calculation, the pseudovertices are also counted. As n is at most
thrice the actual number of vertices of H (as each vertex of H might associate with
at most two pseudovertices), the total merging time is still linearly proportional to
the actual number of vertices of H.

In the following sections, we shall prove the properties of the IR and the INH
which allow us to do efficient merging and identification.

3.1. IR. Let HV be a subpolygon of NH H, consisting of the bottom edge of H
and all those vertices of H with the property that their associated Voronoi cells in
Vc(H) cross the bottom edge of H. HV can also be viewed as the maximum subse-
quence of the vertices of H having this property. As H is a NH, HV will also be a
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NH sharing the same bottom edge as H. Let us consider the example given in Fig-
ure 5 again, in which HV is indicated by the sequence of vertices (v1, v5, v6, v7, v8, v9,
v10, v25, v28, v34, v35).

Lemma 1. All points in HV are influence points.
Proof. By the definition of HV , the bisector of two adjacent vertices (except the

two vertices of the bottom edge) of HV , which forms part of the Vc(H), always crosses
the bottom edge of H. In other words, HV are partitioned by these bisectors into cells,
each of which is associated with one of its vertices. These cells resemble the Voronoi
cells of Vc(H). In fact, each of these cells in Vc(HV ) always includes its corresponding
Voronoi cell in Vc(H). These bisectors also partition the bottom edge into segments
according to their closest vertices in H or HV . It is sufficient to prove this lemma
by showing that given any point x in HV , there always exists a point on the bottom
edge which is closer to x than to any vertex in H; i.e., V (x), the Voronoi cell of x,
in Vc(H ∪ {x}) would cross the bottom edge. Let x be a point in HV , in particular,
in a Voronoi cell V (u), corresponding to vertex u in Vc(HV ). Furthermore, let the
extended line of ux intersect the boundary of this Voronoi cell V (u) at y, which may
be a point on the bottom edge or a point on a bisector. If y is on the bottom edge, let
z be y; otherwise let z be the intersection point of that bisector and the bottom edge.
An example is given in Figure 5, where x is in V (v10), i.e., u = v10. As ∠uxz > 90◦,
z is always closer to x than to u by the triangular property. It is easy to see that
z is closer to x than to any other vertices in H, thus z is a point on the bottom
edge that belongs to V (x); i.e., V (x) crosses the bottom edge. Hence, x belongs to
the IR.

In general, the IR includes some regions not belonging to HV . Let b be a boundary
edge of HV . If b is also an edge of H, then b must be an edge of the IR, e.g., v5v6,
v6v7, v7v8, etc. in Figure 5. However, if b = uw is a diagonal of H, then the IR must
include some region of H above b and below the circular arc ûw, where ûw is part of
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the semicircle above the bottom edge. (The semicircle is uniquely defined by boundary
points u and w and center c, where c is the intersection point of the bottom edge and
the perpendicular bisector of u and w.) Let Ouw denote the region in H above b
(i.e., outside HV ) and below the circular arc ûw, and let Ov1v5 , Ov10v25 , Ov25v28 , and
Ov28v34 be such examples in Figure 5. Then we have the following theorem.

Theorem 2. IR = (∪uw∈DOuw) ∪HV , where D is the set of edges of HV which
are diagonals of H.

Proof. By Lemma 1, we need to prove IR−HV = ∪uw∈DOuw (as HV ∩Ouw = φ).
Consider a point p inH, but not inHV . Then, point pmust lie above an edge uw ofHV

which is a diagonal of H. On one hand, if point p ∈ Ouw, then bup and bpw will cross
the bottom edge before intersecting each other, where bxy denotes the perpendicular
bisector of vertices x and y, and thus p belongs to the IR; i.e., IR−HV ⊇ ∪uw∈DOuw.
On the other hand, if p 6∈ Ouw, then bup and bpw will intersect each other above the
bottom edge, and thus p does not belong to the IR; i.e., IR − HV ⊆ ∪uw∈DOuw.

