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. 
Similar to the- H,  n o m  optimization technique, the 

H- method has gained mu& attention recently, 
aims to study the worst-case fault sensitivity perfor- 
mance of a fault detection observer. An H -  norm was 
defined in [7, 141 as the nonrem value 
of the transfer function matrix from the fault to the 

This Paper deals with the robust fault detection (RFD) 
problem with the aid of the H- norm and H- index 
optimization technique and the LMI approach. A net- 
essary and sufficient condition is proposed for the de- 
sign Of RFD FWD problem with structured 
uncertainties in the system matrices is also considered. 
Iterative LMI algorithms are proposed to design RFD 
observers to enhance the fault detection and to attenu- 
ate the effects due to unknown inputs and uncertainties. 
We also consider the RFD problem over finite frequency 
range in which case no fnll column rank constraint is 
required on D for a system (A, B, C, D). Numerical ex- 
ample is employed t o  demonstrate the effectiveness of 

. .~ 

~~ ~ ~~~~ ~ ~~~ ~ ~ ~ ~~ ~~ ~ ~~ 

residual output at the specific frequency of w = 0. In 
11, 151, this definition was further extended from the 
single frequency w = 0 to  a number of finite frequency 
ranges. However, due to  the lack of efficient method 
to evaluate the proposed sensitivity measures, only nu- 
merical optimizations such as nonlinear programming, 
frequency grid method, and also genetic algorithm were 
used in evaluating these urouosed sensitivitv measures. - ~~ 

It should also be oointed out that these sensitivitv mea- the proposed methods. 

1. Introduction 
The research and application of model-based fault de- 
tection (FD) in automated processes have received con- 
siderable attention over the decades [3 ,4 ,6 ,8 ,  12, 13, 171 
. A fault is usually defined as an unexpected change in a 
system, such as component malfunction and variations 
in operating condition, which tends to degrade the over- 
all system performance. The purpose of FD is thus to 
determine the occurrence of fault in the system. 

based FD. In recent years, RFD observer design has 
been the subject of many published works. The H ,  
norm optimization is a robust design method with the 
original motivation rooted in the consideration of var- 
ious uncertainties. This technique is very suitable for 
handling uncertairities. After decades of development, 
it is now playing a leading role in treating robustness 
problem in control system. It is therefore reasonable to 
use this technique in designing RFD system. A number 
of approacbes using H ,  norm optimization techniques 
have been developed for the design of RFD observers 

Robustness is the most fundamental problem in model- 
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s u r e  are not truly worst-case measures due to the ex- 
clusion of possible zero singular values of the transfer 
function matrix. A true worshcase fault sensitivity mea- 
sure, H- indez, was proposed in [lo, 111 to include the 
possible zero singular values of the transfer function ma- 
trix. Specifically, the H- indez was defined as the mini- 
mum singular value of the transfer function matrix over 
a given frequency range. Note that the constraint of 
“non-zem singular value” is absent here, which makes 
tbe H- indez no longer a norm (hence the term indez). 
The frequency range can be either infinite (i.e. the entire 
frequency spectrum) or finite frequency intervals. More 
over, for infinite frequency spectrum case, a necessary 
and sufficient condition in terms of LMIs was established 
for the proposed H- indez. The case of finite frequency 
range was handled hy frequency weighting [lo]. 

However, these papers considered only unknown in- 
puts. System uncertainties were not considered. Strictly 
speaking, they can hardly be called RFD as system 
uncertainties were not considered. Therefore, a more 
general H- method to solve RFD problem with s w  
tem nncertaintia is needed. This has not been sys- 
tematically treated in previous fault detection studies 
[l, 7, 10, 11, 14, 151. 

In this paper, we consider the robust fault detec- 
tion problem for uncertain linear systems with the aid 



of the H ,  norm and H- index optimization techniques 
and the LMI approach. First, a necessary and suffi- 
cient condition is proposed for the design of RFD ob- 
servers in the absence of system uncertainties. Second, 
the RFD problem under structured uncertainties in the 
system matrices is also considered. Correspondingly, an 
iterative LMI algorithm is proposed to design RFD ob- 
servers. The RFD problem over finite frequency range is 
also considered, in which case the condition on the rank 
of D for a system ( A , B , C , D )  is no longer required. 
Numerical simulations are used to illustrate the effec- 
tiveness of the results. 

The paper is organized as follows. In Section 2, the 
RF’D problem considered in this paper is introduced, tw 
gether the performance index for facilitating the design 
of RF’D observers. The problem is formulated into an 
LMEbased optimization and iterative algorithm to de- 
sign RFD observers are given in Section 3. The FWD 
problem over finite frequency range is considered in Sec- 
tion 4. Section 5 provides numerical example and simu- 
lation results to illustrate the proposed approaches. Fi- 
nally, some concluding remarks are provided in Section 
6. 

