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Abstract

The analysis of the boundary damping rate for eigen-
modes of a Rayleigh Beam with variable coeflicients
is usually difficult because explicit sclution formula are
hard to come by. In this paper, by using the estimating
devices of [9], we can carry out an asymptotic analy-
sis and conclude that there is a uniform damping rate
for the high frequency modes. As a result, Riesz basis
property and exponential stability can be deduced and
a conjecture in [3] is settled.
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1 Introduction

The analysis of boundary damping rate is important in
the understanding of vibrating system behavior, such
as Riesz basis generation, stabilization, and controlla-
bility, etc. In the present paper, we study the following
Rayleigh beam model with variable coefficients under
the boundary feedback control
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+§2(EI(I) >=0,0<:c<1,t>0,
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Here, u(z,#) is the transverse displacement and z,t
stand for the position and time respectively. Also,
p(z) > 0 is the mass density, EX(z) > 0 is the stiffness
of the beam, I,(z) > 0 is the mass moment of inertia
and @, > 0 are constant feedback gains that can be
tuned. Further details can be found in [1]. Throughout
this paper, we always assume that

pl@), I,(z), EI(z) € C*{0, 1], (1.2)

and we organize the rest of the paper as follows. In
§2 we use a space-scaling transformation to derive an
equivalent eigenvalue boundary problem which is more
convenient to expand asymptotically. In §3 an asymp-
totic frequency distribution is obtained via expand-
ing the characteristic determinant. In the last sec-
tion, some important applications of the asymptotic
frequency distribution are indicated and a conjecture
in (3] is discussed and settled. :

2 Eigenvalue Problem Setup

Applying the method of separation of variables via
u{x,t) 1= eM@(z), the characteristic equation of the
control system (1.1) is given by

*pla)ola) - N (Ip(a)p' (=)
+(E1(m)¢”(x))" —0,0<a<l,

#(0) = ¢'(0) =0, . (2.1)
EI{1)¢" (1) + ard’(1) =

| (B1¢") (1) - R1,06'0) - Bre() =0,

where the sign " denotes the derivative with respect
to x.

We now record down two useful facts for later use.

Lemma 2.1 Let hy{x), hao{z) be two linearly indepen-
dent solutions for the second order linear homogeneous
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differential equation

(Ip(m)qb’(m))’ — p(z)d(z) =0, (2.2)
then we have

= h(0)hy(1) — Ry (1)h2(0) # 0. (2.3)

PROOF. Assume not, then the following system of

linear equations

{tlhl(o) + tahy(0) = 0,
t1hi (1) + tahh(1) =

is singular because the determinant of the coefficient
matrix is by (0)R5(1) — A1(1)ha(0) = 0. So there exists
a non-trivial solution, say (i;) Let z := ¢c1A; + caha,
then z is a solution of the differential equation with
initial conditions:

{ (L@ @) - ple)ef@) =0
z(0)=2'(1) =

By the uniqueness theorem of ordinary differential
equations, z = 0. Thus h; and hg are linearly de-
pendent and this contradicts to the assumption of the
lemma. O

Lemma 2.2 [fa+ 0§ >0, then
Re()) < 0. (2.4)

PROOF. We go back to the characteristic equation
(2.1) of the control system (1.1). Multiplying ¢, the
conjugate of ¢, on both side of the first equation in
(2.1) and integrating from 0 to 1 with respect to z, we
obtain

A% /O 1 p{x) ()| 2dx + A2 fD IIP(I)|¢'(1:)|2d:r
+BA|B(1)]? + aA|¢’ (1)) (2.5)
1
" 2 .
+/; El(z)|¢"(x)|*dz = 0.
Let A = ReX + {ImA, where Re),Im) are real. Then,
1
(@®en? - @r?) [ (ptaota®
+I, (@) ()2 )d + B(ReN) (L) (2.6)
1
+a®ReN|# (V) + [ BI()g" )z =0,
and
2(Re))(ImA) / z)|p(x)? + L (z)|¢’ (:v)tz)

FAIA G2 + o(ImA)d (1) = 0.
@7)
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If ImAx = 0, then Red < 0 by (2.6). If ImA # 0, then
ReX < 0 follows from (2.7) and the proof is completed.
a

To simplify further, we expand (2.1) to yleld:

(69 +25L o0 + ZE 8
() ,(1')
(2 )+ 2 Hw)
< - bﬂ’}f’)w 9) =0 2.5)
6(0) = #'(0) =
B D) 1 e (1) =
BI)¢"(1) + EI'()é" (1)
! = ML(1¢/ (1) ~ Frg(1) =