Corollary. Assume a NH H and let HV = (v0, v1, . . . , vn). Then the IR with
respect to H can be defined by keeping the sequence of vertices of HV and by replacing
all diagonals vivi+1 of H in the sequence of HV by an arc v̂ivi+1.

3.2. INH. As the root INH is the smallest NH containing the IR, an INH would
contain all the edges of the IR, in particular, those edges of HV (Theorem 2) which are
also edges of H (e.g., v5v6, v6v7, v7v8, etc. in Figure 5). As Ouw is part of the IR for
every uw ∈ D (Theorem 2), the remaining edges of an INH above uw would be those
chords and edges of H enclosing Ouw. Thus, we define HB above uw as the smallest
NH containing Ouw, which consists of edges (or parts of edges) of H and the lowest
horizontal chord which do not intersect the IR. For example, as in Figure 5, the HB ’s
are (v1, v

′
3, v3, v

′′
3 , v5), (v10, v

′
12, v12, v13, v

′
13, v25), (v25, v

′
25, v28), and (v28, v

′
28, v33, v34).

Now, we can have a precise description of an INH. There are two types of vertices
in an INH, the vertices of HV and the vertices of HB ’s, with one HB for each edge in
D. Thus, any vertex in an INH that is not in HV will be in HB , and the endpoints of
any edge in D will be vertices in both HV and HB . In the following, we shall describe
the properties of HB and HV and show that the Voronoi diagram of an INH can be
constructed in linear time.

A monotonic histogram is an NH such that if the bottom edge is on the x-axis,
then the x-coordinates of the vertices along the boundary are monotonically non-
decreasing, and the y-coordinates of the vertices (except the last vertex) along the
boundary are monotonically nondecreasing or nonincreasing. A bitonic histogram is a
composition of two monotone histograms such that the x-coordinates of the vertices
along the boundary are monotonically nondecreasing, and the y-coordinates of the
vertices along the boundary are first monotonically nondecreasing on one side and
then monotonically nonincreasing on the other.

Lemma 2. HB is bitonic.
Proof. Since HB is the smallest NH enclosing Ouw, all its internal horizontal

chords will intersect with Ouw; i.e., all vertices of HB , except possibly the top vertex
and its associated pseudovertex (vertices), should be horizontally visible from Ouw.
As HB consists of only edges (or parts of edges) and chords of H, all edges of HB

should be monotonically nondecreasing in the x- and y-coordinates on one side and
monotonically nondecreasing in the x-coordinate but monotonically nonincreasing in
the y-coordinate on the other. Thus, HB is bitonic.

Lemma 3. The Voronoi diagrams of HB and HV can be constructed in linear
time.
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Proof. It is shown in [8] that the Voronoi diagram of a monotonic histogram can
be constructed in linear time. Because HB can be partitioned into two monotonic
histograms by the vertical line through its highest vertex or edge (Lemma 2), the
Voronoi diagrams of two such monotonic polygons can be merged in linear time [20,
13]. Thus, Vc(HB) can be found in linear time. As far as HV is concerned, because the
vertices on the boundary of HV are in sorted order according to their x-coordinates
(property of the NH), the extended Voronoi diagram below the bottom edge can be
found in linear time [2]. Since all the Voronoi cells in HV must cross the bottom
edge, the Voronoi diagram of HV can be constructed in linear time from its extended
Voronoi diagram below the bottom edge.

Note that in the construction of the Voronoi diagrams of HB and HV , all the
pseudovertices are ignored. Thus, the resulting Voronoi diagrams do not contain any
Voronoi cell of pseudovertices. This approach is different from that proposed in [13],
which requires the removal of the Voronoi cells of pseudovertices.

The following lemma shows that the Voronoi diagrams of two HB ’s cannot affect
each other.

Lemma 4. Assume an INH with its attached HB’s, and let x and y be two
vertices not belonging to HV but in two different HB’s. Then the Voronoi cells, V (x)
and V (y), cannot share any point in Vc(HV ).

Proof. As x and y are vertices in two different HB ’s but not in HV , x and y must
be separated by some vertex z in HV . By the definition of HV , the Voronoi cell V (z)
must cross the bottom edge. Thus, V (x) cannot share any point with V (y) above the
bottom edge.