Throughout the paper, for a real symmetric M ,  we 
used A4 > 0 (< 0) to denote its positive (negative) def- 
initeness. The spectral norm of M is denoted by IlMll. 
Zf is used to denote the set of all positive integers and 
“*” denotes the symmetric entries of a symmetric ma- 
trix. All matrices, if their dimensions are not explicitly 
stated, are assumed to be compatible. For a vector func- 
tion h(t), we define its L2 norm as 

2. Problem Formulation 
Consider the following uncertain linear system 

+Dw(t )  + F f ( t )  
i ( t )  = ( A  + AA(t))s( t )  + ( B  + A B ( t ) ) u ( t )  

Y ( t )  = (C + Ac(t))z(t)  + & 4 t )  + F f f ( t )  (1) 
where z(t) E W“ is the state vector, w ( t )  E Rm is the 
unknown input vector including uncertain disturbance, 
and process and measurement noises, y ( t )  E W‘ is the 
measurement vector, and f ( t )  E WP is the fault vec- 
tor. Here, A,  B ,  D ,  F, C, D ,  and Ff are known con- 
stant matrices with appropriate dimensions. Further- 
more, we assume that the pair ( C , A )  is observable, the 
uncertain system (1) is asymptotically stable, w(t)  is 
Lz-norm bounded, f ( t )  is norm bounded, i.e. f T ( t ) f ( t )  
is bounded. 

Suppose the uncertain structure of system (1) is given 

where “0” denotes “do not care”, FI ,  Fz, H I  and Hz are 
known constant matrices with appropriate dimensions 
and E(t)is an unknown matrix function of uncertain 
parameters satisfying 

ET(t)E(t)  < _ I  (3) 
The state observer under consideration is of the form 

- i ( t )  = A?f(t) + Bu(t) + Ly( t )  

V ( t )  = G ( t )  (4) 
where 2 = A - LC and L is the observer gain matrix to 
be designed. Define the error state and residual vector 

e( t )  = s(t) -%(t) 

then it follows from (1) and (4) that the error and resid- 
ual dynamic system can be described as 
e( t )  = x e ( t )  + ( F  - L F f ) f ( t )  

+ [ A A ( t )  - L A C ( t )  D - LD, ] 6(t) 
r(t)  = Ce(t) + [ A C ( t )  0 0, ]Gut)  + F f f ( t )  ( 5 )  

dt)  as 

5-w = Y ( t )  - a @ )  

A B ( t )  

where 

.. 
6(t) can be considered as the new disturbance input 
vector. 

For effective fault detection, the effect on sensitivity 
due to disturbance in the residual vector should be small 
while that due to faults should be large. Obviously, the 
H ,  norm optimization techniques can be used to handle 
disturbance attenuation problems. In the following, we 
introduce a notion to measure the effect due to faults. 

Definition 1 
tion G(s) over the frequency range [0,3] is defined as 

[lo, 111The H -  index of a transfer func- 

where 

Remark 1 

However, when the frequency range w c l e n r f ”  the wn-  
tezt, we simply vrite 11G(s)11- . 

denotes the minimum singular value 

To indicate the dependency on thefrequency 
range [0,4 we write the H -  indez O ~ G ( S )  m ll~(~)11‘0@] . 

Thus, the H- index of the fault transfer function 
H,f ( s )  can be used to describe a measurement of the 
worst case fault sensitivity, where the fault transfer func- 
tion H,f(s) from f(t)  to r( t )  are obtained as 

H V f ( s )  = C(s1-  Z)-’(F - L F f )  + Ff (7) 
Based on the above motivation, we study the design 
problem of a robust fault detection observer for system 

Problem 1: For system (1) with the observer (4), de- 
termine an observer gain matrix L such that 

(1) as follows: 

P(i) The error system (5) is asymptotically stable. 
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P(ii) The fault detection 'noisesignal' gain ratio 
J =  a 

7 2  

is small where 71 > 0, yz > 0, and 

Ilr(t)llz < 71 I l W ) l l z  (8) 
llH?f(S)lIL > Yz (9) 

3. MainResultS 
For condition (8), we have the following.lemma which is 
a variant of Bound Real Lemma [20]. 

Lemma 1 
tainties, giaen by  

e( t )  = x e ( t )  + ( D  - LD,)w(t) + ( F  - L F f )  f ( t )  

[16]Consider the system (5) without uncer- 

r ( t )  = Ce(t)  + D,w(t) + Ff f (t)  (10) 
Then the system (10) is asymptotically stable and satis- 
fies (8) i f  and only i f  one of the following two equivalent 
conditions holds: 

There exist P > 0 and L such that the following 
matrix inequality (MI) holds. 