If we introduce a space-scaling transformation (cf. [4,
5, 11])

¢le) = flz), 2=+ / (E'}((Cg )mdc, (2.9)

where , L) "
h=f (EI(C)) % (210)

then equation (2.8) can be rewritten as

( £z} +al2)f"(2) + b(2)f"(2)
+ol2)f(2) - KX £(2)
+d(2)f(2) ~ e(2)f(2)] =0,
F(O) = f(0) =0,
bor f7(1) 4 baa f'(1) + bozar f'(1) =
bunf™ (1) + bz f(1) + b1z f'(1)
L = A% f'(1) - BAf(1) = 0.
Here, the sign “” denotes the derivative in z and

1 El'(z)
2z, EI{z)’

T

Zzz Er(z)
z3 El{z)

(2.11)

a(z) == 6%’— +2 (2.12)
xr

Z Z.
b(z) 1= 35x2 1 47222 1 g
E

1 EI"(x)
22 El(z)’

(2.14)

Zzyrrr Zrrx EI’(-"—':)
c(z) = + 2
) 23 zX El(z)

22z £1"(z)
74 El(z)

(2.15)
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s AL

d(z) === -|- RAEIE) (2.16)
__1 px)
and
biy := 23 (1)EI(1), b1a:= I,(1)z(1),
b1z 1= 3z,(1)z2.{1)EI(1) + 22(1)EI'(1),

b13 1= 2zopa(DEI(1) + 220 (D EF(1), (2.18)
bgl =z ( )Ef(l) bgg = Zzw(l)EI(l),
Bog :== zz(1).

Now if we replace A by ¢ := kA, then (2.11) changes to

( F9(z) + () f7(z) + b(2) £ (2)
+e(2)f'(2) = u*{£(2)

+d(2)f(2) - e(2)f(2)] =

F(0)=0, (2.19)

710) =0,

bar f7(1) + baz f'(1) + bosah ™ uf'(1} = 0

b (1) 4 b f7(1) + b1af'(1)

[ =R 2200 (1) - Bhluf(1) = 0,

which is equivalent to equation (2.8).

3 Asymptotic Expressions of Eigenfrequencies

We now divide the complex plane into 4 sectors (for
k=0,1,2,3)

S 1= {z €C: % <argz < (k-;l)n} (3.1)

and for each 8, we pick wy and we {both square roots
of —1) so that

Re(pw.) = Re(pws), VY pe S (3.2)
In particular, we can choose
wp =%, wy = ei3T

in sector Sp and shuffle their orders for other sectors.
Writing p = pw; for p in each sector S, we have the
following result on the fundamental solutions of (2.19)
from [7, Theorem 3] (see also [6]).

Lemma 3.1 For p € S, with |p| sufficiently large, the
equation
FO(z) +al2)f"(z) + b(2) (2} + c(2) (=)

3.3
+ [f”(z) +d{z)f'(z) - e(z)f(z)} = (33
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has four linearly independent fundamental solutions
ys(z;0) (s = 1,2,3,4) and they possess the following
asymptotic expressions (for j =0,1,2,3), if s = 1,2,

¥z 0) = R (z) + O(p™?) (34)
else s = 3,4,
Vi (25 0) = (pwama) P27 [yo(2) + O(p™1)]  (3.5)
with

yo(z) := e~ Ja (8O-}t (3 g)

Here, Iy{z) = hi(x(2)), ha(z) 1= haefx(z)) are the two
linearly independent solytions of (2.2] after the trans-
formation z(z} := z(x)~!. That is, they are two lin-
early independent solutions of

Fiz) +d(2)f(z) —e(2) f(2) =

In the sequel, for convenience, we mtroduce the nota-
tion

lo] == a+O(p™).

Now the boundary conditions of system (2.19) can
be expanded asymptotically by substituting (3.4},(3.5)
into them.