Theorem 3. The Voronoi diagram of an INH can be constructed in time linearly
proportional to its size.

Proof. By Lemma 3, the Voronoi diagrams of HV and HB ’s can be constructed
in time linearly proportional to their sizes. Since each HB shares an edge with HV ,
the Voronoi diagrams of each HB and HV can be merged in time proportional to the
number of Voronoi edges shared by them [20, 13]. As different HB ’s do not interfere
with each other (Lemma 4), the total merging time is linearly proportional to the
number of Voronoi edges shared by HB ’s and HV , i.e., the size of the INH.

3.3. Region identification. In this section, we shall present an algorithm which
identifies the INH in a NH in time linearly proportional to the size of the INH.
Chazelle’s linear-time algorithm [5] is first applied to the NH to obtain its horizontal
visibility map (Figure 6). By the property of a normal histogram, H can be further
represented by a partition tree TP , in which each tree node represents a chord in the
map and each tree edge represents the adjacency of two chords. Let n(v) denote the
chord(s) associated with vertex v of H. If there are two chords in n(v), nL(v) and
nR(v) denote the left chord and right chord, respectively. With this partition tree TP ,
the INH to be identified can be represented as a rooted subtree of TP .4 For example,
the INH indicated by the shaded area can be represented by the rooted subtree as
marked in Figure 6. The algorithm to identify the INH is based on tree traversal. In
order to achieve linear time complexity, only those tree nodes relevant to the INH will
be traversed. Thus, one of the key steps in the tree traversal is the pruning condition,
i.e., under what conditions the traversal of a subtree can be terminated. The other
key step is the identification of the vertices of HV so that we can partition the INH

4A rooted subtree of T has the property that the root of T is also the root of the subtree.
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Fig. 6. An INH and its tree TP .

into HB ’s and HV for further constructing of Voronoi diagrams, as described in the
previous section.

The following lemma gives a necessary and sufficient condition for a vertex v of
H to be a vertex of HV . Based on Theorem 2 and the definition of HB , we can ensure
that a visited vertex, that is not a vertex of HV , will be a vertex of HB .

Lemma 5. For any vertex v of H, v is a vertex of HV if and only if v can be
touched by a circle centered at the bottom edge and empty of other vertices of H.

Proof. The center of such a circle is a point closer to vertex v than to other vertices
of H. As Voronoi cells are simply connected, the Voronoi cell V (v) will intersect or
cross the bottom edge. The lemma follows directly from the definition of HV .

Without loss of generality, assume the parent of n(v) intersects the IR and n(v)
is being visited on the traversal of TP . Based on Lemma 5, vertex v is tested and
classified into one of the following three types: (i) a vertex in HV , (ii) a vertex in HB

(if not in HV ), or (iii) a potential vertex.
A potential vertex is such a vertex that can be touched by a circle centered at the

bottom edge and empty of any vertices of H on or below n(v); i.e., the Voronoi cell of
a potential vertex would extend across the bottom edge if no vertex above n(v) will
affect this Voronoi cell. However, since we have not examined any vertex above n(v)
yet, we cannot rule out the possibility that v is in HB .

Assume that all circles in the following discussion will be centered at the bottom
edge. Let Cv denote the largest circle that crosses chord n(v) and whose interior does
not contain any vertex on or below n(v). If vertex v is associated with two chords,
then CLv and CRv denote such circles that cross nL(v) and nR(v), respectively. Let us
first study some properties of Cv, which can be used to determine the IR above n(v)
by considering only the histogram studied so far, i.e., the histogram below n(v) (note
that CLv and CRv also have these properties).

