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Abstract 
This paper investigates the problem of actuators 

subject to both amplitude and rate constraints. Previous 
works studied these saturation types separately. Here a 
compensation structure catering to both constraints is 
proposed. Realizability of the compensator and its 
necessary conditions to maintain linear stabilities are 
presented, conforming to other established results. A 
simple design method of combining two individually 
selected compensators is proposed. Discussions focus 
on analysis of nonlinear stability when both saturations 
occur simultaneously.. The analysis resorts to an 
approximation of frequency domain methods, enabling 
necessary conditions for asymptotic stability to be 
investigated A numerical example demonstrates the 
procedures and success of the proposed methodology. 

analysis are simplified. 
The content of the paper is as follows. In 92, a 

compensator is proposed and the stability of the 
compensated system is studied in $3. A simple 
compensator design procedure is presented in 94. 
Stability analysis for the rate and amplitude constrained 
system with saturation compensation is illustrated via 
an example in $5.  

2. Compensation of rate-amplitude constraints 
The general linear system with its actuator subject 

to both rate and amplitude constraints is shown in 
Fig.1. Let G be the transfer function of the plant, and 
the linear controller be described by 

m " 

1. Introduction 
Practical control systems often encounter both rate 

and amplitude constraints. Because of the complexity 
associated with multiple nonlinearities, most of the 
earlier studies considered only amplitude constraints 
[5,8]. Specific systems with multiple saturations were 
discussed [ 1,2,5] but more general results are not 
available. Nonlinearities in parallel or in series were 
considered in [ 11 conceming stability analysis. 
However, compensated control systems with rate and 
amplitude constraints are inter-connected and 
established results could not be applied immediately. 

In rate and amplitude constrained systems, the 
sequence of the type of saturation is important. For 
example, control valves are often rate constrained first, 
as it is unlikely that it would immediately reach the fully 
open (or closed) position giving amplitude constraint. 
Another example is a robot arm, which is velocity 
constrained before it reaches its working envelop and 
becomes position constrained. This realization and 
identification of the type of saturation sequence has the 
advantage that compensator designs and stability 

where y is the system output, w is the reference input 
and v is the controller output. R, S, Tare polynomials in 
Laplace transform variable s for analogue systems or 
backward shift operator i' for digital ones. The 
arguments are omitted for convenience. R is assumed to 
be monic. 

Let the rate and amplitude constraints for the 
actuator be given by 

%ax 3 V 2 'ma, 

v , Umin I v I U,, (2.2) 
%in 7 v 1. Umin 

v 2 U,, 

U ( t )  = - v , Umin I v s timax 

%in 7 v s U,in 
(2.3) 

du(t) = 1 ' 
dt 

where {U,,,, u,in} are the amplitude limits and { z i  
U are the rate limits. 

Following [3], the control that cannot be 
implemented by the actuator due to its rate and 
amplitude constraints is modelled as nonlinear 
disturbances and are defined as follows 
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U,, - V  3 v 2 U,, 

v I Umin 

v 2 U" 

Ij I Um,, 

6, ( t )  = 0 , Umin I v I U,= (2.4) 
Umin - V  , 

Um, -+  , 
Umin 5 v I U,,,, (2.5) 

1 
1 .  umin -v , 

6, ( t )  = 0 3 

AS {U,,, Umin} and { U may, ir mi,} given in (2.2)-(2.5) 
are uncorrelated, 6, and S, are independent of each 
other. 

For actuators subject to rate and followed by 
amplitude constraints, a mathematical model is shown 
in Fig.2 [cf. 71. The controller output is first rate 
constrained, followed by an integral action to give 
amplitude constraints. As for single saturation systems 
[4], the rate saturation is to be compensated by P, and 
the amplitude saturation by Pa independently. The 
control expressions are derived below. 

Let R,(s)=R(s)/s for analogue systems or R1(z-') = 

R(z-')/( l i ' )  for digital ones, then the rate of change AV 
[= dvldt] for the controller output (2.1) can be written 

n 

as 

and the amplitude of the controller output is simply 

v( t )  = jAv(t)dt (2.7) 

Thus, any constraint applied on AV leads to rate 
saturation; and that applied on v results in amplitude 
saturation. 

