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Abstract  

The analysis of the boundary damping rate for eigen- 
modes of a Rayleigh Beam with variable coefficients 
is usually difficult because explicit solution formula are 
hard to come by. In this paper, by using the estimating 
devices of 191, we can carry out an asymptotic analy- 
sis and conclude that there is a uniform damping rate 
for the high frequency modes. As a result, Riesz basis 
property and exponential stability can be deduced and 
a conjecture in [3] is settled. 
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1 Introduct ion 

The analysis of boundary damping rate is important in 
the understanding of vibrating system behavior, such 
as Riesz basis generation, stabilization, and controlla- 
bility, etc. In the present paper, we study the following 
Rayleigh beam model with variable coefficients under 
the boundary feedback control 

au  
u(0, t )  = - (O, t )  = 0, t > 0,  I ax 

au  
u(z,O) = uo(z), -(z,O) = u1(2). at 

0-7803-7896-2/03/$17.00 02003 IEEE 

Here, u(x, t )  is the transverse displacement and x, t 
stand for the position and time respectively. Also, 
p(z)  > 0 is the mass density, E I ( z )  > 0 is the stiffness 
of the beam, I p ( z )  > 0 is the mass moment of inertia 
and cy, @ 2 0 are constant feedback gains that can be 
tuned. Further details can he found in [l]. Throughout 
this paper, we always assume that 

P(Z),J,(Z), E C4P, 11, (1.2) 

and we organize the rest of the paper as follows. In 
52 we use a space-scaling transformation to derive an 
equivalent eigenvalue boundary problem which is more 
convenient to expand asymptotically. In 53 an asymp- 
totic frequency distribution is obtained via expand- 
ing the characteristic determinant. In the last sec- 
tion, some important applications of the asymptotic 
frequency distribution are indicated and a conjecture 
in (31 is discussed and settled. 

2 Eigenvalue Problem S e t u p  

Applying the method of separation of variables via 
u(x,t) := ext4(x), the characteristic equation of the 
control system (1 .1)  is given by 

XZP(+#W - xy~,(z,v(x,)’ 

+(El(z)f$”(z))“ = 0, 0 < 5 < 1 ,  

4(0) = 4‘(0) = 0, 
E r ( i ) v ( i )  + ax@’(i) = 0, 

(2.1) i (EI4”)’(1) - P I p ( 1 ) 4 ’ ( l )  - PX4(1) = 0, 

where the sign ”’” denotes the derivative with respect 
to x. 

We now record down two useful facts for later use. 

L e m m a  2.1 Let hl(x), hz(x) be two linearly indepen- 
dent solutions for the second order linear homogeneous 
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difleerential equation 

pp(z)4w)’  - P(Z)4(Z)  = 0, (2 .2 )  

then we have 

D := hi(O)h;(l) - h;(l)hz(O) # 0. (2.3) 

PROOF. Assume not, then the following system of 
linear equations 

tihi(0) + tzhz(0) =0,  

is singular because the determinant of the coefficient 
matrix is hl(O)h;(l) - h;(l)hz(O) = 0. So there exists 
a non-trivial solution, say C:). Let z := clhl + czhz, 
then z is a solution of the differential equation with 
initial conditions: 

z ( 0 )  = z’(1) = 0. 

By the uniqueness theorem of ordinary differential 
equations, z = 0. Thus hl  and hz are linearly de- 
pendent and this contradicts to the assumption of the 
lemma. 0 

Lemma 2.2 Ifa + p > 0, then 

Re(X) < 0. (2.4) 

PROOF. We go back to the characteristic equation 
(2.1) of the control system (1.1). Multiplying 4, the 
conjugate of 4, on both side of the first equation in 
(2.1) and integrating from 0 to 1 with respect to z, we 
obtain 

Az~1P(Z)14(x)lzdz +xZJ11p(z)14~(z)lzdz 0 

+PXI4(1)l2 + aAl4’(1)I2 (2.5) 
1 

+ 1 EI(z)(4”(z)(’dz = 0 

Let X = ReX + iImX, where ReX,ImX are real. Then, 
1 

((Rev2 - ( W 2 )  J 0 (P(z)l4(z)Iz 

+Ip(z)l4Yz)l2)dz + ia(ReX)l+(1)lZ (2.6) 

+a(ReX)]@’(1)12 + 1’ E I ( ~ ) l + ” ( ~ ) l ~ d z  = O !  
0 

and 

W W ( I m 4  1’ 0 (~(z)lQ(z)? + ~p(~)1~’(z)12)dz 

+ P ( I ~ X ) / $ ( I ) / ~  t cY(Imx)14’(1)12 = 0. 
(2.7) 

If ImX = 0, then Rex < 0 by (2.6). If ImX # 0, then 
ReX < 0 follows from (2.7) and the proof is completed. 
0 

To simplify further, we expand (2.1) to yield: 

(2.8) 

4(0) = 4’(0) = 0, 
EI(l)d”( l )  + ~yX4’(1) = 0, 
l31(1)$”(1) + E I ’ ( l ) V ( l )  

-XZIp(l)4‘(l) -pXg(l) = 0. 

