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Abstract 

This paper deals with the fault detection problem 
for linear system with unknown inputs. The H ,  norm 
and H- index are employed to measure the robust- 
ness to unknown inputs and the fault sensitivity, re- 
spectively. Furthermore, by using the pole assignment 
approach, the fault detection problem is transformed 
to an unconstrained optimization problem. With the 
aid of the gradient-based optimization approach, an 
explicit formula for designing the desirable observer 
gain is derived. On the other hand, the fault sensitiv- 
ity over a finite frequency range can also be solved by 
the proposed method, in which case no constraint is 
required on D being of full column rank for a system 
(A ,  B, C, D). Numerical simulation has demonstrated 
the effectiveness of the present methodology. 

1. Introduction 
The research and application of robust fault detection 
in automated processes has received considerable at- 
tention during last decades. One of the popular a p  
proaches is to maximize the sensitivity due to faults 
meanwhile minimizing the sensitivity due to unknown 
inputs. In this sense, Ding and Frank [Z] presented 
a performance index expressed as a ratio of sensitiv- 
ities of the residuals due to the unknown inputs and 
the faults respectively. The design goal is to then con- 
struct an observer for fault detection with the perfor- 
mance index being minimized. This or similar idea is 
commonly used amongst a number of subsequent pa- 
pers for model-based robust fault detection systems 
[4, 12, 141. 

To solve this problem, some researchers use the 
H ,  optimization technique [3, lo]. However, the re- 
sults are not ideal since it is only a best-case solution 
when H ,  norm is used to measure the fault sensitiv- 
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ity. Therefore, a different norm/index is needed to 
measure the fault sensitivity instead. 

Similar to the H,  norm optimization technique, 
the H- method has also gained much attention re- 
cently, which aims to study the worst-case fault sen- 
sitivity performance of a fault detection observer. An 
H- “nom”  was defined in [4, 91 as the minimum 
nonzero singular value of the transfer function matrix 
from the fault to the residual output a t  the specific fre- 
quency of w = 0. In [l, 111, this definition was further 
extended from the single frequency w = 0 to a nun- 
ber of finite frequency ranges. It should be pointed out 
that these sensitivity measures are not truly worst-case 
measures due to the exclusion of possible zero singular 
values of the transfer function matrix. A truly worst- 
case fault sensitivity measure, H- indm, was proposed 
in [6, 71 to include the possible zero singular values of 
the transfer function matrix. Specifically, the H- in- 
dex was defined as the minimum singular value of the 
transfer function matrix over a given frequency range. 
Note that the constraint of “non-zero singular value” 
is absent here, which (together with the absence of the 
triangle inequality Ila + b/l-  5 ~ ~ a ~ ~ ~ + ~ ~ b ~ / ~ )  makes the 
H- index no longer a norm (hence the term index). 
The frequency range can be either infmite (i.e. the en- 
tire frequency spectrum) or finite frequency intervals. 
Moreover, necessary and sufficient conditions in terms 
of LMls have been obtained for the proposed H_ index 
(7, 131. However, only iterative LMI approach can be 
used to solve fault detection problem when robustness 
is also concerned. In this case, the solution may not 
be ideal since the advantage of the LMI approach is 
not fully utilized. 

Following the above idea, a method for designing a 
fault detection observer is proposed in this paper. It 
is formulated as an optimization problem where H ,  
norm is used to describe robustness and H- index to 
measure the fault sensitivity. Moreover, the observer 
poles are given as constraints. A gradient-based opti- 
mization approach is facilitated by using the explicit 
gradient expressions derived. Moreover, we also con- 
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sider the fault sensitivity over a finite frequency range 
in which case the condition on the rank of D is no 
longer required for a system (A, B, C, D). Numerical 
simulation is used to illustrate the effectiveness of the 
results. 

Throughout this paper, Il.llm is used to denote the 
H, norm . a(.) denotes the maximum singular value 
of a matrix while E(.) denotes the minimum singular 
value of a matrix. All matrices, if their dimensions are 
not explicitly stated, are assumed to have compatible 
dimensions. 

