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Abstract 

This paper deals with the fault detection filter design 
problem for linear time invariant timedelay systems 
with unknown input. The core of our study is to a) 
take the behavior of delayed state and measurement 
into consideration when the observer-based fault d e  
tection filter is constructed; b) solve the formulated 
fault detection filter design problem by combining of 
using the left eigenstructure assignment approach and 
H, optimization technique. Through a suitable choice 
of the filter gain matrices and residual weighting ma- 
trix, the residual can be completely decoupled from 
the delay-free unknown input, while the iduence of 
the delayed unknown input on residual is minimized in 
the sense of H ,  norm. Numerical simulation is used 
to illustrate the efficiency of the proposed method. 

Key words. Eigenstructure assignment, fault detection, 
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1 Introduction 

In the past three decades, many significant results con- 
cerning fault detection and isolation (FDI) problems 
have been developed, see e.g [I, 3, 4, 10, 111 and ref- 
erences therein. However, most of the achievements 
are for delay-free systems. Although, time delay is an 
inherent characteristic of many physical systems, such 
as rolling mills, chemical processes, water resources, 
biological, economic and tr&c control systems, only 
few researches on FDI have been carried out for them 
[2, 5, 6, 7, 91. Note that Jean-Yves and Woihida [5] 
study only the fault isolation problem for a kind of 
discretetime system; Jiang et al. [SI deal with the 
nominal case fault identification (without considering 
the influence of model uncertainty and unknown in- 

puts); Liu and f i a d  [9] formulate the fault detection 
filter (FDF) design problem as a twwobjective non- 
linear programing problem where no analytic solution 
can be constructed in general; Jiang et  al. [7] extends 
the results in [9] to the discretetime case. The au- 
thors' earlier study in 121 has also developed an FDF 
design approach based on &,-filtering, but the most 
important and difficult issue concerning the selection of 
a sc-called reference residual model has not been suc- 
cessfully solved. An efficient way to tackle the fault 
detection problem for timedelay systems is as yet to  
be developed. 

The main focus of this paper is to deal with the FDF d e  
sign problem for LTI timedelay systems with unknown 
input. An FDF will be developed such that the i d u -  
ence of unknown input on residual is to be minimized 
to increase the robustness to unknown input, while the 
effect of fault is to be maximized to enhance the sen- 
sitivity to fault. The basic idea of our study is 6rst 
to  construct a new form of observer-based FDF and, 
based on which, to decompose the generated residual 
into three parts: the effect of delay-free unknown input, 
the influence of delayed unknown input and past infor- 
mation of the fault, the contribution of current faults 
on the residual. Then, by decoupling the residual from 
the delay-free unknown input and at the same time 
minimizing the influence of the delayed unknown input 
on it, to achieve perfect performance of FDI. By a com- 
bination of two often used FDI schemes, that is, eigen- 
structure assignment approach and H ,  optimization 
techniques, a new FDF design method for timedelay 
system is developed in this paper. 
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2 Problem Formulation XBdd(S) (9) 

We focus our attention on the FDF design problems 
for LTI tie-delay systems, which are governed by 

N 

k( t )  = Az( t )  + x A i z ( t  - T ; )  + Bu(t) 
i=l 

+ B f f ( t )  + Bdd(t) (1) 
v(t) = Cz(t) + Du(t) + D f f ( t )  (2) 
z(t) = 0 (t < 0) 

where z E W" is the state vector, U E WP the control 
input vector, y E Wq the measurement output vector, 
d E Wm the unknown input vector, f E W' the fault to 
be detected and isolated. A,  B, C, D ,  B f .  Bd, D f ,  Dd 
are !mown matrices with appropriate dimensions. It is 
assumed that system (1)-(2) is asymptotically stable; 
d is Lz-norm bounded; fault is detectable; ~i > 0 (i = 
1,2, . . . , N) denote the constant time delays; A, are 
known matrices with appropriate dimensions. 

In this paper, the following observer-based FDF is prc- 
posed 

N 

i (t)  = &(t) + x A , i ( t  - 7;) + Bu(t) + H ( y ( t )  
i=l 

(4) 
(5) 

where 3 E W" and 6 E Wq are state and measure- 
ment estimation vector respectively. r is the gener- 
ated residual. Filter gain matrices H ,  H; E W"'q 
(i = 1,2, .  . . , N) and weighting matrix V E WPwxq are 
parameters to be designed. 