Assuming a digital configuration, the following 
equations are obtained for the compensated system 
shown in Fig.2: 

(2.8) 

(2.9) 

V ,  = AV + Pr6, 

U, = v1 + 6, = AV + [1+ Pr]6, 

(2.10) 

U = v + 6 ,  = ~ u1 + [1+ P,]6, (2.1 1) 
1 - z-' 

Simplification of (2.8)-(2.11) gives 

1 + P, T S 
R R 1 - z-' 

6, +[1+ P,]6, (2.13) Y+- U = -w-- 

That is, the linear controller of (2.1) is modified by the 

(2.12) and the actuator output becomes that of (2.13). 

system output after simplification is given by 
Using (2.12)-(2.13) and y=Gu, the closed-loop 

G T GR,(l+ P,) 6r + GR(l+ Pa) 
R+GS R+GS 

6, (2.14) Y = G w +  

The first term associated with w in (2.14) is the linear 
system output. The last two terms are due to the rate 
and amplitude saturations. If there is no compensation, 
i.e., P,=O or P,=O, the closed-loop system is still 
affected by actuator saturation. 

Under the premise that the linear system is 
asymptotically stable, and a robustness requirement 
that it remains asymptotically stable for minor 
nonlinearities, the compensated output also has to 
satisfy this condition. Therefore the two compensation 
terms in (2.14) must be linearly stable and without 
steady state offsets. And from analysis of single 
saturation systems [6], the compensators need to satisfy 
the following conditions: 
(Pl)  P,(z-') and P,(z") have at least one unit delay 

respectively; or 
P,(s) and P,(s) are proper. 

(P2) poles of R(z")P,(z-') and R(z-')Pr(z-') are inside 
the unit circle; or 
real parts of poles of R(s)P,(s) and R(s)P,(s) are 
strictly negative. 

(Pl) is the realizability condition, ensuring that the 
compensators are physically implementable. (P2) is a 
necessary condition for linear stability [6]: otherwise 
the saturation disturbance terms involving 6, and 6, in 
the closed-loop output of (2.14) will not be 
asymptotically stable or without steady state offsets. 
Investigation of nonlinear stability is further discussed 
below. 

3. Stability analysis of the compensated system 
The compensated system of Fig.2 is reconfigured 

to Fig.3 for stability studies. Simple block reductions or 
algebraic manipulations can both be used to obtain the 
linear blocks of Fig.3 as 

11 R2 
GI = 

1 + Pa 

pa 
1 + Pa 

G3 = 

T /  Rl 
F, = 

1 + P, 

GSI RI 
, G2 = 1 + P, 

, R = Rl R2 

(3.la) 

(3.lb) 

(3 .1~)  

saturation disturbances and their compensations as with R2(s) = s or R2(z-l) = 1-z-' (3.2) 
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.which can be simplified as 

1 + k ,G , ,  = 0 (3.8) 
.where the equivalent system GEu for the amplitude 
constrained system is given by 

GEa = - 

{Similarly, let GEr be the equivalent system for the rate 
constrained system, then 

u1 (3.10) ku Gl U k , [  G, u1 + G3 U ]  = 1 - k, G3 

I - k ,  G3 
thus v1 = - G2u + G4u1 = - 

From the dynamic gain assumption, u1 = k, v1 (3.12) 

giving 1 + k, [ ku G1 G2 -G4 ] = 0 (3.13) 
1-k ,  G3 

which can be simplified as 

In addition to (PI) and (P2), a necessary condition 
for the compensation system to be globally stable [6]  is 
(P3) zeros of [l+P,(z-')] and [l+P,(z-')] are inside the 

unit circle; or 
real parts of zeros of [l+Pa(s)] and [ I+P,(s)] are 
strictly negative. 

This is because roots of (1 +Pa) and ( l+P,) are actually 
poles of the linear blocks (3.1), which must be 
asymptotically stable in order to guarantee global 
asymptotic stability [ 13. Study of the nonlinear stability 
is carried out by an approximation using Nyquist plots 
as follows. 

Let GFGSIR and assume the nonlinear elements of 
Fig.3 be replaced by dynamic gains {ku,kr}: k, for 
amplitude constraint and kr for rate constraint. If the 
system is unconstrained, then k,=kr= 1 .  The following 
equations are immediately obtained from Fig.3: 

U, = k, [ F, w - G2 U + G4 u1 ] (3.3) 
As WO in stability analysis, giving 

(3 -4) kr G2 U U1 = - 
1 - k, G4 

[ k r G 1 G 2  -G3 U (3.5) v = Glul + G3u= - 1 ,and 
1-krG4 

With the dynamic gain assumption, U = k, v (3.6) 
- - 

~ 

26 1 

1 + k r G E ,  = 0 (3.14) 

with G,, = - --e] (3.15) 

Actually, (3.9) and (3.15) can be combined together as 

[I + (1 - k,)P,] [1+ (1 - kr)P,] + k,k,Gc = 0 (3.16) 
Both (3.8) and (3.14) are in form of the characteristic 
equations of some linear systems with proportional 
controllers. These may thus be viewed as an 
approximation of the nonlinear system expanded 
around the operating condition {k,,k,}, and hence be 
used to study the approximate nonlinear stability of the 
rate and amplitude constrained system. Clearly, if k, = 
k, = 1 , (3.16) becomes a linear system. 