If we introduce a space-scaling transformation (cf. [4, 
5, 111) 

Here, the sign ‘“” denotes the derivative in I and 

(2.12) 
zzz 1 El’(z) 
z: 2, E l ( z )  ’ a(.) := 6- + 2-- 

z= = z EI(x) (2.13) 

z,,EI’(z) b(z) := 3- + 4- + 6-- z,3 EI(x) 

1 Ef”(z)  +-- 
I: EI(x)  ’ 

lzzzz + 2-- zzzz El’(z) 

2: 2: 

(2.14) 

c(2)  := - 
2: 2,” E1(z) 

(2.15) tzs EI”(z) +-- 
22 q z )  ’ 
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1 P ( X )  e(.) := -- 
h2z: E I ( z )  

(2.16) 

(2.17) 

f (0) = 0, 
f‘(W = 0, 

biif”’(1) + b i z f ” ( 1 )  + b13f’(1) 

b2,f”( l )  + bzzf’(l) + b~~crh-’pf’(l) = 0, 

- h - 2 p 2 b i ~ f ’ ( l )  - ph-’pLf(l) 0 ,  

which is equivalent to equation (2.8) 

(2.19) 

3 Asymptotic Expressions of Eigenfrequencies 

We now divide the complex plane into 4 sectors (for 
k = 0 ,1 ,2 ,3 )  

and for each S,, we pick w1 and wz (both square roots 
of -1) so that 

In particular, we can choose 
.3 

U, := cif, w2 := e‘s” 

in sector SO and shuffle their orders for other sectors. 
Writing p = pwl for p in each sector S,, we have the 
following result on the fundamental solutions of (2.19) 
from [7, Theorem 3) (see also [6]). 

Lemma 3.1 Forp E &, with IpI suficiently large, the 
equation 

has four linearly independent fundamental solutions 
y.(z;p) ( s  = 1 ,2 ,3 ,4 )  and they possess the following 
asymptotic expwssions ( f o r j  =0 ,1 ,2 ,3 ) ,  zfs = 1,2,  

y? ’ ( t ;  p )  = hSj’(z) + O(p-’) (3.4) 

else s = 3,4, 

yk)(z;p) = ( p g - 2 ) j e p a - 2 z  [vo(z)  + o(P:’)] (3.5) 

(3.6) 
with 

yo(z) := l t ( d + d ( t ) ) d c .  

Here, h l ( z )  := hl(z(z)) ,  hZ(z) := hz(z(z)) are the two 
linearly independent solutions of (2.2) after the trans- 
formation z ( z )  := ,?(.)-’. That is, they are two lin- 
early independent solutions of 

f”(z)  + d ( z )  f’(z) - e ( z ) f ( z )  = 0. 

In the sequel, for convenience, we introduce the nota- 
tion 

[a] := a + O(p-1). 

Now the boundary conditions of system (2.19) can 
be expanded asymptotically by substituting (3.4),(3.5) 
into them. 

Theorem 3.1 Let the boundary Conditions of the sys- 
tem (2.19) to be U1,U2,U3 and U,, then for p E 
So, withlpl suficiently large, we have the following 
asymptotic expansions, 

U4(Ya;P) = Ys(0;P) 
h,(O) -t O(p-2), 
1 + O(p-11, 

s = 1,2, 
s = 3,4 ,  



PROOF. It is a direct computation. Note that in 

u4(Ylif) u4(Y2rP) U4(Y3rP) u4(Y41p) 
u3(YI,p) U3(YZ?p) u3(Y39p) u3(Y41p) 

ul(Yl,P) Ul(Y2,P) Ul(Y3,p) Ul(Y4,p) 
UZ(Y1,P) UZ(Y2,P) UZ(Y31P) UZ(Y4rP) 

(3.11) 

Theorem 3.2 In sector Sa, the characteristic deter- 
minant A(p) of the characteristic equation (2.19) has 
an asymptotic expansion 

A(p) = - '  zp ~ ( l ) x ~ ( l ) D { e - ~ '  (1 - a y )  

+ e'' (1 Car)  + O(p- ' ) } ,  (3.12) 

where y := ( Ip(l)EI(l)) , D  := (h;(l)hl(O) - 
h;(l)hz(O)) the nonzero determinant defined in (2.3). 
Furthermore, the boundary problem (2.19) is strongly 
regular in the sense of (8, p.2591 iff the following con- 
dition holds: 

-1/2 

-1/2 

l -o(Ip( l )EI( l ) )  # 0 (i.e. 1 -ay  # 0). (3.13) 

PROOF. In sector SO, with w1 := i ,wz := -i, we 
conclude that (for s = 3,4,) 

[h(ys,p) = P 3 e P , - 2  PI, 
vZ(y,,p) = pZe'S-2 [-yo(1) + (-l)"ah-'yo(l)] bz 1 . 