Denote e,(t) = z(t) - ?(t), then the dynamics of the 
FDF for LTI time-delay systems (1)-(2) can be ex- 
pressed as 

&(t) = ( A  - HC)e,(t)  + C ( A i  - HiC)e,(t - ~ i )  

N 

i=l 
+Bdd(t) + (Bf - HDf)f(t) 

1. 

rf(s) = V(C(s1 - A  + H C  - c ( A i  - H;C)e-"*)-' 
i=l 

N 

x ( (B f  - H D f )  + D f  - x H i D f e - " ' * ) f ( s )  
i = l  

(10) 

The main tasks of ideal FD system design is to select 
H, Hi (i = 1,2 , .  . . , N )  and V such that residual gener- 
ator (6)-(7) is asymptotically stable, and the generated 
residual satisfies 

r (s )  = 0, iff(s) = 0 (11) 
+) # 0, iffW # 0 (12) 

Obviously, for the Lz-norm bounded unknown input d ,  
a necessary condition to achieve (11)-(12) is 

VC(s1-  A + HC - C ( A ;  - ffiC)e-*T')-'Bd = 0 
i=1 

(13) 
N 

V(C(s1- A + HC - C ( A i  - HiC)e-"')-' 

x ( (B f  - H D f )  + D f  - CH;Dfe - s r i ) f ( s )  

i=l 
N 

# 0 
i=l 

(14) 

However, the existence conditions for suitable matrices 
H, Hi and V to satisfy (13)-(14) are usually too strong 
to  be satisfied. This paper focuses on the study of FD in 
which totally decouplmg of r from d may be impossible. 
Hence, the main task in an FDF design consists of a 
trade-off between maximizing the infiuence of rf on r 
to increase the sensitivity to fault and minimizing that 
of ra to enhance the robustness to unknown input by 
selecting H ,  Hi and V apppropriately. 

3 Design of Fault Detection Filter 

First, rewrite the FDF transfer function expression in 
(8) into the following form 

where 

Grd(s) = VC(s1 - A + HC)-'& N 

vd(s) = VC(s1 - A + H C  - C ( A i  - H,C)e-sr')-' G,,<(s) = VC(s1- A + HC)- ' (A,  - HiC) i=1 
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G,f(s) = V(C(sI - A + HC)- ' (B f  - H D f )  + D f )  
G,f.,(s) = VC(sI - A +  HC)-'H;Df 

G,.f(s) = 
N 

( S I  - A +  H C  - C ( A i  - H;C)e-'")-' 
i=l 

XBde-S'' 

Notice that the above generated residual is linemly 
divided into three parts: the effects of delay-free un- 
known input G,d(s)d(s); the influence of delayed un- 
known input and fault 

N 

C(G?T,(s)Ge=d(s)d(s) + (Ge,f(s) 
i=1 

- Gf.. (s))f (8)) e-sis 
and the main contribution of fault on residual 
G,f(s)f(s). This paper formulates the FDF design 
problems as hding suitable filter gain matrices H ,  Hi 
(i = 1,2,. . . , N) and weighting matrix V such that 

first, to null the entries in the transfer function 
matrix between the residual and the delay-free 
unknown input, that is, to satisfy 

Grd(S) = VC(sI - A + HC)-'Bd = 0 (16) 
by suitably selecting H and V, which can be han- 
dled hy applying eigenstructure assignment a p  
proach. While the other requirements, such as 
the sensitivity of residual to  fault, the influence 
attenuation of delayed unknown input as well the 
FDF stability, can he guaranteed hy using the d e  
sign freedom of H and V as well as the further- 
more designing of Hi (i = 1,2,. . . , N ) .  

based on H and V obtained in fist step, to fmd 
H, such that system (6)-(7) is asymptotically sta- 
ble and the influence of delayed unknown input 
is minimized. It can he achieved by minimizing 
the H ,  norm of transfer function from unknown 
input d to N G,,,(s)e-""e,(s), that is, 

min J (17) H' 

or loosely by making y (> 0) small in terms of 
the feasibility of 

Remark 1 The core of our study is first to divide the 
residual r linearly into three parts and, based on this, 
to design the FDF by dmupling the residual f "  the 
delay-fm unknown input, while the influence of the de- 
layed unknown input is minimized under the Hm norm. 
The sensitivity of the residual to fault can be enhanced 
by using the design freedom in H and V. Our proposed 
design scheme is a combination of two most commonly 
used FDI schemes - eigenstmcture assignment ap- 
proach and H ,  optimization technique. 