Theorem 3.1 Let the boundary conditions of the sys-
tern (2.19) to be Uy, Uz, Us and Uy, then for p €
So,withip| sufficiently large, we have the following
asymptotic expansions, - -

Uslys;p) = ys(05p) _
{fmm+0@”Ls:Lz
14+ 0(p™1), s = 3,4,
. [hg(O)L = 1!27
= { fl i: 34 (3.7)
Ualysip) = 4,(0:p)

2 (0)R,(0) + O(p™2%), s=1,2,
{ ,Ows—z(l + O(p“l)), 5= 3,4,

z(0YRL(D)], s=1,2,
{ [z (0)h5(0)] (3.8)
Wa—?[lls s =3,4,
U2(ys;
/ b !
=yl P)+—22~y3(1;p)+tb£%pys(l:p)
21
aboy -1 -
p (IR0 + 007 ) s = 12,

= pEEWng(yO(l) 2

+%—yo(1)wa 240 1)),s=3,4,
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p]: b”‘azz(l)h’(l)] s=1,2,
boy h
] e (9
bz
T 52,5 = 3,4,
+ i hyu(l)w 2] s
U1{ys; p)
bis

va (L0} + —fyé’(l pY+ -—ys(l;ﬁ)

5 big ,8
+ = : 1,

p ("‘,:fg(” ()+0(p“)), s=12,

= e (i

b4
+ = ZT ——o()ws—2 + O(p~ )), 5 =234,

h
P° [z (1R ()], s=12
= pPe 2 yo(Vw)_q (3.10)
+yo(Bwa-2], s=3,4

PROOF. It is a direct computation. Note that in
(3.10),
b14 _ Ip(l)zm(l)

e IpirEN L p2
by (V) EI(1) ’

a

To estimate the eigenvalues, we substitute the above
expansions {3.7), (3.8), (3.9), {3.10) into the character-
istic determinant A(p) =

Us(yr,p) Uslya:p) Us(ya, p) Ualys, p)
Us(yr,0) Us(yz2,0) Us(ys,p) Uslwa, p)
Ua(y,p) Ualy2,p) Uz(ys,p) Ua(ys,p)
Uilyr,p) Ui(ya,p) Uilvs,p) Uilya, p)

and make use of the fact that the zeros of A{p) are the
eigenvalues of (2.1) {cf. [9, pp.13-15}).

(3.11)

Theorem 3.2 In sector &, the characteristic deter-
minant A(p) of the characteristic equation (2.19) has
an asymptotic expansion

Ap) = ~istyo(U)z(1)D{e (1 - av)

+ €% (14 ar) + O(pfl)}, (3.12)

—1/2

where v = (1,,(1)E1(1)) D = (h'z(1)h1(0) -
K (l)hz(O)) the nonzero determinant defined in (2.3).
Purthermore, the boundary problem (2.19) is strongly
reqular in the sense of [8, p.259] iff the following con-
dition holds:

~1/2
1-a(LMEBIN) #0 (ie.1-a770). (313)

118

PROOF. In sector 8, with wy = i,wz = —i, we
conclude that (for s = 3,4,)
Uiy, p) = peP-2(0], (3.14)

U2<ys,p)=p2emé=[ (1) 4 (1) P (1 )]

(3.15)
Substituting (3.7), (3.8), (3.9), (3.10), (3.14), (3.15)
into the characteristic determinant, we have A(p) =

(ha(0))
[x:(0}A1(0)]
P [i%:fah‘lzz(l)h’l(l)]
P2z (1)hi(1)]
{h2(0)]
[z2(0)h5(0)]
P [igg-}ah—lg,-,(1)hg(1)]
Pz (L)h5(1))
{1
ipl1]
prer [—yo(l) s oh~ yo(l)]
P e"“"[Ol
(1]
—ip[l]
pPerr [yo(1) + b2 Ly (1)
p®er2(0]

—ip5yo{1)m,,(l)D{e"”’ [1 - ?ah'l]

21
+ ePn [1 4 b h‘l] }
ba1

Combining with (2.9),(2.18), we have

bz zz(1) =172
= AN h(f,,(l)EI(l)) = hy.
(3.16)
Thus, the asymptotic expansion (3.12) of A(p) is ob-
tained. The strong regularity of [8, Def.2.7] can be
verified directly from the fact that yg(1),z,(1) > 0 and
(2.3),(3.13). O

det

Remark 3.1 From (9, pp.57-74], we see that expres-
sion (3.12} also holds in other sectors Si under the
same argument as in sector &y and conclude that the

set of eigenvalues in sectors 8 and Sz are the same as
those in S and Ss.

