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Abstract- In this paper, we propose a linear control model
for gene intervention in a genetic regulatory network. At each
time step, finite controls are allowed to drive the network states
to some target states. The objective is to achieve a target state
probability distribution with a minimal control cost. The model
can be formulated as a minimization problem with integer
variables and continuous variables. Our experimental results
show that the control model and the algorithm are efficient for
gene intervention problems in genetic networks.

Index Terms- genetic regulatory network, linear control, min-
imization problem, probabilistic boolean network.

I. INTRODUCTION
Probabilistic Boolean networks (PBNs) have been proposed

to study the dynamic behavior of gene regulatory networks
[1]. It is a generalization of the standard Boolean networks. A
Boolean network G(V, F) consists of a set of nodes:

V={V1i,V2,...V8}

and vi (t) represents the state (0 or 1) of vi at time t. A list
of Boolean functions:

F={fi f2, ... f8}

representing rules of regulatory interactions among the nodes
(genes):

vi(t + 1) = AMO(t), i = 1, 2, ... ., s,
where v(t) = [vl (t), v2 (t), . . ., v, (t)]IT. The Boolean net-
work is a deterministic model. However, gene expression is
stochastic in nature and there is also experimental noise due to
complex measurement process. To overcome the deterministic
rigidity of a Boolean network, extension to a probabilistic
setting is necessary. In a PBN, for each node, instead of having
one Boolean function, there are a number of predictor func-
tions f(j) for determining the state of gene vi if it is chosen.
For each gene vi, 1(i) is the number of possible predictor
functions and c: is the probability that ffj) is being chosen,
and it is estimated by using Coefficient of Determination
(COD)[6]. By incorporating more possible Boolean functions
into each gene, they are able to cope with the uncertainty,
which is intrinsic to biological systems. At the same time,
they also share the appealing rule-based properties of standard
Boolean networks [2], [3], [4]. The dynamics of PBNs also
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can be understood from the Markov chain point of view. Thus
the numerous theories for Markov chains can also be applied
to analyze the PBNs.

Although a PBN allows for uncertainty of inter-gene rela-
tions during the dynamic process, it will evolve only according
to certain fixed transition probabilities. There is no mechanism
for controlling this evolution towards more desirable states.
To facilitate PBNs to evolve towards some given desired
directions, intervention has been studied in some different
ways. It has been shown that given a target state, one can
facilitate the transition to it by toggling the state of a particular
gene from on to off or vice-versa [7]. However, making a
perturbation or a forced intervention can only be applied at one
time point. The behavior of the system thereafter still depends
on the network itself. The network may eventually return to
some undesirable state after many steps. Another way is by
using structural intervention to change the stationary behavior
of the PBNs [8]. This approach also constitutes transient
intervention. Since it involves the structural intervention, it
is more permanent than the first one.
To increase the likelihood of transitions from an undesirable

state to a desirable one in a PBN, more auxiliary variables can
be involved in the system. Such variables are called control
inputs. They take the binary values: 0 or 1, which indicates that
a particular intervention is ceased or actively applied. The con-
trol can be applied in finite steps, not only at one time point.
In [5], the control problem is formulated as a minimization
problem of some costs. Under the supervision of biologists or
clinicians, the cost functions are defined as the cost of applying
the control inputs in some particular states. For the terminal
states, all possible states are assumed to be reachable. Higher
terminal costs are assigned to the undesirable states. Then,
the control problem is to minimize the total cost under the
condition that each step evolution is based on the transition
probability which now is a function with respect to the control
inputs. Since the system is stochastic in nature, the cost is
given by its expectation. The optimal control problem is solved
by the technique of stochastic dynamic programming. The
simulations for this model indicate that the final state will be
the desirable state with higher probability when using controls.
For more details, we refer readers to the paper by Datta et
al.[5].

