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Abstract

This paper deals with the robust fault detection (RFD)
problem with the aid of the H,, norm and H_ index
optimization technique and the LMI approach. A nec-
essary and sufficient condition is proposed for the de-
sign of RFD observers. RFD problem with structured
uncertainties in the system matrices is also considered.
Tterative LMI algorithms are proposed to design RFD
observers to enhance the fault detection and to attenu-
ate the effects due to unknown inputs and uncertainties.
We also consider the RFD problem over finite frequency
range in which case no full column rank constraint is
required on D for a system (A, B,C, D). Numerical ex-
ample is employed to demonstrate the effectiveness of
the proposed methods.

1. Introduction

The research and application of model-based fault de-
tection (FD) in automated processes have received con-
siderable attention over the decades [3, 4, 6, 8, 12, 13, 17]
. A fault is usually defined as an unexpected changeina
system, such as compoenent malfunction and variations
in operating condition, which tends to degrade the over-
all system performance. The purpose of FD is thus to
determine the occurrence of fault in the system.
Robustness is the most fundamental problem in model-

based FD. In recent years, RFD observer design has
been the subject of many published works. The H
norm optimization is a robust design method with the
original motivation rooted in the consideration of var-
ious uncertainties. This technique is very suitable for
handling uncertairities. After decades of development,
it is now playing a leading role in treating robustness
problems in control systems. It is therefore reasonable to
use this technique in designing RFD systems. A number
of approaches using H,., norm optimization techniques
have been developed for the design of RFD observers
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[1, 2, 5,7, 16, 19].

Similar to the H,. norm optimization technique, the
H_ method has gained much attention recently, which
aims to study the worst-case fault sensitivity perfor-
mance of a fault detection observer. An H_ norm was
defined in [7, 14] as the minimum nonzero singular value
of the transfer function matrix from the fault to the
residual output at the specific frequency of w = 0. In
[1, 15}, this definition was further extended from the
single frequency w = 0 to a number of finite frequency
ranges. However, due to the lack of efficient method
to evaluate the proposed sensitivity measures, only nu-
merical optimizations such as nonlinear programming,
frequency grid method, and also genetic algorithm were
used in evaluating these proposed sensitivity measures.
It should also be pointed out that these sensitivity mea-
sures are not truly worst-case measures due to the ex-
clusion of possible zero singular values of the transfer
function matrix. A true worst-case fault sensitivity mea-
sure, H_ indez, was proposed in [10, 11] to include the
possible zero singular values of the transfer function ma-
trix. Specifically, the H_ index was defined as the mini-
mum singular value of the transfer function matrix over
a given frequency range. Note that the constraint of
“non-zero singuler value” is absent here, which makes
the H_ index no longer a norm (hence the term indez).
The frequency range can be either infinite (i.e. the entire
frequency spectrum) or finite frequency intervals. More-
over, for infinite frequency spectrum case, a necessary.
and sufficient condition in terms of LMIs was established
for the proposed H_ indez. The case of finite frequency
range was handled by frequency weighting [10].

However, these papers considered only unknown in-
puts. System uncertainties were not considered. Strictly
speaking, they can hardly be called RFD as system
uncertainties were not considered. Therefore, a more
general H_ method to solve RFD problem with sys-
tem uncertainties is needed. This has not been sys-
tematically treated in previous fault detection studies
{1, 7, 10, 11, 14, 15].

In this paper, we consider the robust fault detec-
tion problem for uncertain linear systems with the aid
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of the H,, norm and H_ index optimization techniques
and the LMI approach. First, a necessary and suffi-
cient condition is proposed for the design of RFD ob-
servers in the absence of system uncertainties. Second,
the RFD problem under structured uncertainties in the
system matrices is also considered. Correspondingly, an
iterative LMI algorithm is proposed to design RFD ob-
servers. The RFD problem over finite frequency range is
also considered, in which case the condition on the rank
of D for a system (A4, B,C,D) is no longer required.
Numerical simulations are used to illustrate the effec-
tiveness of the results.

The paper i3 organized as follows. In Section 2, the
RFD problem considered in this paper is introduced, to-
gether the performance index for facilitating the design
of RFD cbservers. The problem is formulated into an
LMI-based optimization and iterative algorithm to de-
sign RFD observers are given in Section 3. The RFD
problem over finite frequency range is considered in Sec-
tion 4. Section 5 provides numerical example ard simu-
lation results to illustrate the proposed approaches. Fi-
nally, some concluding remarks are provided in Section
6.

