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ABSTRACT: A unified gradient-based treatment 
for optimizing certain performance indices under the 
constraint of pole assignment is provided. By intro- 
ducing a free optimization parameter and solving a 
Sylvester matrix equation, compact gradient formulas 
are derived for general purpose gradient descent nu- 
merical implementation. Special problems including 
robust stability pole assignment and 7 - i ~  sensitivity 
reduction are employed to illustrate the technique. 
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1 Introduction 

A classical technique in control system design for 
state-space systems is pole assignment. For a com- 
pletely state controllable realization with two or more 
inputs, the feedback gain to achieve a specified set 
of closed-loop poles is in general nonunique. Such 
nonuniqueness may be exploited to optimize a vari- 
ety of system performance indices. The most common 
application of this idea is robust pole assignment (see 
[l, 6 ,  7, 8, 111 and references therein). Relatively 
speaking, there has been little work on utilizing the 
freedom in the state feedback gain matrices to opti- 
mize other performance criteria, for instance, relat- 
ing to stability radius and sensitivity reduction. The 
obvious reason is that pole assignment itself imposes 
constraints to the feedback systems and inevitably re- 
duces the overall achievable performance. However, 
in certain robustness maximization problems, specific 
restrictions are required in order to obtain finite feed- 
back gain solutions. Also, it is often necessary to 
fix or approximately fix the closed-loop poles due to 
practical considerations, such as transient character- 
istics. The tradeoff between pole assignment con- 
straints and optimum performance is justifiable in 
view of control system implementation since optimal 
solutions may have undesirable transient behavior or 
unacceptably large gain. On the other hand, the spec- 
ification of closed-loop poles may provide significant 
simplification on the solution procedures to the oth- 
erwise unconstrained optimization problems. 
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Motivated by the aforementioned reasons, this paper 
considers the optimization of a class of system perfor- 
mance indices under the constraints of pole assign- 
ment via state feedback. To fix the idea, the robust 
stability pole assignment problem and the sensitiv- 
ity reduction problem will be discussed. The robust 
stability pole assignment for multivariable systems in- 
vestigated here is to maximize certain lower bounds 
of the stability radius and, as such, is a problem not 
systematically addressed. 

2 Performance Optimization with Pole 
Assignment Constraint 

Let { A I ,  A2, ' . . , A,} be a set of self-conjugate complex 
numbers corresponding to the set of desired poles. 
Assume that there are n' complex conjugate pairs, 
A2i-1, A2i = ai f Pi j ,  i = 1 ,2 , .  . . , n', define 

It is assumed that the eigenvalues of A are distinct, 
then for a given controllable pair ( A ,  B ) ,  A E R"'" 
and B E RnX", the problem of pole assignment by 
state feedback is to choose feedback matrix F ,  such 
that 

V-l(A + BF)V = A (2) 

for some nonsingular V. A state feedback matrix F 
is said to be admissible if the pole assignment con- 
straint (2) is satisfied. Without loss of generality, B 
is assumed to have full column rank m > 1 and thus 
there are infinitely many admissible F .  

We use tr(M), ~IMIIF, a ( M ) ,  and i ( M )  to denote 
the trace, Frobenius norm, maximum singular value, 
and maximum eigenvalue of M respectively. 

2.1 Robust Stability Pole Assignment 

Consider the following uncertain system: 

k = ( A + A ) x + B u  (3) 
1170 



where x E R" is the state vector, U E R" is the 
input vector, and A is a matrix representing the un- 
certainties. Under static state feedback U = Fx, the 
closed-loop system is given by 

2 = ( A  + B F  + A)x (4) 
Suppose that A + BF is stable, then from [lo], the 
closed-loop system (4) is robustly stable if 

( 5 )  

where P = PT > 0 satisfies 

( A  + BF)TP + P ( A  + B F )  = -21 

On the other hand, Hinrichsen and Pritchard (51 give 
a frequency domain characterization of the allowable 
uncertainty for robust stability as follows. 