When using Nyquist plots of (3.9) and (3.15), it is 
often convenient to consider the systems using ~+GE,  
and ~+GE, instead of (3.9) and (3.15). The Nyquist 
plots remain the same as the origin of the I+GAu)- 
plan corresponds to the - l + j O  point on G&w)-plan. 
Such a linear translation of the origin is to simplify 
designs of the compensators [4]. This technique is 
generalized from single saturation systems previously 
investigated [6]. 

A simple graphical method to assess the nonlinear 
stability of the rate and amplitude constrained system is 
to plot families of Nyquist curves of (3.9) and (3.15) 
for OG,, k, 11. Circle criteria [ 11 are then used to check 
whether the Nyquist curves circumscribe individual 
circles cutting [-llka, -11 or [-llk,, -I]  on the -ve x-axis. 
A further simplification is to check only for crossing- 
points of Nyquist curves to the left of -l+jO on the -ve 
x-axis. 

With due regard to the fallacy of the Aizermann 
conjecture [l], indications of cutting points to the left 
of point -I+JO on the -ve x-axis necessarily infer 
instability of the rate and amplitude constrained system 
in certain global regions, although it is apriori required 
to be asymptotically stable locally. Due to the 
approximation of this analysis, non-existence of cutting 
points only indicate a likelihood that the rate and 
amplitude constrained system may be asymptotically 
stable around the operating condition. 

When viewing the Nyquist curve families on the 
l+G&u)-plan, the above method of checking cutting- 
points to the left of the - l+ jO point on the G&u)-plan 
becomes the inspection of any interception of the 
Nyquist plots with the entire -ve x-axis. An example is 
presented in $5 illustrating the procedures. 



4. Compensator designs 
Given the complicity of rate and amplitude 

constrained systems, simultaneous designs of 
compensators (P,,P,} in (2.12)-(2.13) are difficult. On 
the other hand, systematic methods to design Pa and P, 
individually for its type of saturation alone have been 
developed [3,4] and found highly successful. 
Therefore, at least as a first step, it is reasonable to 
adopt the design strategy, in which P, and P, are 
selected separately using the proposed methods in 
[3,4], ignoring temporarily the other type of saturation; 
and then use these designs in (2.12)-(2.13) 
subsequently. 

For any given operating condition, if P, and P, are 
individually designed to be the optimal compensator, 
{(Pa,Pr) I ( 6 ~ 0 :  P,=P, opt) and ( 6 ~ 0 :  P,=P, opt)}, with 
respect to some performance index J,(P,,P,), then by 
the argument of continuity and smoothness of the cost 
function surface, J d P ,  opt,Pr opt) shall not be a local 
maximum and is a possible candidate as the optimal 
compensator. Given the lack of better designs or further 
fine tunings, the compensator (P, opt,Pr opt) can be used 
in (2.12)-(2.13) when both types of saturation occur 
under the same operating condition. In the least, it acts 
as the starting point for searching the 'optimal' 
compensator. 

Additionally, the same performance index can be 
used to evaluate the performance of a compensator pair 
(P,,P,} under varying operating conditions (k,,k,} . In 
that case the cost functions will become Jdk,,k,). A 
well discussed compensator is the 'conditioning 
technique' [eg. 21, which for controller (2.1) is 
described by 

Thus, one possible scheme for compensating the 
controllers is to use (4.1) accordingly for each of the 
rate and amplitude constraints. Note that the controller 
seen by each saturation is different, so that R in (4.1) 
must be replaced by RI for the rate constraints. 

When measuring the severity of saturation, a 
characteristic number has be defined [3,4] 

assess the severity of control saturation. 
In evaluating compensator designs, a common 

performance index is the accumulated sum of square 
errors (ASE) 

Let Jo be the cost for the unconstrained system, then the 
normalized sum of square errors (NASE) is defined as 

NASE = J,(P,,P,) 4 - J(Pa, P,) / J,  - 1 (4.4) 

5. Example 
An example is presented below, detailing the 

procedures of the stability analysis discussed in $4. The 
observed nonlinear stability behaviours are explained 
by results obtained using the simple method. 

For a digital system and PID controller described 

(5.1) 
0.052-' (1 + 0.982-') 
1 - 1 . 9 5 ~ ~ '  + 0 . 9 6 ~ ~ ~  

by G(z-') = 

R(z-') = 1 - Z-', S(Z- ' )  = T(z-')=5[ 1 - O . ~ Z - ' ]  (5.2) 
Adopting scheme (4.1), the two compensators are 

P,(z-') = [ -0.82-' +o.812-2 ] / [  1 - 8  3 
P@') = - 1.8 2 - I  + 0.81 

(5.3) 

(5.4) 
For unit step input, the steady state control signals 

are ( li ss=O, u,,=O.l}. To study the performance of 
compensators (5.3)-(5.4), the actuator limits are varied 
for { ti ssf&h, u,,+A,tgh I O<A,, A a 4  } . 