2. Problem Formulation 
Consider the following linear timeinvariant system 

5( t )  = Az(t) + E,w(t) + Bff(t) 
Y(t) = C d t )  + a u w ( t )  +Dff( t )  (1) 

where z( t )  E W" is the state vector, w ( t )  E Rm is the 
unknown input vector including modelling error, m- 
certain disturbance, process and measurement noises, 
y ( t )  E W' is the measurement vector, and f( t )  E RP is 
the fault vector. Here, A, B,, B f ,  C, D, and Df are 
known constant matrices with appropriate dimensions. 
Moreover, w(t) and f ( t )  are assumed to be vector norm 
bounded and the pair (C, A) is observable. 

The state observer under consideration is of the 
form 

( t )  = ALZ(t) +Ly(t)  (2) 
B(t) = cz(t) 

where Ar. = A - LC and L is the observer gain ma- 
trix to be designed for achieving design requirements. 
Define the error state 

e(t) = x( t )  - z(t) 

i ( t )  = ALe( t )+(E~-LD,)u( t )+(Bf -LDf) f ( t )  (3) 
then it follows from (1) and (2) that 

The residual vector r ( t )  is defined as 

= ~ ( t )  -?At) 
= Ce(t) + Dww(t) + D f f ( t )  

The disturbance transfer function H,,(s) from w(t )  
to r( t )  and the fault transfer function H ? f ( s )  from f(t)  
to r(t)  are obtained, respectively, as 

(4) H,,(s) = C(s1-  AI,)-'(& - LD,) + D,  
and 

H?,(s) = C(SI  - A L ) - l p f  - L D ~ )  + D! ( 5 )  
For effective fault detection, the effect on the resid- 

ual r( t )  due to unknown inputs w(t) should he small 
while that due to faults f ( t )  should be large. Obvi- 
ously, the H,  optimization techniques can be used to 
handle this disturbance attenuation problem. In the 
following, we introduce a notion to measure the effect 

due to faults. 

Definition 1 [7, 61The H- index of a transfer func- 
tion G(s) over the frequency range [0, W) is defined as 

where g denotes the minimum singular value. 

Remark  1 To indiulte the dependency on the fre- 
quency range [ O , W ) ,  we vrrite the H -  index of G(s) 
as llG(s)11[0'"'. However, when the frequency range is 
clear from the context, we simply write llG(s)l[-. 

Thus, the H- index of the fault transfer function 
H , f ( s )  can be used to describe a measurement of the 
worst case fault sensitivity. The ratio of sensitivities 

l lHds)ll, 
IIHrf(~)IIIO.B1 

thus gives a 'noisesignal' measure in a robust fault 
detection context. Clearly, ~ ~ H ~ , ( S ) ~ ~ ~  should be kept 
small so as to desensitize the influence of unknown in- 
puts on the residual vector while /lHrf(s)ll[O"I should 
be made large to enhance the sensitivity due to faults. 
In general, there is a trade-off between these two sen- 
sitivities. 

In summary, based on the above motivations, we 
study the design problem of a fault detection observer 
for system (1) as follows: 

FDODP (Fault Detection Observer Design Prob- 
lem): For system (1) with the observer (2) and a spec- 
trum of 10, (;), 0 < (; < CO, determine an observer gain 
matrix L such that 

P(i) 
P(ii) 

The error system (3) is asymptotically stable. 
The fault detection 'noise-signal' ratio 

is minimized. 

In the following, we use the pole assignment a p  
proach to transform problem F D O D P  to a minimiza- 
tion problem. 

For the observer system matrix AI,,  the observer 
gain L can be chosen such that all eigenvalues are 
in the left half s-plane and distinct and spec(AI,) n 
spec(A) = II. The reason that the eigenvalues are cho- 
sen to  be distinct is due to an eigenvalue sensitivity 
consideration (less susceptible to perturbation). This 
is always possible since (C,A) is observable. Then 
there exists a real invertible V such that 

VALV-' = A  (7) 
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where A is a real pseudo-diagonal matrix with spec(AL) = of HVW(jW0, MO), 
spec(A). Specifically, we have 

Then, 

a ~ ~ H ~ ~ ( ~ ,  M ) I I -  a w v w ( j w ,  M ) )  I 
Y = Y D  a M  aM M=Mo 

A=diag(( "-'p, k )  ,. . . , (  01"' +", an, p"' 1 
Note that the eigenvalues of A are the desired ob- 
server eigenvalues, ai f jp,, i = 1,. . . ,n', and ~ k ,  
k = 1 , .  . . , (n - 2n'). Although V is not an eigenvector 

