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ABSTRACT: This paper considers the synthesis of 
state feedback gains which provide robustness against per- 
turbation in deadbeat regulation. It is formulated as an 
unconstrained optimization problem. Through a posteri- 
ori perturbation analysis of the closed-loop eigenvalues, 
the justification of the use of a new objective function 
to measure the robustness of deadbeat systems is estab- 
lished. The objective function does not require the com- 
putation of eigenvectors and has simple analytical gradi- 
ent and Hessian. A numerical example is employed to 
illustrate the effectiveness of the proposed method. 

1 Introduction 

For a completely state controllable system, it is well 
known that the closed-loop poles via state-feedback can 
be assigned at any set of self-conjugate complex numbers 
(Petkov, Christov, and Konstantinov 1991). The state- 
feedback gain matrix, except in the single-input case, is 
in general nonunique for a given set of desired closed- 
loop poles. A classical application of this pole assign- 
ment technique in the discrete-time is to have the closed- 
loop poles all positioned at the origin. In this case, the 
system exhibits a deadbeat characteristics such that the 
zero-input response of the system dies down to zero in 
a finite time steps. This deadbeat control problem was 
considered by Kalman and Bertram (1958) for the single- 
input case. The multivariable case was later addressed 
by many, Farison and Fu (1970), KuEera (1971), Mullis 
(1972), Leden (1977), Emami-Naeini and Franklin (1982), 
to name a few. More recently, a recursive algorithm was 
proposed by van Dooren which allows the computation of 
minimum norm deadbeat regulator gains efficiently (van 
Dooren 1984). Different classes of deadbeat controllers 
were considered by Fahmy and O'Reilly (1983a) using the 
eigenstructure assignment approach. This approach was 
exploited to designing minimum norm deadbeat systems 
(Fahmy and O'Reilly 1983b). The minimal parametriza- 
tion of a class of state-feedback deadbeat controllers was 
given by Schlegel (1982). The nonuniqueness of the state- 
feedback gain matrix allows one to search for a solution 
which leads to, in certain sense, a more robust closed- 
loop system. This is especially important to deadbeat 
control where the closed-loop state matrix is nilpotent 
and in general has a nontrivial Jordan structure, hence 
more susceptible to large errors when perturbed (Stew- 
art and Sun 1990). Many methods have been proposed 
on the choice of the state-feedback gain matrix for pole 
assignment. A large number of methods for robust eigen- 
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value/eigenstructure assignment are formulated as mini- 
mization problems with objective functions measuring ei- 
ther the conditioning of the eigenvalue/eigenstructure of 
closed-loop state matrix (Cavin I11 and Bhattacharyya 
1983; Byers and Nash 1989; Kautsky and Nichols 1985; 
Kautsky, Nichols, and van Dooren 1985; Lam and Yan 
1995) or eigenvalue differential sensitivity (Gourishankar 
and Ramar 1976; Owens and O'Reilly 1989) (a compre- 
hensive list of methods and references can be found in 
(White 1995)). Unfortunately, the robust deadbeat pole 
assignment problem has not been directly addressed. In 
particular, some of the measures of robustness may not 
even be valid for repeated eigenvalues with nontrivial Jor- 
dan structures. 

In this paper, we tackle the robust deadbeat regulation 
problem via the unconstrained minimization of a new ob- 
jective function measuring the spectral variation of the 
closed-loop system. The objective function is specific to 
deadbeat closed-loop systems. The gradient and the Hes- 
sian matrix of the objective function are derived for use 
in standard minimization routines. 

This paper is divided into five sections. Basic proper- 
ties of the deadbeat regulation problem and preliminaries 
results are given in Section 2. A posteriori pertrubation 
analysis on the closed-loop eigenvalues is given to justify 
the use of a new objective function to measure the robust- 
ness in deadbeat systems. The robust deadbeat regulation 
problem is formulated in Section 3 as an unconstrained 
minimization problem. The number of minimization vari- 
ables are discussed. Analytical formulas for minimization 
are also derived and the procedures are summarized in the 
form of an algorithm. In Section 4, we use a numerical ex- 
ample to demonstrate the effectiveness of the computed 
optimal feedback gain. Finally, concluding remarks are 
given in Section 5. 