Lemma 6. If Cv exists, then
(i) Cv must touch vertices to the left and right of its centers, or is centered at a

nonvertex endpoint of the bottom edge, i.e., pseudovertex, and
(ii) if v is the left (right) endpoint of n(v), then the center of Cv must be to the right

(left) of v.
Proof. (i) If Cv exists, then Cv is unique. This is because, by the x-monotonic

property of H, there is no vertex below the bottom edge (e) and between the intervals
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of n(v); i.e., the largest circle centered at e cannot be bounded by such vertices. Then,
either the largest circle centered at e must touch only one vertex above e and hence
will be centered at the (nonvertex) endpoint of e, or this circle must touch two or
more vertices above e on both sides of its center. In either case, this largest circle is
the Cv if it crosses n(v). (ii) By contradiction, assume that the center of Cv is to the
left of v, which is the left endpoint of n(v); then Cv would not cross n(v) and cannot
exist.

The following lemma will give a sufficient condition for a vertex to be in HV .
Lemma 7.
(i) If both CLv and CRv exist, then vertex v must be in HV .
(ii) If CLv (CRv ) does not exist, then the traversal of the subtree above nL(v)

(nR(v)) is terminated.
Proof. (i) The existence of both CLv and CRv implies the existence of an empty

circle with center at the bottom edge and lying entirely below n(v). Thus v must be
in HV by Lemma 5. (ii) Since there does not exist any vertex above nL(v) that can
affect the IR, the tree traversal can be terminated.

Let us consider an example as given in Figure 6 to show how these properties can
be applied to classify v. Initially Cv1

is the circle that touches v1 and is centered at
v′1. The next vertex to be visited is v4. Since both CLv4

and CRv4
exist, v4 is in HV

(Lemma 7). When the tree traversal of TP at nR(v4) is continued, vertices v14, v6,
and v13 will be visited and classified as potential vertices.

In order to construct Cv for each v during the tree traversal TP , the potential
vertices previously identified are kept in two stacks, L and R. Except possibly for
their bottom vertices, L contains the “left” potential vertices (i.e., left endpoints of
the corresponding chords) while R contains the “right” ones. For example, after v6

and v13 are visited, L and R contain [v4, v6) and (v13, v14], respectively, with v6 and
v13 being their top vertices. The following lemma gives the properties of stacks L and
R.

Lemma 8. With respect to the histogram on or below the chord n(v) studied so
far, (i) stacks L and R contain the vertices whose Voronoi cells cross the bottom edge
in order, and (ii) the largest empty circle Cv is determined by the top vertex of L and
the top vertex of R.

Proof. (i) First, we have to show that the y-coordinates of the vertices in L are
monotonically increasing while those in R are monotonically decreasing. Without loss
of generality, assume the contrary, that L contains a vertex v whose y-coordinate is
lower than that of its precedent vertex t. Then it is impossible for t to be the left
endpoint of a chord. As the vertices in L and R are potential vertices visited according
to their y-coordinates, their Voronoi cells must cross the bottom edge in order.

(ii) As L and R contain the “left” and “right” potential vertices (i.e., left and
right endpoints of the chords), the largest circle Cv must touch the top vertices of
L and R, which are the rightmost left endpoint and the leftmost right endpoints,
respectively.

We shall describe the construction of Cv′ and the tree traversal algorithm of TP .
Assume v′ is the next vertex to be visited after v.

Case 1. n(v′) does not exist or does not intersect Cv; the tree traversal is termi-
nated/pruned at n(v′) and all vertices in L and R become vertices in HV . Subtrees
rooted at such n(v′) (if they exist) are pruned because their corresponding INHs do
not contain the IR. The pruned subtrees represent smaller NHs needed to be processed
recursively.
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For example, in Figure 6, the tree traversal is terminated at n(v8) and n(v11) as
they do not intersect Cv9

and CRv10
, respectively. Vertex v6, previously in L, becomes

a vertex in HV . In Figure 5 the pruned portion (v28, v29, v30, v31, v32, v28′) is an NH
with v28v28′ (the pruned chord) as the bottom edge to be processed recursively.

Case 2. n(v′) intersects Cv; the tree traversal will continue to visit n(v′)’s son(s).
(a) v′ is outside Cv (i.e., buv′ and bv′w intersect each other above the bottom edge

where u and w are top vertices of L and R, respectively). − v′ will not be
in HV and must be in HB ; stacks L and R remain unchanged. Vertex v9 in
Figure 6 is such an example.