Similar to Lemma 1, we have the following result. 
. . .  - 

matrix, there exists a unitary U such that VU is an 
eigenvector matrix of AL. Nevertheless, V defined via 

L~~~ 2 F~~ a given M,,, 

(7) is non-unique. By writing (7) as 1. l l K f ( s , ~ o ) L  = Ys++(HTf( jw,Mo)) >Oat wo < 
# 

2. no = o(H, f ( jwo,Mo))  is a distinct singular value 

ca and ~(Hvf(jwo, MO)) < d & f ( j w ,  MO)), 
WO; 

V A - A V = M C ,  L = V - ' M  (8 )  
then for each M E M ,  a unique V is obtained since 
spec(A) n spec(A) = 0, where 
M := { M  E R"" I V is invertible and satisfies V A  - AV = MC } Of Hrf(jwOy M O ) ,  

and the set M is open and dense in R"". Then, 

min Based on Lemma 2,  (10) corresponds to an uncon- 
strained minimization problem with (11) differentiable 
almost everywhere in the 6 neighborhood of MO. Thus, 
a gradient-based optimization procedure can be a p  
plied. The gradient of J with respect to M is then 
summarized in the following proposition with proof 

llH7,(s,L)tl!!=~ 
For a given fixed set of desired observer Poles charac- 
terized by A and condition (8 ) )  Problem FDODP can 
be re-formulated as 

" H ~ w ( s ~ M ) " c e  for o 5 
5 m (9) omitted, 

inf 
M E M  I I H & , M ) l p ]  

3. Gradient-based Optimization: 
Infinite Frequency Case 

In this section, the problem FDODP will be consid- 
ered over the full frequency spectrum, i.e. W = w. 
Note that when Df does not satisfy the full column 
rank condition or even equals to zero, l[H7r(s)ll[0."' is 
always zero for W = 03. Hereby the ratio l l H - - ( a ) l l  

I I ~ ~ ~ ~ S ~ I I ! ? ' ~ ~  
does not make sense. Therefore, we assume D, is of 
full column rank in this section. 

The minimization problem in (9) can be rewritten 
as 

with 
inf 3 

M t M  

To facility the solution of the minimization problem 
(IO), we introduce the following lemma. 

Lemma 1 

1. lJH,,(s,~o)JJ, = sup a(H,,(jw,Mo)) at W O  < 
and W L & w o , ~ o ) )  > b(H,,(jw, MO)) ,  V w  # 

151 For a given MO, if 

Y E l +  

WO ; 
2. no = P(HrW(jwo, MO))  is a distinct singular value 

Proposition 1 Suppose the mm'mum singdar value 
o ~ C ( ~ W I - A L ) - ~ ( B , - L D , ) + D ,  and the minimum 
singular value o f C ( j w 1 -  A L ) - I ( ~ ,  - LD,) +Df are 
distinct, where D, is assumed to be o f f u l l  column rank. 
If 

( C ( j w 1 -  AL)- ' (B~  - LDw) + D,)vi 
= a(c(jwr - A L ) - ' ( B ~  - LD,) + D,)u' 

(c(jd - AL)-'(B, - LD,) + D,)W 
= - o ( c ( j w r  - AL)-'(B, - mf) + D,)W 

where ( v ~ , u ~ ) ,  ( v 2 , w )  are the corresponding singular 
vector pairs (unit nom), then 

a3 - 
a M  



where 

Now, we summarize the process of obtaining the 
observer gain in the following schematic algorithm. 

Algorithm FDODP: Given A, B,, Ef, C, D,, 
D f  and A. 

S1 Select an initial guess MO E M and solve equa- 
tion (8), the initial observer gain is given by Lo = 
V-'Mo. Then determine WE, and W F ~  such that 

IIC(s1 - A  + LoC)-'(E, - LD,) + DwIl- 
= a(c(jwEor - A +L~c) - ' (B ,  - LD,) + D,) 

lIC(s1- A +  LoC)-'(Bf - L D / )  + Dfll- 

- u ( C ( j w ~ ~ 1 -  A + LoC)-'(Bf - L D f )  + D f )  = 

S2 Solve minimization problem (10) based on the ob- 
jective function (11) and its gradient function (12). 