4 Main Results 

4.1 Delay-free Unknown Input Decoupling 
One of the most important unknown input decou- 
pling FDI approach is the eigenstructure assignment, 
in which some left eigenvectors of the observer are as- 
signed to be orthogonal to the unknown input distrib 
ution directions. In this way, the residual can be made 
robust against the unknown input [ll]. For our pur- 
pose, the following results of left eigenstructure assign- 
ment in [ll] are used to determine H and V. 

Lemma 1 [ll] A necessary condition to satisfy (16) is 
that there exists a mat& V to achieve 

VCBd = 0 (19) 

Lemma 2 Ill] The suficient conditions for satisfying 
the unknown input de-coupling requirement (16) are 

(1) VCBd = 0. 

(2) All rows of the matriz V C  are left eigenvectors 
of ( A  - HC) corresponding to any eigenualues. 

Just as mentioned in [ll], V can be determined based 
on Lemma 1, while the independent row number of V 
is normally chosen as 

P,  = p - rank(CBd) < 4 
Lemma 2 indicates that the row of VC can be used 
as the p ,  left eigenvectors of (A - HC) corresponding 
to some eigenvalues, which are chosen according to the 
desired dynamic property of the residual. The remain- 
ing (n - p") left eigenvectors can be chosen so that the 
effect of the most important factor of fault G,f(s) f (s), 
is maximized. For the detailed principles, the solvabil- 
ity condition and the design procedures of V and H, 
interested readers aze referred to [ll]. 
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4.2 Hi Design via H ,  Optimization 
With the above obtained matrices H and V, residual 
generator (15) becomes 

= C(G,,,(s)e,(s) - G,fTi(s)f 
i=l 

+GTf (s)f (s) (20) 

The remaining task of FDF design for LTI timedelay 
systems (1)-(2) is to determine matrices Hi such that 
the residual generator is asymptotically stable and the 
requirement (17) or (18) is satisfied. Denote 

' N  

7.b) = c (G, , (S )e . ( s )  - Gf.,(s)f (s))e-"" 
i=1 

which can also be expressed as 

N 

i .(t) = ( A  - HC)e,(t) + C(A, - HiC)e,(t - Ti) 
i=l 

+Bdd(t) + (Bf - H D f ) f  ( t)  
N 

(21) - HDff (t - 7.) 
i=l 

N 

i ( t )  = (A - HC)c(t)  - HiDf f (t - 7,) 
i=l 

i=l 

= vcc(t) (23) 

where ((t) E R" is an auxiliary state vector. Then 
matrices Hi are determined according to fmd Hi that 
system (21)-(23) is asymptotically stable and satisfies 

I IGAs) I Im < Y (24) 

with y as small as possible in terms of the feasibility of 
(24), where 

N 

Gr.d(S) = V C ( s I -  A + HC)- ' (A,  - H ; c )  
i=l 

N 

x ( s r  - A + HC + C ( A ~  - h'ic)e-'r')-lBde-sr' 
i=l 

Now we are in a position to solve Hi, the following 
lemma is required. 

if there ezist matrices P > 0,  Q > 0 and Q > 0 (i = 
1 , 2 , .  . . N )  such that the LMI 

rl PA1 ... PAN P B  CT 
0 

0 ... 0 ... 0 

A Z P  ! 0 -RN 0 0 

B T P  i i 0 -7'1 DT 
C O O O D - I  

ATP -RI 0 ... ... 

< O  

holds, where 

hl .. 
rl = A ~ P  + PA+ ER, 

i=l 

then the system under wnsidemtion is asymptotically 
stable and 

llG*w(s)ll, < 7 

For some given y > 0, the following theorem provides 
a sficient solvability condition and the solution of Hi 
(i = 1,2, .  . . , N) to ensure the asymptotic stability of 
(21)-(23) and H ,  norm constraint (24). 

Theorem 4 Given filter gain matrix H ,  weighting 
matrix V and wnstant y > 0 ,  if there ezist matrices 
P > 0,  8 > 0 and Hi (i = 1,2,. . . , N ) ,  such that the 
m a t h  inequality 

Lemma 3 [SI Given y > 0 and system model 

N 
i ( t )  = Az(t) + c A ; z ( t  - 7 3 )  + Bw(t)  

r(t)  = Cz(t)  + Dw(t) 
i=1 

z(t)  = O ( t  < 0 )  

1470 

- X A T + A X  A1-HIC1 
AT-gHr -R1 

A; - CFH; 
B,T 

Czx  

0 

X 

X 0 

B d  X c T  x 
0 ... ... 
0 ... ... 
0 ... ... 