2 Preliminary Results 

Consider a discrete-time finite-dimensional linear time- 
invariant system with q ( q > 1 ) inputs described by 

zt+l = Azt + But t = 0 , 1 , 2 ,  . . .  (1) 

where A E R"'", B E R"'*, zt E Rnxl ,  ut E RqX1 . 
The input matrix B is assumed to have full column rank 
and the pair ( A ,  B )  is assumed to be reachable which is 
equivalent to the condition 

rank([  B AB . . .  A"-1 B ] ) = n  



By applying a time-invariant state-feedback law 

ut = K x ~  f v t  (2) 

where vt is the new reference input, there results the 
closed-loop system given by 

Z t + l  = ( A  + BK)xt + Bvt (3) 

Under the reachability assumption of (A ,  B ) ,  the spec- 
trum of the closed-loop state matrix A + BK can be as- 
signed to any arbitrary set of self-conjugate complex num- 
ber of cardinality n by proper choice of the feedback gain 
matrix K E W"". With rank(B) > 1, the choice of K is 
nonunique. To exhibit deadbeat zero-input response, the 
closed-loop state matrix is designed to be a nilpotent ma- 
trix, that is, ( A  + BK)" = 0 for some positive integer m. 
For fast regulation, K should be chosen such that m is the 
smallest possible. To simplify matters, we assume that A 
has no zero eigenvalues. The Robust Deadbeat Regulatzon 
(RDR)  problem is then to find K such that the closed-loop 
poles are all assigned at the origin of the complex plane 
with m as small as possible, the closed-loop system is 
made to be as robust as possible under certain measures. 

In the following, we will consider the relationship be- 
tween m ,  the Jordan structure of A + B K ,  and the mea- 
sure of robustness in face of perturbations or uncertainties 
in the closed-loop state matrix. 

2.1 Minimum Time Regulation 

Let 

Consider the reachability matrix P given by 
B = [ b i  b2 . . .  b, ] 

A"-'B 3 
= [ bl . . .  b, Ab1 ' . .  Ab, . . .  

+4"-'bl . _ .  A"-lb, ] 
This matrix has rank n .  Suppose the linearly independent 
columns of P are chosen in order from left to right and 
are rearranged as 

bi Abi . . .  ..lk'-'bi b2 Ab2 . . .  
Ak2-Ib2 ... b, Ab, . . .  Akq-'b, (4) 

The nonnegative integers kl. k2.. . . . k, are known as the 
Kronecker inrariants of the pair (.4:B) and more com- 
monly as the reachability indices when arranged in de- 
scending order of magnitude (Petkov. Christov. and Kon- 
stantinov 1991). In general. one has ry=, k,  5 n with 
equality holds if and only if (-4. B) is a reachable pair. 
The 1-alue 

k := max{k, 1 = 1.2.. . . . q }  

is called the reachabzhty znder of the system. Sotice that 
if any k, = 0. then the corresponding chain of vectors in 
(4) will be absent. but it is still included in the enumera- 
tion. 

Lemma 1 Under the assumptions and notation in this 
section, the state matrix A + BK can be made similar to 
the nilpotent matrix 

J = diag( Ji, 52, . . . , J q )  

where 

. .  

1 :  
0 . . .  . . .  

' . .  1 1 
. . .  0 

is a Jordan block of dimension k ,  (for k ,  = 0: J ,  does not 
appear in J ). Furthermore, apart f rom a re-ordering of 
the Jordan blocks, the size of each Jordan block in J is 
minimal. 

Remark 1 Suppose K is chosen such that A + B K  is 
nilpotent. Then the smallest possible size of the largest 
Jordan block in A+BK has dimension equal to the largest 
values among the reachability indices which is the reach- 
ability index k of the pair ( A , B ) .  In other words, the 
smallest choice of m is equal to IC which is the smallest 
positive integer such that ( A  + B K j k  = 0. Sotice that it 
is possible to construct a K such that the nilpotent state 
matrix A + B K  has a Jordan block size larger than k .  
However, this is not preferred due to (1) the sensitivity 
of the zero eigenvalues. and (2) the order of nilpotence 
equals the number of sampling periods for the closed-loop 
system to attain the zero state. Furthermore, the short- 
est regulation time for e w y  initial state corresponds to a 
Jordan structure with block sizes equal to the reachability 
indices of the system (KuE era and S ebek 1984). 

Remark 2 It is worth noting that if k = 1: then there 
exists a K such that A i BK = 0. However. this is only 
possible if q = n (full column rank of B is assumed) and 

5 

r, K = -B-'A is the unique solution. - 

For reason explained in  Remark 2, from here onwards we 
assume k > 1. 