Throughout the paper, for a real symmetric M, we
used M > 0 (< 0) to denote its paositive (negative) def-
initeness. The spectral norm of M is denoted by || M]|.
Z* is used to denote the set of all positive integers and
“x" denotes the symmetric entries of a symmetric ma-
trix. All matrices, if their dimensions are not explicitly
stated, are assumed to be compatible. For a vector func-
tior h(t), we define its L, norm as

Il = [ #renwa

2. Problem Formulation

Consider the following uncertain linear system

2(t) (A+ AA(t)z(t) + (B + AB(t))u(t)

+Dw(t) + F£(t)

y(#) (C + AC(EN=(t) + Duw(t) + Fy f(t) (1)
where z(t) € R" is the state vector, w(t) € R™ is the
unknown input vector including uncertain disturbance,
and process and measurement noises, y(t} € R" is the
measurement vector, and f{¢) € RP is the fault vec-
tor. Here, A, B, D, F, C, D,, and Fy are known con-
stant matrices with appropriate dimensions. Further-
more, we assume that the pair (C, A) is observable, the
uncertain system (1) is asymptotically stable, w(t) is
La-norm bounded, f(t) is norm bounded, i.e. fT(£)f(t)
is bounded.

Suppose the uncertain structure of system {1) is given

by }:[

AA(R) AB()
AC(t) o

F
I3

|

] EQ(H H] @

where “o” denotes “do not care”, Fy, 5, H; and Hyare
known constant matrices with appropriate dimensions

"and E(t)is an unknown matrix function of uncertain

parameters satisfying
ET0E() <1 (3
The state observer under consideration is of the form
T(t) = AZ()+ Bul(t)+ Ly(t)
ity = C=(@) 4)
where A = A— LC and L is the observer gain matrix to

be designed. Define the error state and residual vector
r(t) as .
e(t) = =z(t)—-=()

r(t) y(t) —w(t)
then it follows from {1) and (4) that the error and resid-
ual dynamic system can be described as

&(t) = Ae(t)+(F—LF)f(t)
+[ AA(t) - LAC(t) AB() D - LD, ]@(t)
r(t) = Ce(t)+ [ AC({t) 0 D, |w(t)+ Frf(t) (5)
where
x(t)
tb(t) = u(t)
w(t)

w{t) can be considered as the new disturbance input
vector. .
For effective fault detection, the effect on sensitivity
due to disturbance in the residual vector should be small
while that due to faults should be large. Obviously, the
H. norm optimization techniques can be used to handle
disturbance attenuation problems. In the following, we
introduce a notion to measure the effect due to faults.

Definition 1 [10, 11]The H_ index of a transfer func-
tion G{s) over the frequency range [0, ] is defined as

IGEN2 = inf olG(w)] (6)
where g denotes the minimum singular value.

Remark 1 Tp indicate the dependency on the frequency
range {0, 0], we write the H_ indez of G(s) as ||G(s)||[f'a’] .
However, when the frequency range is clear from the con-
text, we simply write |G(s)||_ .

Thus, the H_ index of the fault transfer function
Hrt(s) can be used to describe a measurement of the
worst case fault sensitivity, where the fault transfer func-
tion H,¢(s) from f(t) to r{t) are obtained as

H,.f(s) = C(sI — A)"Y(F — LFy) + Fy {(7)
Based on the above motivation, we study the design
problem of a robust fault detection observer for system
(1) as follows:
Problem 1: ¥or system (1) with the observer (4), de-
termine an observer gain matrix L such that

P(i) The error system (5) is asymptotically stable.

1975



P(ii) The fault detection ‘noise-signal’ gain ratio

J=1
Y2
is small where v; > 0, v, > 0, and
r@ly < v lw(@)ll, (8)
M ey (Y- > (9)

3. Main Results

For condition (8), we have the following lernma which is
a variant of Bound Real Lemma [20].

Lemma 1 [16]Consider the system (5) without uncer-
tainties, given by

é(t) = Ae(t)+ (D — LDy)w(t) + (F — LFy)f(t)

r(t) = Celt) + Dyw(t) + Fyf(t) (10}
Then the system (10) is asymptotically stable and satis-
fles (8) if and only if one of the following two eguivalent
conditions holds:

1. There exist P > 0 and L such that the following
matriz inequality (MI) holds.

ATP+PA4CTC
-CTETP - PILC

(D-LD,)TP+DTC  —43I+DID,

. T
P(D~LD,)+C Dw] <0
) (11)
2. There exist P > 0 and P such that the following
LMTI holds.