With %(.) denoting the real part, notice that 

~upb[(jw1-A-BF)-~] 5 a(V)@(V-') m q  I%(Xi)l-' 

and that the eigenvalues of A are given a priori, 
these suggest the consideration of a simpler index, 
B(V)@(V-l), which is the spectral or Euclidean con- 
dition number of V. Although V is in general not an 
eigenvector matrix of A + BF, there exists a uni- 
tary matrix L such that V L  is an eigenvector ma- 
trix due to that A is real and normal. As a re- 
sult, (s(V)B(V-') = B(VL)B(LTV-l). Notice that 
the spectral condition number is traditionally used 
as a measure of eigenvalue robustness when a matrix 
is under unstructured perturbation (see [9]). Due to 
a few technical reasons [2, 81, the minimization of the 
index B2(V)+(T2(V-') is preferable and that any min- 
imizer of which serves as a minimizer of B(V)B(V-'). 
Finally, as in [5 ] ,  Dickman [4] has also considered 
the bound in (6)  and suggested the minimization of 
the performance index IIA + BFII, . Unfortunately, 
Dickman did not offer any systematic procedures to 
minimize this index in his paper. 

w a 

Consequently, robust control system design for un- 
structured perturbation in A+ B F  may be considered 
by minimizing J1 := B(P),  J2 := a (B2(V) + B2(V-l)) 
or 53 := 4 [ [ A  + BFII;, all under the constraint of 
(2). Now, we can formulate the Robust Stability Pole 
Assignment problems as: 

Opt 1 : inf J1 
s.t. ( A  + BF)*P + P(A + B F )  = -21 

V-l (A  + BF)V = A 

s.t. V-'(A + BF)V = A 

s.t. V-l(A + BF)V = A 

Opt 2 :  inf J2 

Opt 3 :  inf J3 

2.2 Sensitivity Reduction 

Consider the following system with disturbance: 

~ . = A x + B u + E w ,  Y = X ,  z = C X + D U  (7) 

where w E R' is the exogenous disturbance, U E R" 
the control, y E R p  the measured output and z E Rq 
the controlled output. The objective is to minimize 
certain induced norm between the controlled output 
z and the exogenous disturbance w. This problem is 
sometimes referred to as the (Almost) Disturbance 
Decoupling Problem. In particular, under feedback 
U = F y  = Fx, one aims to minimize the 'Fl2 norm of 
the transfer function from w to z ,  given by G(s) = 
(C+DF)(SI-A-BF)-~E. As (A ,  B )  is controllable, 
this corresponds to a iregular ' I f 2  optimal control with 
state feedback problem when D has full column rank 
and the transfer function C(s1- A)-'B + D has no 
invariant zeros on the imaginary axis. Suppose that 
A + B F  is stable, then the 'If2 norm of G(s) is given 
by llG(s)112 with 

llG(s)IIg := tr(ETPE) =: J4 

where P = PT 2 0 satisfies 

(A+BF)TP+P(A+BF) = - (C+DF)T(C+DF) 

In the case where the poles of A + BF are not fixed a 
priori, it is possible t!hat F may become unbounded 
in order to make the 'Fl2 norm small. To regularize 
the problem, the following 7 - l ~  optimization under the 
constraint of pole assignment is considered. 

(8) 

Opt 4 :  infJ4 
s.t. i(A + BF)TP + P(A + B F )  

= -(C + DF)T(C + D F )  
'V-'(A + BF)V = A 

Unlike the 'If2 optimd control problem with state 
feedback, the present sensitivity reduction problem 
always has solution as long as (A ,  B )  is controllable. 

The optimization problems discussed in this section 
belong to a general class of Pole Assignment Perfor- 
mance Index Optimization Problems: 

PAPIOP : inf J ( J  = J ( F )  or J = J ( V ) )  
s.t. V-l (A  + BF)V = A 

3 Gradient-based Optimization 

3.1 Parametric Optimization 

In this paper, we will follow the idea of [3] to parame- 
trize all the feedback matrices F and the eigenvector 
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matrices V that satisfy (2) as the function of a free 
parameter U E Rmxn. This is achieved by solving a 
parametric Sylvester equation in U and then recov- 
ering the feedback matrix F = UV- ' .  In this way, 
the performance indices become functions of the free 
parameter U .  