(b) v′ is inside Cv (i.e., buv′ and bv′w cross the bottom edge before intersecting each
other), and − v′ may be closer to some point of the bottom edge than vertices
in L and R. The Voronoi cell of v′ crosses the bottom edge and may crowd out
the Voronoi cells of some vertices in L and R. If the largest circle determined
by the next-to-top vertex of L and v′ does not contain the top vertex of L (i.e.,
bu′u intersects buv′ above the bottom edge where u′ is the next-to-top vertex
of L), then pop the top vertex of L and assign it as a vertex in HB . Vertices of
L are popped until its top vertex remains in L; Lemma 8 guarantees that all
vertices beneath also remain in L. Stack R is handled similarly. For example,
in Figure 6, v13 is popped when v10 is visited.

(i) If either CLv′ or CRv′ exists but not both, v′ is pushed onto stack L(R) if v′

is the left (right) endpoint of that chord. The tree traversal is continued
at n(v′) using the new empty circle Cv′ , new stack L(R), and old stack
R(L). Vertices v6 and v13 are such examples which are pushed onto their
corresponding stacks L and R when n(v6) and n(v13) are visited.

(ii) If both CLv′ and CRv′ exist, v′ must be a vertex in HV by Lemma 7. The
tree traversal will continue at nL(v′), where CLv′ , old stack L, and new
stack R′ containing v′ alone will be used for further vertex classification.
Similarly, the traversal at nR(v′) will use CRv′ , old stack R, and a new
stack L′ containing only v′. Vertex v10 in Figure 6 is such an example.

For visualizing the above algorithm, Figure 7 gives a walk-through of the example
in Figure 6.

3.4. Complexity analysis. Our method for constructing the constrained
Voronoi diagram of a simple polygon P mainly relies on the efficiency of the identifi-
cation of the INHs from an NH. Since the identification for different INHs is executed
recursively, we shall only consider the root INH of an NH.

As described previously, when we traverse tree TP of an NH to identify an INH,
we visit each vertex of the INH exactly once. Those vertices which have not been
visited in the traversal of TP cannot belong to the root INH. Therefore, we only need
to show that each visited vertex is tested in constant time in order to classify it as a
vertex in HV or in HB .

Let us consider a vertex v. In the test, v can be classified into one of the following
three types: (i) vεHV , (ii) vεHB , and (iii) v is a potential vertex.

For type (i), v is stored in the list of vertices representing HV .
For type (ii), v is stored in the list of vertices corresponding to a particular HB and

vertex v will never be tested again. Note that each vertex in HV or potential vertex
is associated with a separate list HB of vertices. If the potential vertex, separating
the two lists of vertices corresponding to two HB ’s, has been determined to be in HB ,
then these two lists of vertices will be concatenated together.

For type (iii), v is stored in the left or right stack and could be repeatedly tested
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Initially L = [v1), R = ( ], HV = (v1)
visiting v4: insert v4 into HV / ∗ case2b(ii) ∗ /

left chord nL(v4), L = [v1), R = (v4]
visiting v2: chord n(v2), L = [v1, v2), R = (v4] / ∗ case2b(i) ∗ /
visiting v3: traversal terminated, insert v2, v3 into HV / ∗ case1 ∗ /

right chord nR(v4), L = [v4), R = ( ]
visiting v14: chord n(v14), L = [v4), R = (v14] / ∗ case2b(i) ∗ /
visiting v6: / ∗ case2b(i) ∗ /

left chord nL(v6), traversal pruned, process NH above nL(v6) recursively
/ ∗ case1 ∗ /

right chord nR(v6), L = [v4, v6), R = (v14]
visiting v13: chord n(v13), L = [v4, v6), R = (v13, v14] / ∗ case2b(i) ∗ /
visiting v10: insert v10 in HV / ∗ case2b(ii) ∗ /

left chord nL(v10), L = [v4, v6), R = (v10]
visiting v9: HB(−, v10) = (v9, v10) / ∗ case2a ∗ /
visiting v8: traversal pruned, insert v6 into HV / ∗ case1 ∗ /
HB(v6, v10) = concatenate (v6, v