The J,@J,)-surface are shown in Fig.4 for 
[0.231&Sl, O<h,11] and Fig.5 for [O<3LrS0.5, 0<3La<1]. 
The unstable regions were chopped off for presentation. 
The isolated island of instability [0.27<Ar<0.33, 
O.6<3La11] is unexpected in linear analysis, but can be 
explained by the proposed method for stability studies. 
Stable regions A and B in these figures are reflected in 
plots of the Nyquist curve families of GE, and GE,, 
according to (3.9) and (3.15). 

When rate constraints are not severe [0.41?~&1], 
increase in amplitude constraint raises cost J,A,,h,) 
[Fig.4], but it remains asymptotically stable. This is 
necessarily true because the unconstrained system must 

= [ Uabs - 1 [ 1 (4.2) be asymptotically stable to be admitted in the first 
where to=T(O); h is the input step size; uabs is the place. For rate constraints in region O.27<3Lr<0.33, the 
maximum unconstrained control demand and U,, is the system is asymptotically stable only if amplitude 
steady state control signal. h is found very useful in the constraint is severe [O<A,<0.6]; it is unstable when 
design of compensators [4]. Physically it signifies the slightly amplitude saturated [O.6<Aa<1]. 
initial portion of control demands which can be This is reflected in the existence of interceptions of 
afforded by the actuator; and hence can be used to 
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the -ve x-axis by the Nyquist curves of GEr(jw), shown 
in Fig.6. The equivalent system GEr(z-l) does not cut 
the -ve x-axis if saturation is severe [ka<0.01977], and 
hence would be asymptotically stable in the presence of 
saturation. The cross-over in Fig.6 necessarily means 
that system is not globally stable for 0.O1977~ka.51. 
Region A (along the ha-direction) can thus be explained 
by interpretations of Fig.6. 

For fixed rate constraint levels, GEa(jw)-plots are 
shown in Fig.7 and Fig.8. It is seen that when 
0.3198dr11, the GEa(jw)-plots do not intercept the -ve 
x-axis and local stability is achieved. For 0.845e- 
3<kr<0.3 198, the GE,(jw)-plots circumscribe the critical 
point -.l+jO in clockwise direction. System is then not 
even linearly stable. For kr<0.845e-3, the GE,uw)-plots 
no longer intercepts the -ve x-axis and system stability 
is restored. Combining interpretations of Fig.7 and 
Fig.8, the stability behaviour around the isolated island 
of instability [0.27<kh,<0.33, O.6<kaI1] is thus 
explained. In these Nyquist plots, significant higher 
harmonics for small values of dynamic gains 
complicate matters and the above explanations might 
not be stretched under extreme conditions. 

6. Conclusion 
This paper studies practical control systems subject 

to rate and amplitude constraints. A compensation 
structure is proposed and the linear control law is 
modified by saturation compensation terms. The 
closed-loop output expression is established. 
Compensator design strategy is reviewed with regard to 
methodologies developed for single saturation systems. 
'The main contribution is in the proposition of an 
(approximate method for stability analysis, which 
(enables local stability predictions to be obtained via 
simple procedures using families of Nyquist plots. A 
numerical example is used to illustrate the feasibility 
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Fig. 1 System subject to rate and amplitude constraints 
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os, I 

Fig.4 NASE surfaces for 0.23<&<1. Region A is 
stable [cost function surface truncated at 61. 

Fig.5 NASE surfaces for 0</2,<0.5. Region B is 
stable [cost function surface truncated at 201. 

-60 -60 -40 -30 -20 - I O  0 
Re 1 f f i E 1 g w I  

Fig.6 Nyquist curves of GEr-family for 0.0 1 81ka<1. 
Cross-over of the -ve x-axis exists for 
0.019771ka<1. 

-2 ' I 
-3 -2s -2 - 1  5 - 1  - o s  n n 5  i 

Ra 1 +GEa(pdJ 

Fig.7 Nyquist curves of GEu-family for 0.251kr<l. 
Cross-over of the -ve x-axis occurs when 
kr<0.3 198. 

- 1  0 1 2 9 P 5 
Re 1 +GEa(jn) 

Fig.8 Nyquist curves of GEu-family for 0.7e-31krIle- 
3. Cross-over of the -ve x-axis continues until 
kr<O 345 e-3. 
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