53 Let MO,, be the optimal solution obtained in 52. 
Solve equation (S), the required observer gain is 
given by L,,t = V-'M,,t. 

4. Finite Frequency Case 

In the previous sections, IIH,.,(s)11[O"] is considered 
over the full frequency spectrum, i.e. D = w. How- 
ever, in real applications, it would be preferred to con- 
sider the fault sensitivity within the lower frequency 
range including DC (w = 0), i.e. D is a finite number. 
Moreover, llHr,(s)l\b+ml is always zero when D f  is 
not of full column rank. In this case, the result pro- 
posed in previous section is no longer applicable. Un- 
fortunately, such full column rank constraint on Df is 
often not satisfied in practice. Therefore, it is neces- 
sary to consider the case of IIHi~(s)ll["'"] over a finite 
frequency range in which case the constraint on Df 
can be avoided. In this section, the problem is consid- 
ered over a finite frequency spectrum, i.e. D is a finite 
number and hereby DJ is.not assumed to be of full 
column rank. 

In summary, for the fmite frequency case, problem 
FDODP will be replaced by 

At first, we introduce the following lemma which is 
a variant of [ll,  Lemma 41. 

Lemma 3 [13] Given W(s)  and M ( s )  such that 

then 

In this case, although the method proposed in pre- 
vious sections cannot be directly applied to solve prob- 
lem (13), we can solve the following problem instead 

where W(s)  is a given weighting transfer function such 
that llW(s) + H,f(s)II[O'+m'is nonzero. 

Remark 2 Note that problem (15) is not equivalent 
to problem (13). An optimal solution L obtained from 
problem (15) can make the ratio, ' ' H 7 ' " ( s ) ' ~ ; ~  small but 
not the smallest one. 

l l H ~ , ( s ) I l ~  

Suppose the state space realization of W(s) is given 
by (Ap, B,, C,, D7). A realization of W(s)  + H,f (s )  is 

0 , A - LC E f  - LDf  (X) 
Correspondingly, a similar proposition is given as fol- 
lows without proof. 

Proposition 2 Suppose the maximum singular value 
ofG(jwI-A,)-'(B,-LD,)+D, and the minimum 
singular value o f W ( j w ) + C ( j w I - A ~ ) - ' ( B f  - L D f ) +  
DJ are distinct, where W(s) w a given weighting t m w -  
ferfunction such that IlW(s) + H,f(s)/I-is nonzero. I f  

( c ( j w 1 -  AL) - ' (E ,  - LD,) + D,)vI 
= a ( c ( j w 1 -  AL)- ' (B,  - LD,) + D,)w  

(W( jw)  + C(jw1-  AL)-l(Ef - LDf) + Df)vz 
- u ( W ( j w )  + C(ju1-  AL)-'(Ef - L D f )  + D f ) ~ z  = 

where ( q , u l ) ,  ( v 2 , u ~ )  are the corresponding singular 
vector pairs (unit norm), then 

a 3  - 
a M  



r l  o o 0 1  

Remark 3 It is obvious that W(s )  plays an impor- 
tant role an this m e .  Generally speahng, a better 
W ( s )  should be chosen to satisfy: ( 2 )  sup Z[W( jw)]  

25 small; (ai) inf u [ W ( j w ) ]  is large for w2 > 3; 
wE[wz,+m)  - 

(iii) The transition frequency range [E, 4 is n a m w .  

YE[O,O) 

5. Numerical Simulation 
Consider the linearized longitudinal dynamics of a VTOL 
aircraft as proposed by Tripathi [8].  The continuous- 
time state-space description is 

k ( t )  = Az(t) + Bu(t) + B,w(t) 

where the states z(t)  are the horizontal velocity (knot), 
vertical velocity (knot), pitch rate (degree/s) and pitch 
angle (degree), respectively, and the actuator inputs 
u(t)  are the collective pitch control and the longitu- 
dinal pitch control respectively. In [ 8 ] ,  the system 
parameters are given as follows: 

Y ( t )  = C 4 t )  

26.0922 2.6361 -4,1975 19.2774 ' 

-9.9477 -0.7476 0.2632 5.0337 
52.1659 2.7452 5.5532 -24.4221 I 0 

0 0  

A =  

0 0  

0 1 
r 0.4422 0.1761 1 

I 3.5446 -7.5922 
-5.5200 4.4900 ' ',= 

B =  I 

0 1 0 0  
c =  [ o o l o ]  0 1 1 1  

For system (l), the rest of the parameters are assumed 
to be: 

It is obvious that I I H , ~ ( s ) I I ~ ' + ~ '  is always zero since 
D f  is not of full column rank. Thus, the problem will 
be investigated over a finite frequency range [0,0.1) 
instead of the whole frequency range. 