′
8, v8) and HB(−, v10))

= (v6, v
′
8, v8, v9, v10)

process NH above n(v8) recursively
right chord nR(v10), L = [v10), pop v13 from R and assign v13

as an element in HB ,
R = (v14], HB(-, v14)=(v13, v14)

visiting v11: traversal pruned, / ∗ case1 ∗ /
HB(v10, v14) = concatenate (v10, v11, v

′
11) and HB(−, v14))

= (v10, v11, v
′
11, v13, v14)

process NH above n(v11) recursively
Finally HV = (v1, v2, v3, v4, v6, v10, v14)

Fig. 7. Walk-through of the example in Figure 6.

when the descendants of v are visited. However, once vertex v is identified to be a
vertex in HV or HB , v will never be tested again. Thus, we can argue that the time
for visiting a vertex is constant when amortized over a sequence of tests. To see this,
our analysis assumes that one unit credit should have been assigned to each potential
vertex in L and R. For each vertex v of H in the bottom-up sweep of TP , two unit
credits of work are needed for each test: one for carrying the test itself, i.e., either
assigning v as a vertex in HV , HB or a potential vertex in L or R; the other unit
credit is assigned to the vertex should it be identified as a potential vertex. The test
on a vertex in L or R to determine whether or not it has to be reassigned to HB or
HV will be paid by the unit credit associated with the vertex. This either happens
once for the checked vertex (which is accounted to it) or this test stops at a vertex
which still cannot be reassigned and the test stop condition is accounted to the vertex
again.

It is not difficult to see that linked lists can be used to keep track of the vertices in
HV and HB ’s. In particular, insertion and concatenation operations on HV and HB ’s
can be executed in constant time. The time complexity analysis for the construction of
Voronoi diagrams of INH, NH, and P is obvious, as described in the previous sections.
We shall conclude the above analysis by the following theorem.

Theorem 4. CDT (P ) can be found in Θ(| P |) time for simple polygon P .
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4. Concluding remarks. In this paper, we presented a deterministic algorithm
for finding the constrained Delaunay triangulation of a simple polygon with n sides
in Θ(n) time in the worst case. This may be one of the few linear-time algorithms for
nonarbitrary triangulation of a simple polygon.

In the definition of Delaunay triangulation, we can check whether a triangulation
is Delaunay by studying vertices within local proximity. It should not be surprising
that the Delaunay triangulation and the constrained Voronoi diagram of a simple
polygon can be done in linear time after being given Chazelle’s horizontal visibility
map, which links vertices within proximity together. The horizontal visibility maps
are helpful to decompose the polygon into components such that the “divide and
conquer” approach can be applied. However, if the decomposition of the polygon
into components is not carefully done, “interaction” of the Voronoi diagrams of the
components may be more than linear (even quadratic time). From Theorem 1, the
partition of the polygon into components by chords has the advantage that the Voronoi
diagrams of the components at the same level would not interact with each other;
i.e., horizontal interaction can be reduced. Moreover, because of the property of HV ,
interaction of Voronoi diagrams of components at different levels can also be confined;
i.e., vertical interaction can be eliminated.

With our linear-time algorithm, the following related problems can also be solved
efficiently:

(1) all nearest (mutual visible) neighbors of the vertices of a simple polygon [13],
(2) a shortest diagonal of a simple polygon [13],
(3) a largest inscribing circle of vertices of a simple polygon [12],
(4) the nearest vertex from a query point [13],
(5) finding DT (S) if the Euclidean minimum spanning tree for a point set S is

given [1],
(6) finding standard Voronoi diagram for S′ if the Voronoi diagram of a point set

S is known [1], where S′ ⊂ S.
By treating edges and vertices of a single polygon as sites for the Voronoi diagram,

we can apply ideas similar to those given in this paper to find the medial axis of a
simple polygon in linear time [7].
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