... A,-&& 
0 0 

0 

- A N  

0 

0 0 

... X 
0 
0 
0 

... 

... 

... 
-721 ' ._ ... ... 

< O(25) 
0 0 -I , ... 

' ._ -AT1 . ._ 0 

'.. 0 
0 0 0 0 4 6 1  



holds, then system (21)-(23) is asymptoticnlly stable 
and the H, norm constraint (24) is satisfied, where 

'=[ 0 A - H C  

(ii) To obtain such matrices Hi that y is made small 
in terms of the feasibility of (24), a repeatedly 
use of Theorem 1 is also necessary; 

(iv) To satisfy the solvability condition of Hi and en- 
sure satisfactory FD property, the design freedom 
in H and V can be exploited. 

(26) 
O I  

A - H C  

Ai 0 Ai = 1 1 ,  B d  [ 2 ] (27) 

, G = [ C  0 1  (28) 

a = [ o  V C ]  (29) 
5 Numerical Example 

To illustrate the effectiveness of the proposed approach, 

Proof. In the case o f f  = 0, by denoting A, Ai, Bd, 
cl, 6 2  and I?; as above in (26)-(29), and 

w = [ CT(t) I' 
we first rewrite system (21)-(23) into 

hj 
j. 

q t )  = A q t )  + C(.i - I?iCl)Q(t - Ti)) 
i=l 

Then, by using Lemma 3, it is easy to show that system 
(30)-(31) is asymptotically stable and constraint (24) 
is satisfied, if there exist matrices P > 0, & > 0 and 
Hi (i = 1,2, .  . . , N ) ,  such that the following matrix 
inequality 

... ... 
f l  f, ... 1 fTl -RI 0 

(32) 

holds, where 
N 

f l  = A = P + P A + C & , f l ,  = P ( A , - H , C 1 )  
,=1 

By denoting X = P-' and via some manipulations, 
matrix inequality (32) can be furthermore equivalent 
to matrix inequality (25). 0 

Finally, we would like to point out that: 

(i) Matrix inequality (25) is not an LMI of k, due 

(ii) For any given matrices k, > 0, however, (25) is 
an LMI in X and H, (i = 1,2,. . . , N), which can 
be solved with the aid of some standard numerical 

to the appearance of and I?-'; 

paclrages; 

a numerical example is given in this section. Consider 
LTI timedelay system (1)-(2) with 

0 0.1 0 0 3 4  
A = [: ;I, A i = [ :  0l5 i ]  

Bf = [ :5 0.2 :I1. 0 B d = [  % ]  
0 1 0  0 0.1 

= [ o  0 1 1 '  D f = [ o  0.11  

Since the control input has no influence on the designed 
residual, it is not considered in this example. According 
to the proposed design method, the following results 
are obtained: 

y = 0.05, V =  [ 0 1 3 
9 4  0.1 0 

H = [ i  :]; H i = [ 1 5  i ]  
Suppose the unknown input d is band-liited white 
noise with unit power given in Fig. 1. Two fault signals 
fi and f2 are simulated with unit amplitude over time 
interval [5,10] sec. Fig. 2 and Fig. 3 respectively show 
the generated residual signal r ( t )  for f = [ f i  

and f = [ 0 fi 1'. It can be seen that the generated 
residual shows good performance despite the unknown 
input. 

T 
0 ] 

-10 ' I .  I 
0 20 40 60 

time t(sec) 
Fig. 1. Unknown input d(t)  
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6 Conclusion 

In this paper, the fault detection filter design prob- 
lem for LTI time delay systems with unknown input is 
studid. By combining use left eigenstructure assign- 
ment FDI and H ,  optimization techniques, a novel a p  
proach of FDF design for LTI timedelay systems with 
unknown input has been proposed, in which complete 
decoupling of residual from delay-free unknown input 
is achieved by applying eigenstructure assignment FDI 
approach, while the influence of delayed unknown input 
is minimized in the sense of the H, norm. A simula- 
tion example is presented to demomtrate the achieved 
results. 
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