T : o~
[ ATPL PA+CTC PD - BD,, +CTD,

-CTPT - PC
DTp-pIPT 4+ DTC

<0

In this case, an observer gain is given by L = P~1P.
On the other hand, for condition (9}, the following

lemma is introduced.

Lemma 2 [11]Assume that the system (10) is asymp-
totically stable, then ineguality {9) holds if and only if
there exist symmetric matriz @ and matriz L such that

Q(F -~ LF;)+CTFy

ATQ+QA+CTC
~CTLTQ - QLC >0
(F—LFs)TQ + FfC —yiI + Ff Fy 12
12

From Lemmas 1 and 2, it is obvious that the follow-
ing result kolds.

Now consider the system (5) which is suffering from
uncertainties in the system matrices. At first, we intro-
duce a useful lemma as follows.

Lemma 3 [9, 18] Let 4, F, H and E(t) be real ma-
trices of appropriate dimensions with E(t) satisfying
ETME@ <I
Then for any e >0
FE)H + (FE(t)H)” < 'FF¥ + ¢eHTH

Thus, based on Lemma 3 and Theorem 1, we obtain
the following theorem with proof omitted.

Theorem 2 Consider the system {5) and suppose that
Fy 1s of full column rank. For given v, > 0 and v, >0,
the system (5) is asymptotically stable and satisfies (8)
and (9) if there exist matriz P > 0, symmetric matriz
Q, matriz L, and scalars ¢; > 0,1 =1,...,3, such that

Mls (12} and (13) hold.

P(Fy - LF)
Wl 0 0 PF1 +CTF2
* Wz 0 0 0
* * Ws 0 0
* * *  —eal 0
* * * * _53I
* * * * *
P(D - LD-w) + CTDw
0 .
0 <0 (1)
. 0
—2I+ DID. + e DI R FI Dy
where
W, = ATP+PA+CTC-CTLTP-PLC
w, — |~ +IRIETH +eHTH] HT
mH —e1d
Wi = -+il+eHIH,

Based on Theorem 2, it is possible to construct an it-
erative LMI algorithm to obtain a robust fault detection
observer as given in the following schematic form.

Algorithm 1: Given system matrices A, B, C, D, F,
Dy, Ff, H,, H,, Fj and F;. Let iy > 0 and Yo > 0 be
sufficiently small adjustable parameters. Set i =10, j =
0 and m € Z* to control the number of computational
loops.

Step 1 Choose a sufficiently large v, = ¢ and solve (13}

to find feasible solutions P and P where P = PL.
Compute L = P™1P and let v; = and v, = 0.

Step 2 (Main Iterative Steps)

Theorem 1 Consider the system (10) and suppose that
Fy is of full column rank. For given v, >0 and v, > @,

the system (10) is asymptotically stable and satisfies (8)

and (9) if and only if there exist matriz P > 0, symmel-

ric matriz @ and matriz L such that MIs (11} and (12)

hold. :
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{a) Substitute L into (12} and (13) and find a feasible
solution set of variables P, .

(b} Put i =i+ 1, With P, @ obtained in Step 2(a)
and with

"Yl =%y — [-51 > HDwH 3 'YZ = 'TZ + p’? < ”Ff"



find a feasible solution L for LMIs (12) and {13).
Store L; = L and ;% Repeat Step 2{b). If a fea-
sible solution cannot be found, then L; = L;_;.
(c) If the performance ! is less than some desired

level, then a desiredz cbserver gain L = L; is

found. STOP.

Step 3 Set j = 7+ 1. If j < m, repeat Step 2, else STOP

(the feasible solution cannot be found).

Remark 2 Step 1 is always feasible for sufficiently
large v, since, similar to item 2 of Lemma 1, MI (13)
can be exrpressed in terms of LMI by setting P = PL.
Moreover, for given P and @, MIs (12} and (13) be-
come LMIs and o feasible solution L can always be 0b-
tained provided thet u, and p, are sufficiently small
Therefore, Step 2 can always provide a local improve-
ment through each iteration. ’

Note that inequalities (12) and (13) in Theorem 2
are MlIs in P, ¢ and L. In the following an iterative
LMI approach will be proposed based on Theorem 2
with proof omitted.