A T P + P A C C T C  P(D-LD,)+CTD, < o  1 -CTLTP - PLC 
( D  - LD,)TP + DZC --,:I + D,'Dw 

(11) 

Now consider the system (5) which is suffering from 
uncertainties in the system matrices. At first, we intr- 
duce a useful lemma as follows. 

Lemma 3 
trices of appropriate dimensions with E ( t )  satisfying 

[9, 181 Let A, F ,  H and E ( t )  be real ma- 

ET( t )E( t )  5 I 
Then for any E > 0 

FE( t )H + (PE(t)H)T 5 €-IFFT + cHTH 

Thus, based on Lemma 3 and Theorem 1, we obtain 
the following theorem with proof omitted. 

Theorem 2 Consider the system (5) and suppose that 
Ff is of full column rank. POT giaen y1 > 0 and y2 > 0, 
the system (5) is asymptotically stable and satisfies (8) 
and (9) i f  there exist matrix P > 0,  symmetric matriz 
Q,  matrix L ,  and scalars ~i > 0,  i = 1,. . . ,3,  such that 
MIS (12) and (13) hold. 

* w z o  0 0 
* * w s  0 0 

0 I;::-.. '  - E d  * 

1 P ( D  - LD,) + CTD, 
0 
0 
n 

There exist P > 0 and P such that the following 

* T ~  + PA + @c 

0 
LMI holds. 

-@pT - pc 
DTP - D : F ~  + D:C 

-7:r + DTD, + E~DTF~FZTD,  
where 

< 0 wl = ATP + PA + CTC - CTLTP - PLC 
-?:I + llFzll HTHI + EQHTHT 

HI wz = [ 1 p D  - pow + Po,,, 
--,:I + D;D, 

In this ease, an obseruer gain is given by  L = 

On the other hand, for condition (9), the following w3 = - - , ~ I + E ~ H , T H ~  
lemma is introduced. 

Lemma 2 []]]Assume that the system (10) is asymp- 
totically stable, then inequality (9) holds i f  and only if 
there &t symmetric matrix Q and matriz L such that 

Based on Theorem 2, it is possible to construct an it- 
erative LMI algorithm to obtain a robust fault detection 
observer as given in the following schematic form. 

Algorithm 1: Given system matrices A ,  B, C, D, F ,  
D,, F f ,  HI, Hz,  FI and Fz. Let p1 2 0 and pz 2 0 be 
sacient ly  small adjustable parameters. Set i = 0, j = 
0 and m E Z+ to control the number of computational 

Q(F - L F f )  + CTFf 

-y:I + FTFj 
, 

(12) loops. 
1 ATQ + QA + CTC 

-dPLTQ - QLC 
(F - LFf)TQ + FTC 

Step 1 Choose a sufficiently large y1 = C and solve (13) 
where P = PL.  Ftom Lemmas 1 and 2, it is obvious that the follow- to fmd feasible solutions P and 

Compute L = P-lP and let y, = { and yz = 0. 
ing result holds. 

SteD 2 CM& Iterative Stem) . \  . I  Theorem 1 
Ff  is of full column rank. FOT giaen y1 > 0 and yz > 0, 
the system (10) is asymptotically stable and satisfies (8) 
and (9) i f  and only i f  there ezist matrix P > 0, symmet- 

Consider the system (10) and suppose that (a) Substitute L into (12) and (13) and find a feasible 

(b) Put i = i + 1. With P, Q obtained in Step 2(a) 
solution set of variables P, Q. 

. . .  and mth  ric matriz Q and matrix L such that MIS (11) and (12) 
hold. 71 := YI - pi > IIDwl l  72 := YZ + PZ < IlFf II 
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find a feasible solution L for LMIs (12) and (13). 
Store Li = L and 2. Repeat Step 2(b). If a fea- 
sible solution cannot be found, then L, = Li-1. 

(c) If the performance $ is less than some desired 
level, then a desired observer gain L = Li is 
found. STOP. 

Step 3 Set j = j + 1. If j < m, repeat Step 2, else STOP 
(the feasible solution cannot be found). 