Given a controllable pair (A, B )  and a real A of the 
form in (1) such that A and A have no common eigen- 
values, then a function f : U -+ (F,  V )  is defined as 
follows. For U E Rmxn, solve 

AV - V A  = -BU 

for V and if V is nonsingular, let F = UV-l .  The 
function is denoted as (F ,  V )  = f ( U )  with domain, 

(9) 

V f  := {U E RmXn I V in (9) is nonsingular} 

and range, Rf  = f ( V f ) .  

Theorem 1 [l, 61 

(a) V f  is a dense open set in Rmxn. 

(b) { ( F , V ) : V - l ( A + B F ) V = A } = R f =  f(Vf).  

Since the performance indices discussed in Section 
2 are uniquely determined by F and V ,  they are 
functions of the free parameter U. Consequently, 
they can be expressed as Ji(U) for i = 1, . . . ,4. As 
(F ,  V )  = f ( U )  is a rational function and D f  is an 
open set, so F and V are differentiable with respect to 
U for all U E V f .  Thus exists if J, is differentiable 
with respect to F or V .  It should be noted that J1 
and 5 2  may be nondifferentiable at some points when 
the multiplicity of the largest singular value of P, V 
or V-l is greater than one. In this case, other in- 
dices such as tr(P),  IIPIIF, $ (IlVll$ + llV-lll$) may 
be considered. 

3.2 Gradients for Optimization 

3.2.1 General Case 

A unified approach is taken here to treat all kinds of 
optimization problems under the constraint of pole 
assignment. To achieve this task, we assume that a 
given performance index J is differentiable with re- 
spect to the state feedback matrix F or the closed- 
loop eigenvector matrix V. This distinction is not 
only more convenient for the purpose of gradient com- 
putation of J which is uniquely defined by F (for ex- 
ample, J1, J3, and J4) but is sometimes necessary. 
This is because there are performance indices which 
are not differentiable with respect to F (for example, 
J2 is not well-defined for any given F ) .  By using the 

function f ( U )  defined in Section 3.1, the constraint 
V-'(A + B F ) V  = A may now be replaced with 

f ( U )  : AV - V A  = -BU, F = UV-',  U E V f  

Theorem 2 Suppose U E V f  and 

AV - V A  = -BU, F = U T 1  

(a) For J = J ( F ) ,  i f  is known, then 

dJ  - = (g) V-T + BTYT 
dU (10) 

where 
solution of 

denotes (V-l)T and Y is the unique 

(b) For J = J ( V ) ,  if % is  known, then 

where Y is the unique solution of 

Y A - A Y = -  (g)T (13) 

Proof: Omitted due to page limit. 0 

Remark 1 &om the result in Theorem ,%'(a), at a 
differentiable minimum point of J ( F ( U ) ) ,  Y becomes 
an eigenvector matrix of A + BF. I n  the case of 
J ( V ( U ) )  in Theorem 2(b), Y must be singular and 
its null space contains the range space of B.  Since 
the null space of Y is always contained in the un- 
observable subspace of the pair ( ( ~ 3 J / d v ) ~ ,  A),  this 
subspace would also contain the range space of B. 

3.2.2 Special Cases 

In the following, we give the gradient for each in- 
dex discussed in Section 2. The results are sum- 
marized in Table 1. In the table, w is the normal- 
ized eigenvector of P corresponding to the eigen- 
value a(P)  (since P = PT). Also, we define J, = 

Ji  := J,Jb. Furthermore, we have ?i(V) = d m  
and assumed that (VTV) is a simple eigenvalue of 
VTV,  with corresponding normalized eigenvector w, 
(wTw, = 1) and X((V-l)TV-') is a simple eigen- 
value of (V-l)TV-', with corresponding normalized 
eigenvector W b  (wrwb = 1). 