Theorem 3 Consider the system (5) and suppose that
Fy is of full column rank. For given v, > 0 and v, > 0,
the system (5) is asymptotically stable and satisfies (8)
and (9} if there ezist matriz P > 0, symmetric matriz
Q, matriz L, and scalars €; > 0, ¢ = 1,...,3, such that
the following LMTs {1/} and (15} hold for given matrices
P07 QO’ Ly.

M QF+CTF; Q+CTLT Q@
* N 0 FTLT
f
% ¥ I 0 >0 (14)
* * * I
'V, 0 0 PR PR+C'R, P
* W, 0 0 0 0
* * Wi 0 0 0
* * *  —gal 0 0
* * * * Vz‘ __FQTLT
* * * * * ~I
* * * * * *
* * * * * *
| * * ¥ * * *
PD+CTDW P P“CTLT-
0 0 ’ 0
0 0 0
0 0 0
0 0 0 <0 (15)
0 0 0
Vs -DTLT 0
* -I 0
* * ~T ]
where
M = 2QQo+2QuQ —2QoQo+ CTLTL,C
+CTLTLC — CTLTLoC + ATQ + QA+ CTC
N'= F{LTLoFy + F{LJLF; — F] L§ LoFy

73 + F{ Fy

Vi = ATP+PA+CTC—-3PP —3PP+3FPP
~CTL Lo~ T LT L + CTEY Ly
Vo = —eod—FFLTLoF:— FTLILF + FTLYLoF
Vs = -1+ DIDu+eDIRFID, - DIL LoD,
—-DILYLD, + DILY LoD,
W = [ I+ BRI L +esHHY  H ]
. H —er T
Was = —I+eHTH,

Remark 3 When P=Fy, @ =Co and L = Lg, it is
obvious that Theorem 2 and Theorem § are eguivalent.

Based on ‘Theorem 3, it is possible to construct an
iterative LMI algorithm similar to that in Algorithm
1. However, such algorithm will not be proposed here
because of space limit.

4. Finite Frequency Case

In the previous sections, [|H,.f(s)||[f’+°°) is considered
over the full frequency spectrum, ie. @ = co in (6).
However, in real applications, it would be preferred to
consider the fault sensitivity within a finite low fre-
quency range including DC {w = 0}, i.e. @ is a finite
number. Moreover, ||H.f(s)||+* is always zero when
Fy is not of full column rank. In this case, the result
proposed in Section 3 is no longer applicable. Unfor-
tunately, such full column rank constraint on Fy is of-
ten not satisfied in practice. Therefore, it is necessary
to consider the case of ||H,f({s)||_ over finite frequency
range in which case the constraint on Fy can be avoided.
In this section, F} is assumed to be not of full column
rank.
In summary, for the finite frequency case, condition
(9) in Problem 1 will be replaced by

IHee (N >
At first, we have the following lemma which is a vari-
ant of 15, Lemma 4].

for0<o< o

Lemma 4 Given transfer functions W{s) and M(s)
such that

sup F[W(iw)l=48 ,
we[0,@]

IW(s) + M(s)l|l_ > (16)

* then

1977

1ML > a6

Suppose the state space realization of W(s) is given
by (A, Br,Cr, D;). A realization of Tr¢(s) + W(s) is

(4,5,C,D) = ([}:)r A—OLC}’
[ ],[Cr C],Dr+F,e)

B,
F—LF;

Thus, based on Lemma 2 and Lemma 4, we obtain the

following theorem with proof omitted.



Theorem 4 Consider system (5) and a given stable

state space realization (A,, By, Cr, DY) 6f W (s) with Fy+

D, being of full column rank. Let § := sup W {jw)],
we[0,&]

and 4, > 0, 75 > 0. Then system (5) is asymptotically

stable and satisfies (8) and

A0 e an
if there exist a matriz P > 0, symmetric matrices Q,,
Q3, and matrices Qq, and L such that MIs (13) and {18)
hold.