Remark 2 Step 1 is always feasible for suficiently 
large y1 since, similar to item 2 of Lemma l,-MI (13) 
can be expressed in terms of LMI by setting P = PL. 
Moreover, for given P and Q,  MIS (12) and (13) be- 
come LMIs and a feasible solution L can always be ob- 
tained provided that p1 and p2 are sufficiently small. 
Therefore, Step 2 can always provide a local improve- 
ment through each itemtion. 

a 

Note that inequalities (12) and (13) in Theorem 2 
are MIS in P, Q and L.' In the following an iterative 
LMI approach will be proposed based on Theorem 2 
with proof omitted. 

Theorem 3 Consider the system (5) and suppose that 
Ff is of full column mnk. For given y1 > 0 and y2 > 0,  
the system (5) is asymptotically stable and satisfies (8) 
and (9) if there ezist matriz P > 0, symmetric matriz 
Q, mat+ L ,  and scalars &i > 0, i = 1 , .  . . ,3, such that 
the following LMIs (14) and (15) hold for given matrices 
PO, QQ, Lo. 

-v; 0 0 
* wz 0 
* * w3 
* * *  
* * *  
* * *  
* * *  
* * *  

* *  * * 

1: QF+CTFf N 
* 1 :  * 

where 

Q + CTLT Q 
0 F ~ L ~  
I 0 
* I 

PFi PFi +CTFz 
0 0 
0 0 

--Ed 0 
* v,' 
* * 
I * 
* * 
* * 

P P-CTLT 
0 0 
0 0 
0 0 
0 0 
0 0 

-1 0 
- D , T L ~  0 

* -I 

> 0 (14) 

P 
0 
0 
0 

- F ; L ~  
- I  
* 
* 
* 

< O  (15) 

M = ZQQo + ZQoQ - ZQoQo + CTLTLoC 
+C~L?LC - C ~ L O T L ~ C  + A ~ Q  + QA + cTc 

N ' = FfTLTLoFf f FfTLTLFf - FfTLTLoFf 
-r:I+FfTFf 

V; = ATP + P A  + CTC - 3PPo - 3PoP + 3PoPo 
- C ~ L ~ L ~ C - C ~ L : L C + C ~ L : L ~ C  

vi = - € a i -  F , T L ~ L ~ F =  - F,TL:LF~ + F,TL:L~F= 
v,' = - ~ : I + D : D , + E ~ D : F ~ F ; D , - D : L ~ L ~ D ,  

-D:L:LD~ + D,TL,TL~D, 

- E 1 I  HT 1 -r:I+llFzllH?Hi +EBH?H? 
Hi wz = [ 

w3 = - ~ : I + E ~ H ? H ~  

Remark 3 
obvious that Theorem 2 and Theorem 3 are equivalent. 

Based on Theorem 3, it is possible to construct an 
iterative LMI algorithm simiir to that in Algorithm 
1. However, such algorithm will not be proposed here 
because of space limit. 

When P = PO, Q = QO and L = LO, it is 

4. Finite Frequency Case 

In the previous sections, IIH,f(s)ll'O.+"' is considered 
over the full frequency spectrum, i.e. (3 = m in (6). 
However, in real applications, it would be preferred to 
consider the fault sensitivity within a finite low fre 
quency range including DC (U = 0), i.e. 3 is a finite 
number. Moreover, IIHr,(s)ll~~+"' is always zero when 
Ff is not of full column rank. In this case, the result 
proposed in Section 3 is no longer applicable. Unfor- 
tunately, such full column rank constraint on Fj is of- 
ten not satisfied in practice. Therefore, it is necessary 
to consider the case of llH7f(s)l[- over finite frequency 
range in which case the constraint on Ff can be avoided. 
In this section, Ff is assumed to be not of full column 
rank. 

In summary, for the finite frequency case, condition 
(9) in Problem 1 will be replaced by 

l lHrf(s)/ lp' > y2 foro 5 w < m 

At first, we have the following lemma which is a vari- 
ant of [15, Lemma 41. 

Lemma 4 
such that 

W € [ O , G ]  

Given transfer functions W(s)  and M ( s )  

IlW(s) + M(s)ll- > a (16) sup T[W(jw)]  = 6 , 

then 

Suppose the state space realization of W ( s )  is given 
by (A,,&, C,, Dv) .  A realization of T,.f(s) + W(s)  is 

Thus, based on Lemma 2 and Lemma 4, we obtain the 
following theorem with proof omitted. 
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Theorem 4 Consider system (5) and a given stable 
state space realization (Ar, B,, C,, D,) o f W ( s )  with Ff+ 
D, being offul l  column rank. Let 6 := sup a[W(jw)], 

and y1 > 0, yz > 0 .  Then system (5) is asymptotically 
stable and satisfies (8) and 

V€lO,D] 