Remark 3.2 Since equation (2.1) is equivalent to
(2.11), so (2.1) is also strongly reqular under condition
(3.18) in the sense of {8, Def.2.7]. This strong regu-
larity is very important in applications (see Remark

4.1).
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Theorem 3.3  Suppose that the problem (2.1} is
strongly regular (that is, the condition (3.13) is ful-
filled), then the eigenvalues A, of the problem (2.1)
have the following asympiotic behavior

n= g (Foorhei) 0B, E=tnaa

h\2
- (3.17)
YL\
where A :=](; (EPI(C)) d¢ defined in (2.10) and
n il ;11, ay>1,
=4 17 (3.18)
In — > +m, av<lLl
1+ oy '
It is also clear to see that
_ oy —1
Refyp =1In Q'Y‘Fl’ <0 (3.19)
and
Redy — %Re{g <0, k- o0 (3.20)

PROOF. In sector Sy, since the boundary problem
(2.1) is strongly regular and yo(1), (1) > 0, by (3.12),
(2.3) and A(p) = 0, we have

P {(1—a+e?(l+an+ 0 =0 (321
If we consider the equation

eT®(1-ay)+e’(1+ay) =0,

then, since 1 4+ ay > 0, we get

and come up with solutions
_ . 1 .
Ly = 1pr = §€0+k7”: k=1,2,..., (3.22)

with £ defined in (3.18). Apply (3.21) back to (3.20)
through Rouche’s theorem and we obtain

uk:-;—go+k7ri+0(k_l), k=0,1,2,.... (3.23)

In sector Sz, we can argue similarly on the asymptotic
distribution of the conjugate jir. Here in order to sat-
isfy (3.2), we let wy 1= —i,wy =1 and then equations
{3.8), (3.9}, (3.10), (3.14) and (3.15) change to (recall
that u = pw = —ip)

| EOR0)], s=1,2,
Ua(ys,n)—{(;l)%pm, s34, (3.24)

17

b2z
—f—— y =12
p[ ibm ha:z(l)h_,(l)}, s=1
Uz{ysi p) = pzepws—z[_ Yo(1)
s bos o B
+ (1) E-ﬁyo(l)], s =34,
(3.25)
2 i
o xR, s=1,2,
Ui (ys: 0) = 3.26
1(ys3 ) { Joroll],  s=3.4 (3.26)

Thus we have,
Ap) = irtu(Da.()D{e* (1 - a)
e~ (1 4 o) + @(p-l)}. (3.27)
Furthermore A(p) = 0 becomes
e (1—ay)+e®(1+ay)+0(p )y=0, (3.28)

and so

ﬁkzégrkmwmk-l), k=1,2,.... (3.29)

Hence, we can conclude from (3.23) and (3.29) that
e = %gc. b kri+ O®™Y), k=£1,42,.... (3.30)

Since p = hA, 80 Ap = %,Uak =

171

% (550 + Jm) +O(Y), k=41,42,.... {3.31)
From Remark 3.1, we see that the set of eigenvalues
in 8 and S; are the same as those in & and Sz and
so the proof is completed. O

4 Applications

We now describe some interesting applications of our
main results. The details can be found in [10].

Remark 4.1 Assume that the boundary problem (2.1)
is strongly regular (that is, the inequality (8.13) is ful-
filled), then Theorem 3.3 implies that the system of the
eigenfunctions {(dg, Axdr) : k € Z} forms a Riesz basis
on the energy Hilbert space

H = {fe H*0,1)|f(0)=f'(0)=0}
x{f € H'(0,1)|f(0) = 0}.

Hence, the spectrum-determined growth condition will
be true and (9.19),(2.4) will yield asymptotic stabil-
ity for o + B > 0 and exponential stebility for o >
0,1 — ay # 0, respectively, and we refer the interested
readers to (10] for details. These results are very inter-
esting because they apply to Rapleigh Beams with vari-
able coefficients, not just constant coefficients.
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Remark 4.2 The special case that p(z) = EI(z) =1
and I,(z) = v > 0 was discussed in (2], (3] In
this case, expression (3.17) then becomes [for k =
0,+1,%2,...)

1 1
A =—={= ; -1y, 4.1
& \/ﬂ(251+k7rt)+0(k ) (4.1}
with
In z;——i:%, a> /7,
£1 = H—a . (4.2)
lnaﬁ'—+ﬁ+7rz, a < /7t
and
1 a— /71
Relp — In <0, k— oo 4.3
R P (“3)

So the closer o to a* = /41 the larger the damp-
ing rate for the system [1.1) which is the conjecture
made in [3]. However, when we set the control gain
o= /71, then a(A) contains only finitely many eigen-
values. This is because A has compact resolvents, se
there are only finitely many eigenvalues inside each
bounded set and (3.12) tells us that there are no eigen-
values at oll when their moduli are large enough.
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