2.2 Measures of Robustness 

A number of a posteriori measures of robustness will be 
introduced in this section. These measures are used as ob- 
jective functions for minimization as we11 as for comparing 
different solutions. X common measure of robustness for 
a matrix in face of perturbations is the condition number 
of its eigeni-ector matrix. The following theorem gii-es a 
quantitative description of the variation of eigenvalues for 
a matrix .If nith perturbation A which can Le found in 
Chatelin (1993. Thm.4.4.2) and Stewart and Sun (1990. 
Chap.d.Thm.l.12~. 

n e  state the following lemma which can be obtained tJY 
the construction as given in Kaczorek (1992 Thm 3 4 1  or 
Goodn-in and Sin I 1954 Chap 2 I 



Theorem 1 For each eigenvalue X of M+A, there exists 
an eigenvalue 1.1 of M, such that 

Ji = 

1 .  If M is nondefective, then 

r 0 1 0 ... 0 
* .  . .  . .  . .  . .  . .  

. .. 0 

.. 1 
- 0  . . .  . . .  ... 0 

: 

where T is  an  eigenvector matrix of M 

2. If M is  defective, then 

where T is  a generalized eigenvector matrix of M 
(that is, T-lMT = J where J is the Jordan canon- 
ical f o rm of M) and m is the size of the largest 
Jordan block of M .  

The result in ( 5 )  is generally known as the Bauer-Fike 
theorem. In the case where M = A + BK is nilpotent, we 
have p = 0. Consequently, ( 5 )  and (6) reduce to respec- 
tively . 

1x1 I IIT112 IIT-1112 llAll2 (7) 
and 

I \ Im 

These results justify the fact that llTll2 IIT-1112 is often 
taken as a measure of the conditioning of the spectrum of a 
matrix. However, the spectral condition number K~(T)  := 
IIT112 IIT-1112 is a nondifferentiable function with respect 
to T .  This presents problems in optimization. Therefore, 
very often the Frobenius condition number 

KF(T) := IlTll~ IIT-lII~ = dtr(T*T)tr(T-*T-I) 

is considered since K F ( T )  is differentiable with respect to 
T . Moreover, we have K ~ ( T )  5 K ~ ( T ) .  

For the robust deadbeat regulator problem, we propose 
a new measure of robustness specific to this type of prob- 
lems. The following theorem describes of the variation of 
the eigenvalues in terms of the spectral norm and the size 
of the largest Jordan block in a nilpotent matrix M. 

Theorem 2 Let M E R""" be nilpotent and k 2 1 be 
the smallest integer such that M k  = 0. Suppose X is a 
nonzero eigenvalue of M + A where A E RnXn, then 

Proof: 
nonzero eigenvalue X of M + A. Then 

Let v be an eigenvector corresponding to the 

v = (XI-M)-lAV 
= ( -A+ 1 ,MA+ 1 ... + -M"-'A) 1 21 

A X  Xk 

which gives 

Aku = (Xk-lA + Xk-2MA + . . . + Mk-'A)v 
k-1  

==+ IXIk 5 ~IX~k-'-211M2Al12 (9) 
2=0 

Hence at least one of the following inequalities must hold: 

IXIk 5 klXlk-1-z~~M'A~12 (i = 0 , .  . . , k - 1) 

These inequalities are equivalent respectively to IXlz+' 5 
lcll MZAl12 (i = 0,. . . , k  - l), which are in turn equivalent 

respectively to 1x1 5 (kllM'AIlz)* (i = 0,. . . , k - 1). 
Therefore (i) holds. The inequalities (ii) and (iii) follow 
from (i). 0 

In the above, the value k is the same as the size of largest 
Jordan block in the Jordan form of M. This fact is used 
to establish the following proposition. 

Proposition 1 With the notation in Theorem 2, let M = 
TJT-l be a Jordan canonical decomposition where T is a 

is a Jordan block of dimension mi such that ml + m2 + 
. . .+m - - n and k = maxLl mi. Then 

Proof: Omitted. [I) 

Remark 3 It is easy to establish the following inequali- 
ties. 

where K is the number of k x k Jordan blocks J,, i = 
1,. . . , v in J . These inequalities, together with Theorem 
2 and Proposition 1, indicate that IlMll~ may be used as 
a measure of robustness against perturbation. [I) 

In view on Remark 3, the following objective function is 
considered: 

The reason for considering 4 is threefold. It is clear that 
if 4 is small, the upper bound on the perturbation is also 
small. Moreover, as we shall see in Section 3, there exist 
formulas for the gradient and the Hessian which can be 
evaluated efficiently. 