IIHyf(s)ll!?' > 7 2  (17) 
if there e&t a matriz P > 0, symmetric matrices Q1, 
Q3, and matrices Q 2 ,  and L such that MIS (13) and (18) 
hold. 

r ATQi+QiA, ATQ, + Q2(A - LC) 

QI& + Q2F - QzLFf 
+ C D F  + C F f  

QTBr + Q3F - Q3LFt 
+drD,  + C?F, 

-(rz +6)21+DTDI +DTFt 
+FTD, + F T F ~  

+Cc, +CTC 

+CTC 
( A  - LC)=Q3 + Qs(A - LC) 

(18) , 

5.  Numerical Simulation 
In this section, a numerical simulation is given to demon- 
strate the applicability of the proposed approaches. Con- 
sider the uncertain linear system (1) with parameters as 
follows: 

r -5.2 0.65 6.5 1.3 1 
A = 1 -1.56 -2.6 0 2.6 1 

-1.3 0 -1.3 0 ' 
-0.26 0 3.9 -1.95 

1 0.06 
-3 0.04 

6 = F = [  j2], D = [  2 1 -0.08 0.02 

0.3 0 0.3 0 1 ' c = [  -0.3 0.3 0 0.3 

0.15 0.012 
D' = [ 0.3 0.015 ] ' Ff = [ ] ' 

HI = [ 0.2 0 0 0.2 1, 4 = 0.375 

It is obvious that IJH,,(s)~([O'+~) is always zero since 

Ff is not of full column rank. Thus, Problem 1 will 
be investigated over a finite frequency range [0,0.1] in- 
stead of the whole frequency range. With the aid of the 
techniques proposed in Section 4, a frequency weighting 
transfer matrix W ( s )  is selected as 

1 10.6753' 

0 

then a state space realization (A?, E?,, C,, 9) of W ( s )  
is given by 

Note that Ff + D, is of full column rank and 
6 = sup F [ W ( j w ) ]  = 0.0707. 

u€[O,O.l] 

Based on Algorithm 1, observer gain is designed by 
using MATLAB 6.1 with the LMI toolbox. A curve il- 
lustrating the variation of the value of y = 2 in the 
iteration is shown in Figure 1. After 60 times of itera- 
tions, y approaches 0.62 with y1 = 0.36 and y2 = 0.58, 
and the corresponding observer gain L is 

j=[ -3.6970 5.5797 I -0.1263 3.6037 

-4.9770 9.2223 

The goal of Algorithm 1 is to  design an observer gain 
such that the disturbance is attenuated and I I H . ~ ( S ) ~ ~ [ O ' ~ ' ~ ]  
is made large simultaneously. The results between case 
1 (observer gain is the zero matrix) and case 2 (observer 
gain is L: h m  Algorithm RFDODP1) are compared to 
illustrate the effectiveness of optimization. Attention 
is focused on the improvement in IIH.f(~)ll[o".'~. The 
numerical comparison shows that (IH,f(s)II[o.o'll is in- 
creased by 110.7% (from 0.5535 to 1.1662). 

The system is simulated with unit step input u ( t )  and 
unknown input w ( t )  = [ sin(2t)e-o~t  cos(2t)e-o~t 1' , 

For an actuator fault f ( t )  such that f ( t )  = -0.7, t 2 10s 
and f ( t )  = 0 elsewhere, Figure 2 shows the evolution of 
residual evaluation function r ( t )  responses due to ob- 
server gain L. From Figure 2, we can see that, despite 
the influence of uncertainties and unknown inputs, a 
threshold at 3~0.4 can easily be imposed on the residual 
signals to indicate the occurrence of fault at the time 
t = 10.489, i.e. the fault f ( t )  can be detected 0.48 sec 
after its occurrence. 

2.2069 -10.4713 

6. Conclusion 
In this paper, the RFD problem for linear time-inwiant 
systems under structured uncertainties is investigated 
with the aid of the H ,  norm and H- index optimization 
techniques and the LMI approach. It aims at enhancing 
the robustness to disturbance without sacrificing the FD 
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sensitivity. First, RFD problem is handled for system 
without structured uncertainties. A necessary and suf- 
ficient condition is proposed for the design of RFD o b  
server. Then result for uncertain system is given. This 
has not been systematically treated in previous fault de- 
tection studies. Moreover, the RFD problem over finite 
frequency range is also investigated, in which case the 
condition on the rank of D for a system ( A ,  B ,  C, D )  
is no longer required. Numerical simulation is used to 
illustrate the effectiveness of the results. 
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Figure 1. Variation of performance index y = $ 
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