(3.15) 
Substituting (3.7), (3.8), (3.9), (3.10), (3.14), (3.15) 
into the characteristic determinant, we have A(p)  = 

(3.14) 

Combining with (2.9),(2.18), we have 

Thus, the asymptotic expansion (3.12) of A(p) is ob- 
tained. The strong regularity of 18, Def.2.7) can be 
verified directly from the fact that yo(l),xz(l) > 0 and 
(2.3),(3.13). 0 

Remark 3.1 Prom 19, pp.57-741, we see that expres- 
sion (3.12) also holds in other sectors Sk under the 
same argument as an sector So and conclude that the 
set of eigenvalues in sectors S1 and S3 are the same as 
those in So and Sz. 

Remark 3.2 Since equation (2.1) i s  equivalent to 
(2.11), so (2.1) is also strongly regular under condition 
(3.13) in the sense of [8, Def.Z.71. This strong regu- 
larity i s  wey important in applications (see Remark 
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Theorem 3.3 Suppose that the problem (2.1) is 
strongly regular (that is, the condition (3.13) is f.1- 
filled), then the eigenvalues Xk of the problem (2.1) 
have the fol/mwing asymptotic behavior 

lis 
where h := 1' (-) 440 dc defined in (2.10) and 

W C )  

I t  i s  also clear to see that 

and 
1 

%Xk + ~ w o  < 0 ,  k + M. (3.20) 

PROOF. In sector SO, since the boundary problem 
(2.1) is strongly regular and yo(l), ~ ~ ( 1 )  > 0, by (3.12), 
(2.3) and A(p)  = 0, we have 

e-ap (1 - cry) + e'p (1 + a y )  + C7(p-') = 0. (3.21) 

If we consider the equation 

e - " (1 -ay )+e*p( (1+ay)=0 ,  

then, since 1 + a y  > 0, we get 

cry-1 eziP = __ 
l + a y  

and come up with solutions 

1 
2 f i r ,  = ipk = - t o  + kni, k = 1,2,. . . , (3.22) 

with to defined in (3.18). Apply (3.21) back to (3.20) 
through Rouche's theorem and we obtain 

1 
p k  = 5'0 + kni + O(k-') ,  k = 0,1,2, .  . . , (3.23) 

In sector Sz, we can argue similardy on the asymptotic 
distribution of the conjugate p k ,  Here in order t o  sat- 
isfy (3.2), we let w1 := - i ,wz := i and then equations 
(3.8), (3.9), (3.10), (3.14) and (3.15) change to (recall 
that p = pi = -ip) 

p [ - i e F z z ( l ) h : ( l )  1 , s = 1,2,  

Thus we have, 

= i ~ ~ ~ ~ ( 1 ~ z , ( 1 ) ~ { e ~ ~ ~ ( 1 -  07) 

+e-'p (1 + a y )  + U ( p - ' ) } .  (3.27) 

Furthermore A ( p )  = 0 becomes 

elp (1 - a y )  + eCrp (1 + a y )  + U(p-') = 0,  (3.28) 

and so 
1 
2 

f i k  = -Q - kai + O(k-') ,  k = 1,2 , ,  . . . (3.29) 

Hence, we can conclude from (3.23) and (3.29) that 

1 
pk = 2" + k?iz + O(k-') ,  

Since p = hX, so Xk = i p k  = 

k = i 1 , & 2 , .  . . . (3.30) 

h 2  ( + kni) + O(k-') ,  k = &1,*2,. . . . (3.31) 

From Remark 3.1, we see that the set of eigenvalues 
in S, and SS are the same as those in SO and Sz and 
so the proof is completed. U 

4 Applications 

We now describe some interesting applications of our 
main results. The details can be found in [IO]. 

Remark 4.1 Assume that the boundary problem (2.1) 
i s  strongly regular (that is, the inequality (3.13) is f.1- 
filled), then Theorem 3.3 implies that the system of the 
eigenfunctions { ( $ k ,  Xkqh) : k E Z} forms a Riesz basis 
on the energy Hilbert space 

H := {f E H'(0, 1)1 f (0) = f'(0) = 0 )  
x{f E "(O,l)lf(O) = 01. 

Hence, the spectrum-determined growth condition will 
be true and (3.19)j(2.4) will yield asymptotic stabil- 
ity for 01 + 0 > 0 and ezponential stability for U > 
0 , l  - a y  # 0, respectively, and we refer the interested 
readers to [lo] for details. These results are very inter- 
esting because they apply to Rayleigh Beams un'th wan- 
able coefficients, not just constant coefficients. 
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R e m a r k  4.2 The special case that p(x) = E l ( x )  = 1 
and I,(x) y1 > 0 was discussed in [2], [3]. In  
this case, expression (3.17) then becomes (for k = 
0, *I, + 2 , .  . .) 

with 

and 

So the closer a to a* := 6 the larger the damp- 
ing rate for  the system (1.1) which is  the conjecture 
made in [3]. Howeuer, when we set the control gain 
a = fi, then u(d) contains only finitely many eigen- 
values. This is because d has compact resolvents, so 
there are only finitely many eigenvalues inside each 
bounded set and (3.12) tells us that there are no eigen- 
values at all when their moduli are large enough. 
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