The choice of the target poles of observer (differ- 
ent from those of the original system: {-6.8271, - 
1.0112+1.5146i, -1.0112-1.51461, -2.5506)) should re- 
flect the response speed requirement and a faster speed 
generally lead to a larger feedback gain. Thus, a com- 
promise between them should be reached. In our ex- 
ample, the poles of the diagnostic observer are de- 
signed at  -1, -2, -3, -4. That is, 

A=diag( -1, -2, -3, - 4 )  
With the aid of the techniques proposed in Sec- 

tion 4, a frequency weighting transfer matrix W ( s )  is 
selected as 

then a state space realization (Ar, E,, C,, D,) of W(s)  
is given by 

A, = diag( -100, -100, -100, -100 ) ,  
C, = diag( -70.6753, 0, -70.6753, 0 ) ,  

r 70.6753 o 1 

Here Df+D, is of full column rank, sup Z [ W ( j w ) ]  = 

0.0707 with 3 = 0.1 and inf u[W(jw)l = 1.0011 

with w2 = 2. 
Using the algorithm FDODP developed in this pa- 

per, the optimization is initiated with a random initial 
value of M .  The numerical simulation was carried out 
using MATLAB 6.1 (Control Toolbox 5.1, Optimiza- 
tion Toolbox 2.1.1) and an optimal observer gain LOpt 
is obtained. For comparison, an observer gain L,l,,, 
which gives the same spectrum is obtained from the 
command p1ace.m (the command has also taken the 
sensitivities of the eigenvalues into account). We have, 

4.3021 -10.0144 -3.5587 4.8599 
6.3561 -1.6791 -0.9140 -2.4219 

-21.1044 47.6843 17.6497 -22.7378 
2.9567 -6.7268 -2.7124 3.4869 

Y€[O,Cl) 

u E [ v z . + m ) -  

1 
2479 

LOPl = 



1 [ o  -4 . -3 4 

-8.9477 -5. iw3 -4.7705 5.0337 
52.1659 29.1673 29.9753 -24.4221 
26.0922 21.9135 18.0799 -19.2774 Lpfoce = 

The system is simulated with unknown input w(t)  = 
[ sin(Zt)e~' . '~~ ~os(2t)e- ' . '~~ ] '. For an actuator 
fault f ( t )  such that f ( t )  = [ 1.2 0.8 I T ,  t 2 6s and 
f ( t )  = [ 0 0 1' elsewhere, Figure 1 shows the evolu- 
tion of the residual r ( t )  responses due to observer gain 
LOpt and Lpmc. respectively. In the case of L = L,t, 
despite the influence of unknown input w(t ) ,  a thresh- 
old at k0.3  can easily be imposed on the residual sig- 
nals to indicate the occurrence of fault at the time 
t = 6.1s. On the other hand, no reasonable threshold 
can be imposed to distinguish the influence between 
faults and unknown input in the case of L = Lpioce. 
In other words, the robust fault detection sensitivity 
in the case L = &lace is comparatively smaller than 
in the case L = L,t. 

6. Conclusion 
In this paper, we deal with a worst-case fault detec- 
tion observer design problem. It is formulated as an 
optimization problem with the observer poles as con- 
straints where H, norm is used to  describe robustness 
to  unknown inputs and H- inda is used to measure 
the fault sensitivity. The gradient-based optimization 
approach is facilitated by the explicit gradient expres- 
sions derived. Moreover, we also consider the fault sen- 
sitivity over finite frequency range in which case the 
condition on the rank of D is no longer required for a 
system ( A ,  B ,  C, D).  Numerical simulation performed 
on the fault detection observer design of a VTOL air- 
craft is given to demonstrate the effectiveness of the 
present methodology. 
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