4 := IIMll; 
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3 Problem Formulation 

As explained in Remark 1, the choice of K should be such 
that the size of the Jordan blocks in the Jordan canonical 
decomposition of A + B K  be made equal to the reacha- 
bility indices. That is, there exists a similarity transfor- 
mation T E RnX" such that 

A + B K  = TJT-' 

J = diag( J1 , J2, . . . , Jq)  

(17) 

(18) 
where 

Notice that Ji E Rkd ki is defined in (10) and those blocks 
with ki = 0 does not appear in J. Any reordering of Ji 
does not affect the values of m ( T )  and IEF(T).  It is impor- 
tant to realize that for a given A+BK, the transformation 
T is not unique. Observe that (17) can be rewritten as 

A T - T J + B G  = 0 (19) 
G = KT (20) 

Since the eigenvalues of A (open-loop poles) and those 
of J (closed-loop poles) are assumed to be different, the 
Sylvester equation (19) gives a unique T as the solution. 
It is also known from Bhattacharyya and de Souza (1982) 
that the set of all G E RqXn for which the solution T to 
the Sylvester equation (19) be nonsingular is open and 
dense. (We denote this set by 8 .) In other words, for 
almost any choice of G, T = T(G) obtained from (19) is 
unique and invertible. Thus, G is taken as an optimization 
parameter to minimize the objective function 4. Once 
an optimal (or near-optimal) solution Gopt is obtained, 
the corresponding state feedback gain can be recovered 
as Kept := GoptT(Gop~)-'. Similar idea is also exploited 
in the continuous-time robust pole/eigenstructure assign- 
ment problem (Cavin I11 and Bhattacharyya 1983; Lam 
and Yan 1995). 

Formally, the following minimization problem is consid- 

min ll~11: = min I I A  + B G T ( G ) - ~ ~ ~ ~ ,  
ered. 

GES GES 

3.1 Gradient and Hessian Formulas 

En this subsection, we derive the gradient and Hessian 
formulas for 4 with respect to the parameters in G. Let 

aG G = [gijlgxn and we have - = Eij where E,j E RqXn 
agi j 

is a matrix with zero elements except a value of one at 
the ( i , j )  position. Due to the differentiable nature of the 
objective function q5 := llMllk = tr ( M ' M ) ,  we have the 
gradient given by 

is obtained by differentiating (19). The Sylvester equation 
(23) has unique solution since it is assumed that the spec- 
tra of A and J are disjoint. It is also important to notice 
from (23) that e for i = 1,. . . , q and j = 1,. . . , n are 
independent of G and hence their values are only required 
to compute once. The Hessian is given by 

with 

where a2M is given by 
dgijagtljf 

3.2 Number of Effective Parameters in G 

It should be pointed out that the parametrization of K 
in terms of G using (19) and (20) is equivalent to that 
given in (Fahmy and O'Reilly 1983b). The present way 
to parametrize gives a more reliable way to compute K 
and T ,  though less explicit than that given by Fahmy and 
O'Reilly. This is because it does not require the compu- 
tation of A-' and its powers. 

Suppose 

and let IC:= mini IC, . It was shown in (Fahmy and O'Reilly 
198313) that K is independent of the last columns in 
each submatrix Gi of the parameter matrix G. As a con- 
sequence, G contains TI - q& effective parameter columns 
in G and q& ineffective ones. The values of the elements in 
these redundant columns can be k e d  arbitrarily as long 
as T(G) defined in (19) is nonsingular. The total number 
of effective elements in G is thus equal to q(n - &). For 
the objective function IlMIl; = IIA + BKll; , the partial 
derivatives of the gradient (21) are therefore zero with 
respect to  the ineffective elements in G. This leads to 
a substantial reduction in the computation of the gradi- 
ent vector and the Hessian matrix. Hence, the number of 
minimization variables is not as large as it might appear. 
However, it must be realized that the number q(n - q&) 
of parameters is not the minimum number (Schlegell982; 
Fahmy and O'Reilly 1983b). 

where 



3.3 Computation Algorithm for Robust Dead- 
beat Regulators 

We now suggest the following schematic algorithm for 
computing robust deadbeat regulator gains. 

RDR Algorithm: Given a reachable pair (A ,  B )  with A 
nonsingular, J of the form (18)and G(0) E 8. 

