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MOT( R PROGRAMS: AN ARTIFICIAL NEURAL NETWORK D APPROACH 
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rule, was used in an attempt to 
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also proposed that each motor program was 
specific to a particular motor task. 

Artificial neural networks have been used in a 
wide variety of biomedical signal-processing 
contexts [4-61. What is novel in our approach is 
the use of an artificial neural network to 
iden@ components of motor programs. The 
network is trained to reproduce the input-output 
relationship from the data by repeatedly sifting 
the data back to the network, and correcting the 
network's error by adjusting the weights. The 
weights embody all of the information extracted 
during training. 

One of the most widely used artificial neural 
networks is the multilayer perceptron (MLP) 
which can be trained by an algorithm called 
backpropagation. Backpropagation is a 
gradient-descent algorithm that minimizes the 
average squared error between the network 
outputs and the desired outputs. The most 
commonly used MLP architecture is a three- 
layer network, which contains an input layer, a 
hidden layer, and an output layer. Data is fed 
into the network through the input layer. The 
hidden layer contains processing elements (PES) 
where intermediate internal processing takes 
place, and the strengths of the inter-layer 
connections (weights) are generated; while the 
desired output is fed back to the network via the 
output layer (Fig. 1). 
In this study, we employed the MLP to 
investigate motor programs in terms of the 
temporal patterns of EMGs when subjects 
performed simple motor slulls. 

Materials & Methods: 
Sub1 ects : 
Nine healthy, right-handed volunteers (5 male, 4 
female, 26-30 years old) participated in the 
experiment. They were nave with regard to the 
specific purpose of the study. All experimental 
procedures were approved by the the University 
of Hong Kong Ethics Committee. 



Experimental Setup: 
Each subject was seated comfortably in a dental 
chair, with the forearms resting on an adjustable 
support. An individually-fitted thermoplastic 
cast held the left forearm in the same posture 
over the recording period. Participants were 
asked to perform two tasks: 1. Subjects grasped 
a force transducer (Medical Research Ltd., 
Leeds UK) between index finger and thumb of 
the left hand and repeated precision grips; and 
2. Subjects controlled a manipulandum (bearing 
a potentiometer to record the position changes) 
and performed wrist extensions and flexions. 
Surface electrode pairs were placed about 1 cm 
apart on the skin overlying the muscles: 
Abductor Digiti Quinti (ADQ), Abductor 
Pollicis Brevis (AF’B), First Dorsal Interosseous 
(FDI), Flexor Carpi Radialis (FCR), Flexor 
Carpi Ulnaris (FCU), Extensor Carpi Radialis 
(ECR), Extensor Carpi Ulnaris (ECU) and 
Extensor Digitorum Communis (EDC). 

Approximately 60 cm in front of the participant, 
an oscilloscope screen displayed a cursor and a 
target. For task 1, the cursor was a horizontal 
trace that moved in proportion to the grip force; 
it moved upward or downward as grip force 
increased or decreased, respectively. For task 2, 
the cursor was a horizontal trace that moved in 
proportion to the wrist movement; upward with 
wrist extension, and downward with wrist 
flexion. In both tasks, the target was a 
horizontal trace, which also moved in the 
vertical axis; the location of the target on the 
oscilloscope screen was determined by the 
computer. 

Tasks: 
At the beginning of the study, the subjects were 

asked to superimpose the cursor line on the 
target line. The target then jumped to a new 
position. The subject was required to move the 
cursor as accurately, and as fast as possible, to 
this new position. After 500 ms, the target then 
moved to back to the initial position and the 
subjects were asked to move the cursor to follow 
the target movement, as accurately and as fast as 
possible, back to the initial position. The above 
sequence was repeated 75 times for both tasks. 
No practice trials were allowed. 

Data collection: 
While the subjects performed the step-tracking 
movements, the output of the force transducer or 

potentiometer and EMG activities were stored in 
computer memory. The raw EMG signals were 
amplified (~1000) and band-pass filtered (30Hz- 
1kHz) using conventional preamplifiers (Model 
P15, Grass Instruments), and then digitized with 
12-bit resolution at a sampling rate of 1 kHz 
@T21EZ, Data Translation IC.). 

Data analysis: 
Reaction time (RT) was determined by the time 
from the onset of the target movement to the 
onset of cursor movement. EMG signals were 
full-wave rectified, and the onset times of 
muscle activity were detected by visual 
inspection. 

Network parameters: 
The topology of the network we chose was a 3- 
layer MLP with one hidden layer containing 8 
PES. EMG onset times provided the input to the 
network, while RT was the desired output for the 
network. The stop criterion chosen was less than 
0.05% error. The hyperbolic tangent function 
was used as the activation function. 