ATQ1 + Q1 4, A7Qz + Q2(A~ LC)

+CIe, +cfc
. (A - LCY'Qs + Qa{A ~ LO)
+CcTe
* *
Q1B+ Q2F — QaLFy
+CTD. + CTFy
QIB, + QsF — QsLFy
+CTD, +CTFy >0 (18)

—~{v, + 82T+ DT D, + DIF;
+Ff D, + F{ Fy

Remark 4 For Theorem {, it is possible to obtain an
algorithm similar to that in Algorithm 1. The solution
. may be different depending on various chosen W({s). It
is obvious that W{s) plays an important role in The-
orem 4. Generally speaking, a better W(s) should be
chosen to satisfy: (i) &§ = sup ]E[W(jw)] is small;
) we[0,@
(%) e[inf+ )g_[W(jw)] i large with wg > @.
wlwa,toc

5. Numerical Simulation

In this section, a numerical simulation is given to demon-
strate the applicability of the proposed approaches. Con-
sider the uncertain linear system (1) with parameters as
follows:

-52 065 6.5 1.3

-1.56 -26 O 26

4=1_13 o -13 o |
—-026 0 39 -195
1 1 006
1 -3 004
Bo= F=1 45 1» P=| 2 _ous |
-2 1002
o - [—03 03 0 03]
T 103 o 03 o0 |
0.15 0.012 _Jo
Do [0.3 0.015]’ Ff*[o]'
03
0 0.25
R=19o Fz:[o.zs]’
0.3
Hi = [02 0 0 02}, H,=0375

It is obvious that || H, 4 (s)}! [0+90} i always zero since

F; is not of full column rank. Thus, Problem 1 will
be investigated over a finite frequency range [0,0.1] in-
stead of the whole frequency range. With the aid of the
techniques proposed in Section 4, a frequency weighting
transfer matrix W (s) is selected as

50{a40.1) ] [ 50 _ T0.6753 ]

Wis) = [ s+6oo Oa+1oo

then & state space realization (A, B,.,C,., D,) of W(s)

is given by
—100 0 70.6753
A= [ 0 —mo]’ B’=[ 0 }
-70.6753 0 50
o - [ 8. ne ]

Note that £y + D, is of full column rank and
§= sup FW(jw)] = 0.0707.
w€e(0,0.1]

Based on Algorithm 1, observer gain is designed by
using MATLAB 6.1 with the LMI toolbox. A curve il-
lustrating the variation of the value of ¥ = %:» in the
iteration is shown in Figure 1. After 60 times of itera-
tions, v approaches 0.62 with «; = 0.36 and v, = 0.58,
and the corresponding observer gain L is

—0.1263  3.6037
r— 22069 -10.4713

—-4.9770  9.2223

—3.6970  5.5797

The goal of Algorithm 1 is to design an observer gain
such that the disturbance is attenuated and [| 7, 4(s) [jio0-1]
is made large simultanecusly. The results between case
1 (observer gain is the zero matrix) and case 2 {observer
gain is £ from Algorithm RFDODP1) are compared to
illustrate the effectiveness of optimization. Attention
is focused on the improvement in ||H,s (3)1}[2'0'11 . The

numerical comparison shows that {|[H, s (s)||[f’0‘1} ig in-
creased by 110.7% (from 0.5535 to 1.1662).

The system is simulated with unit step input «(¢) and
unknown input w(t) = | sin{2t)e~%* cos(2t)e~0-1t ]T.
For an actuator fault f(t) such that f(t) = —0.7,¢ > 10s
and f(t) = 0 elsewhere, Figure 2 shows the evolution of
residual evaluation function r(£) responses due to ob-
server gain £. From Figure 2, we can see that, despite
the influence of uncertainties and unknown inputs, a
threshold at +0.4 can easily be imposed on the residual
signals to indicate the occurrence of fault at the time
t = 10.48s, i.e. the fault f(2) can be detected 0.48 sec
after its occurrence.

6. Conclusion

In this paper, the RFD problem for linear time-invariant
systems under structured uncertainties is investigated
with the aid of the H_, norm and H_ index optimization
techniques and the EMI approach. It aims at enhancing
the robustness to disturbance without sacrificing the FD
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sensitivity. First, RFD problem is handled for system
without structured uncertainties. A necessary and suf-
ficient condition is proposed for the design of RFD ob-
server. Then result for uncertain system is given. This
has not been systematically treated in previcus fault de-
tection studies. Moreover, the RFD problem over finite
frequency range is also investigated, in which case the
condition on the rank of D for a system (4, B.C, D)
is no longer required. Numerical simulation is used to
llustrate the effectiveness of the results.
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Figure 2. Evolution of residual evaluation function