50 1 - 2  (v), Jb = +a2(v-'), then J2 = J, + Jb and 

1172 



I I I  I I I 

J; 

53 
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Sylvester Equations 
a J  - OJ J -  a(.) aU 

J1 s = 2 B T P X  2 B T P X V - T  + B T Y T  
Y A  - A Y  = 2 V - l X P B F  

% = $lv-lll;vT - .LIIVll$V-TV-1V-T 1' Y A - A Y =  
-QIIV--1112,VT + $ ~ ~ V I I 2 , v - 1 V - T v - '  

$$ = B T ( A +  B F )  
% = 2 M X  

B T ( A  + B F ) V - T  + B T Y T  
2 M X V - T  + B T Y T  

Y A  - AY = V - l ( A  + B F ) T B F  
( A  + B F ) X  + X ( A  + B F ) T  = -EET 

M := B T P  + DT(C + D F )  Y A  - AY = 2 V - I X M F  

I Y A - A Y =  I 

The gradients are obtained under the assumption 
that the maximum singular values concerned are sim- 
ple and this is the generic situation. It may hap- 
pen that the infimum of a performance index to oc- 
cur at points where the maximum singular value has 
multiplicity greater than one. Algorithms may, how- 
ever, be suitably designed to terminate at these non- 
differentiable critical points such as by considering 
the magnitude of difference between the largest two 
singular values less than certain prescribed value as 
the stopping criterion. Alternatively, smooth perfor- 
mance indices Ji := tr(P), J l  := ~ ~ ~ V ~ ~ ~ ~ ~ V - l ~ ~ ~  
may also be used. 

4 Numerical Example 

The matrices A, B below represents a nominal distil- 
lation model [7, 81 with 5 states and 2 inputs. 

-0.1094 0.0628 0 0 
1.3060 -2.1320 0.9807 0 

A =  1 0 1.5950 -3.1490 1.5470 

B = [ 0.0838 ;;;; -0.1396 I;:;;;;] 

0 0.0355 2.6320 -4.2570 1.8550 
0 0.00227 0 0.1636 -0.1625 

The open-loop poles are at -0.077324, -0.014232, 
-0.89531, -2.8408 and -5.9822. 

Robust Stability Pole Assignment: 

The desired closed-loop poles are -1 & j ,  -0.2, -0.5 
and -1. The performance indices J1,  J i ,  J2, J;, Jg,  
and J3 are minimized and the results are compared 
on the size of the implied robust stability bound. To 

facilitate comparison, we define 
1 

(\(SI - A - BF*)-111, 
and 7 2  := 

1 
y1 := (T[P(F*)] 
where F* denotes the optimal solution of one of 
the above performance optimization problems. Ta- 
ble 2 summarizes the results for comparison (figures 
in brackets correspond to the maximum values over 
the whole iteration processes). 

From Table 2, it can be seen that by minimizing 
J1 the obtained y1 and 7 2  are the largest. In fact, 
the minimizer of the smooth Ji appears to be a good 
compromise in the case if a smooth performance in- 
dex is insisted. The performance indices J2, J; and 
J!, which all relate to the condition numbers of the 
closed-loop eigenvector matrix, do not give good per- 
turbation bounds at  their minimized values. The per- 
formance index J3 does not reflect well on the allow- 
able size of the norm-bounded perturbation A. Fi- 
nally, the use of gradie:nt formulas for the nonsmooth 
indices J1 and Ji derived based on the assumption 
of distinct eigenvalues does not present any practical 
difficulties in the optimization process. 

Sensitivity Reduction: 

described by (7) where C, D and E are as follows 
The same model is now subjected to disturbance 

1 0 0  
1 0 0  

0 1 0  
0 0 0 1 0 , D = O 3 x 2 ,  E =  
0 0 1 0 0  

0 0 0 0 1  1 0 0 1  

c= [ 
With the same prescribed set of closed-loop poles, it 

is found that a minimizing solution is given by 
-51.6668 135.5339 -296.9035 240.2631 -30.1735 

F;4 = [ -25.0055 62.3'744 -124.4031 92.0061 0.1746 ] 
with J*(F;,) = 4.5571, and llF;411~ = 443.0413. If 

the pole assignment requirement is lifted, the sensi- 
tivity reduction problem with A + B F  stable corre- 
sponds to a singular optimal control problem since 
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Table 2. Comparison of Performance Indices Table 2. Comparison of Performance Indices 
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5 Conclusion 

Robust designs for state-space systems based on per- 
formance index optimization with state feedback pole 
assignment constraints are considered. By exploiting 
the extra degrees of freedom beyond pole assignment, 
a unified gradient-based treatment is offered through 
the introduction of a free parameter in the optimiza- 
tion process. The robust stability pole assignment 
and H2 sensitivity reduction are used to illustrate the 
technique. 
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