Through the interactive presentation of input 
patterns, with known desired outputs, the error 
between the predicted output from the network 
and the desired output was minimized by 
applying the backpropagation rule. Training 
continued until the error reached the stop 
criterion of 0.05%. Weights with positive values 
meant the associated inputs had ‘excitatory’ 
effects on determining the desired output, while 
weights with negative values meant the 
associated inputs had ‘inhibitory’ effects on 
determining the desired output. So, during 
training, a more positive or negative weight 
meant the associated inputs had greater 
influences on determining the desired output. In 
contrast, inputs with lesser influences on the 
desired output tended towards zero. By 
examining the weights, we identified the key 
inputs which had the largest influence on 
determining the desire output. After each 
training sequence, the learning rate and the 
resulting weights were recorded for further 
analysis. 

Results: 
Our results showed that the time of activity 
onset for all the muscle studied, and the 
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parameter R?, 
after about 50 
the task. We 
relationships 
remaining 25 
“learned mot0 

became more or less constant 
trials, i.e. the subjects had learned 

1:herefore assumed that the timing 
of the 8 muscles during the 
trials constituted the subjects’ 
programme.” 

In order to 
objective features 
onset times ar 
25 trials of all 
MLP for each 
weights. The 
initial weights, 
for both tasks, 
trained networks 
(Table 1). 

the subjects are using a similar motor program 
in both tasks. Further experiments will include 
additional features such as offset times and 
EMG amplitude measures. 

aiswer the question regarding the 
of motor programs, the muscle 

d the measured RTs from the last 
the subjects were used to train an 

task using the same initial 
results showed that, with the same 

the learning rates were the same 
and the final weights of the 

were remarkably similar 

Conclusions: 
This preliminary study shows artificial neural 
networks can be used in a new approach to 
investigate motor programs and how they are 
implemented in motor control. 

Discussion: 
The precision 
are two differmt 
prime movers 
precision grip 
and multi-miscle 
movement only 
agonist and 
temporal featires 
differ? The 
subjects used 
components 
the two tasks. 
The final weights 
the input-output 
muscles’ onset 
and thus reflect 
hypothetical 
results also 
motor program 
motor task. 
were using h ~ o  
the same goal., 
weights of 
very similar, 
temporal 
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Table. 1 A 
ADQ 
APB 
FDI 
FCR 
FCU 
ECR 
EDC 
ECU 

Table.1 B 
ADQ 
APB 
FDI 
FCR 
FCU 
ECR 
EDC 
ECU 

PEI 
0.18 
0.42 

-0.08 
0.33 
0.1 

0 
-0.4 
0.16 

PEI 
0.2 

0.43 
-0.07 
0.33 
0.1 

0 
-0.4 
0.16 

PE2 
0.16 
0.12 
0.52 

-0.05 
-0.1 1 
0.33 

-0.01 
-0.06 

PE3 
0 

0.43 
0.35 

-0.34 
-0.3 

-0.25 
0.31 

-0.43 

PE4 
0.54 
-0.1 
0.52 
0.22 
-0.1 
0.59 
0.1 

0.41 

PE5 
-0.44 
-0.02 
0.25 

-0.13 
0.22 

-0.27 
-0.29 

0 

PE2 PE3 PE4 PE5 
0.19 0 0.55 -0.44 
0.13 0.42 -0.1 -0.02 
0.54 0.34 0.51 0.25 

-0.05 -0.34 0.18 -0.15 
-0.1 1 -0.3 -0.15 0.21 
0.34 -0.26 0.56 -0.29 

0 0.3 0.08 -0.3 
-0.05 -0.44 0.38 -0.02 

PE6 

0.23 
0.34 
0.1 

-0.53 
-0.09 
0.24 
-0.3 

-0.49 

PE6 
-0.55 
0.19 
0.3 
0. I 

-0.52 
-0.1 
0.22 

-0.31 

PE7 PE8 
0.36 0 
-0.4 -0.1 

-0.23 0.06 
-0.24 -0.07 
0.17 -0.36 

-0.16 0.26 
0.5 0.36 

0 -0.6 

PE7 PE8 
0.36 0 
-0.4 -0.1 

-0.23 0.07 
-0.24 -0.05 
0.17 -0.32 

-0.16 0.27 
0.5 0.37 

0 -0.6 

Table.1 
Table 1A shows the weight of each processing element (PE) associated with inputs to the MLP network 
trained by data hom the wrist movement. Table 1B shows the weight of each PE associated with inputs to 
the MLP network trained by data hom the precision grip. The learning rate for both networks was the 
same. 

Fig.1 A diagram shows the architecture of a Multi-Layer Perceptron neural network (MLP). 

Input Layer 
(8 Inputs) 

Hidden layer 
(8 PES) 

Output layer 
(1 Output) 
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