1. Compute and store E via the Sylvester equation 
(23) for all effective parameter elements gzj of G. 

2. Minimize 4 := llMll?j with respect to all effective 
parameter elements gil of G using standard numeri- 
cal routines involving V G ~  (compute with (21) and 
(22)) and/or Vgq5 (compute with (24) and (25)). 

3. Choose I? = GT(G)-' where 6 is the minimizer 
obtained in (2) as the robust deadbeat regulator 
gain. 

4 Numerical Example 

Consider the reachable pair ( A ,  B)  where 

1 0 1 0  0 1 0  

0 0 0 1 0  
0 1 0 0 1  

The system matrices were also used by Klein (1984) 
and Sebakhy and Abdel-Moneim (1970) when consider- 
ing deadbeat regulators. The controllability indices are 
3, 1, and 1. To have minimum regulation time with any 
initial state, the size of the Jordan blocks in J should be 
chosen equal to the controllability indices. That is, 

0 1 0 0 0  

0 0 0 0 0  

The initial guess G(0) is taken as 

1 -0.3600 -0.1356 -1.3493 -1.2704 0.9846 
-0.0449 -0.7989 -0.7652 0.8617 -0.0562 

0.5135 0.3967 0.7562 0.4005 -1.3414 

which is randomly generated from a normal distribution 
with unit variance and T(G(0))  is nonsingular. According 
to the discussion in Section 3.2, we have the elements in 
the last three columns of G ineffective. That is, there are 
only six effective parameters in G. The minimization was 
carried out with analytical gradient and Hessian, eventu- 
ally llMllF converges to the value 2.5495 and the corre- 
sponding feedback gain matrix is given by 

0 0 - 1 1  

2 2  

It can be shown that such Krobust is the unique global 
minimizer of IIA + BKIJ, with minimum value equals 
@ 2.54950976. For the present example, all dead- 
beat regulation feedback gains are parametrized with the 
minimum number of parameters by 

- l 1  [ 0 a 2  a 2 + a 4  -a2-1 cy2 

0 0  -1 1 
Kal~ = -1 CYI -1 C U I + C Y ~  -1 

for some real numbers cyt, i = 1,. . . ,4. To illustrate the 
robustness of the solution, we compare the Krobust with 
a deadbeat regulator gain, 

0 -3.72 -2.87 -l 2.72 -3.72 -l I 0 0  
Krandom = -1 -2.84 -3.17 0.84 -1.84 [ 

obtained by choosing a1 = -1.84, a 2  = -3.72, cy3 = 
-1.33, and a 4  = 0.85, drawn from a normal distri- 
bution of zero mean and unit variance. In this case, 
IIA f BKrandomllF 10.2260 . 
Consider the perturbed closed-loop state matrix 

A + B K + p A  

where A is a random perturbation (elements are inde- 
pendent and Gaussian distributed) normalized such that 
llAllF = 1, and ,LL > 0 is a parameter controlling the level 
of perturbation. The associated measure of the degree of 
perturbation on the spectrum is given by 

d,(A) := max IX,(A + B K  + p a ) ]  
1. 

where Xi(.) denotes the ith eigenvalue of (.) . This mea- 
sure of perturbation is equivalent to the optimal matching 
distance (Stewart and Sun 1990). When d , ( A )  > 1, the 
perturbation leads to instability in the closed-loop system. 
The results of 1000 random A s  are summarized in Table 
1. In Table 1, the worst case, mean, and the standard 
deviation of d ,  over the 1000 trials (common to Krobvst 
and Krandorn, and ,LL = 0.01, 0.1, and 0.2) are recorded. It 
can be observed that the robust deadbeat regulator gain 
Krobust always performs better then Krandom in the three 
chosen levels of perturbation. At /I = 0.2, Krandom gives 
unstable closed-loop in some cases. By considering the 
1000 samples in each case, it can be concluded that the 
mean of d, for &,bust is significantly better than that of 
Krandom at the level of 0.1% in a statistical sense. 

5 Conclusion 

In this work, we have formulated the robust deadbeat reg- 
ulation problem as an unconstrained optimization prob- 
lem. A new objective function is introduced which, in con- 
trast to the measures of robustness defined for this type of 
pole assignment problem, does not require the computa- 
tion of eigenvectors. Moreover, the objective function has 
analytical gradient and Hessian which can be evaluated 
efficiently through matrix manipulations. The numerical 
example demonstrated the good performance of the ro- 
bust deadbeat regulator gain in face of perturbation in 
the closed-loop matrix. 
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