In this paper, we formulate the gene intervention problem
with a linear control model which is easy to understand and
implement. At each time step, finite controls can be put to
drive the states to the desirable ones. The objective is to
achieve a target state probability distribution with a minimal
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control cost. The model is formulated as a minimization1% El A



problem with integer variables and continuous variables. There
are many methods to solve such problems [9]. We use LINGO,
a popular software for solving such minimization problem, to
get the control input solutions for gene intervention.
The remainder of the paper is organized as follows. In

Section 2, we give a brief review on PBNs and in Section
3, we formulate the linear control problem. In Section 4,
preliminary numerical results are given to demonstrate the
effectiveness of the linear control models and the efficiency
of our algorithms. Finally, concluding remarks are given to
discuss further research issues in Section 5.

II. FORMULATION OF THE LINEAR CONTROL MODEL

In this section, we first review the PBNs briefly, we then
present our linear control objective. We are interested in
modeling the relationship among "n" genes. In such a genetic
network, each gene can take one of the two binary values: 0
or 1, or one of the three ternary values: -1, 0 or 1. For the
former case, 0 and 1 correspond to the case that a particular
gene is not expressed and expressed. For the latter case, -1,
0 and 1 indicate that the gene is down-regulated, unchanged
and up-regulated respectively. Here we assume that each gene
takes binary values in the discussion.

Suppose that the activity level of gene "i" at time step "k" is
denoted by xi (k) where xi (k) = 0 or 1. The overall expression
levels of all the genes in the network at time step k is given
by the following column vector

x(k) = [xi(k),X2(k),.. .XXn(k)]T.

This vector is referred to the Gene Activity Profile (GAP) of
the network at time k. For x(k) ranging from [0, 0,... ,O]T
(all entries are 0) to [1,1,... , 1]T (all entries are 1), it takes
on all the 2n possible states of the n genes.

Furthermore, for each gene xi, there corresponds 1(i) pos-
sible Boolean functions:

and the probability of selecting function fi) is cj ), where

f (') is a function with respect to x1, X2, ... , xn, which shows
the dependency of xi on Xl, X2,... , xn. Since c( are proba-
bilities, they must satisfy the following condition:

I(i)

j=1
For such a PBN with n genes, there are at most N = H=11(i)
different Boolean networks. This means that there are totally
N possible realizations of the network. Let fk be the kth
possible realization,

fk = 1[fk X(2) X *X(n)], 1 < ki < I(i), i = 1, 2, .. ., n.

Suppose that Pk is the probability of choosing the kth Boolean
network,

n

Pk = CIc).) 1,2, ..,IN. (1)
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Let a and b be any two column vectors with n entries being
either 0 or 1. Then

Pr{x(k + 1) = a x(k) = b}
N

=, Pr{x(k + 1) = a x(k) = b,
i=l

(2)

the ith Network is selected} * Pi.

By letting a and b ranging from 00 ... 0 to 11 ... 1 inde-
pendently, we can get the transition probability matrix A. For
the ease of presentation, we first transform the n-digit binary
number vector, as discussed in [1], into a decimal number by

n
y(k) = 1 +EZ 2n-j j(k).

j=1

As x(k) ranges from 00 ... 0 to 11 . . . 1, y(k) will cover all
the values from 1 to 2 . Since the mapping from x(k) to y(k)
is one-to-one, we can just equivalently work with y(k). Let
w(k) be the probability distribution vector at time k, i.e.

wi(k) = Pr{y(k) = i}, i = 1, 2,. ..,2.

It is straightforward to check that

w(k + 1) = Aw(k) (3)
where A satisfies

2n

E Aij = 1
i=1

and it has at most N. 2' non-zero entries of the 2'-by-2'
matrix.

Suppose that the m auxiliary variables, which are called
control inputs

Ul, U2, ...* Um

are applied to the PBNs at each time step. At each time step
k,

u(k) = [ui(k),U2(k), . . . ,Um(k)]T
indicates the control status. As in the PBNs, u(k) can take all
the possible values from [0, 0,..., 0]T to [1, 1, . 1., i]T. One
can still represent the controls with the decimal numbers

m
v(k) = 1 +E 2m-ui(k).

i=l

As u(k) ranges from [0, 0,... I, ]T to [1, 1, ... 1]T, v(k) can
cover all the values from 1 to 2m.

In [5], after applying the controls to the PBNs, the one-step
time evolution of the probabilistic distribution vector follows
the equation:

w(k + 1) = A(v(k))w(k) (4)
which not only depends on the initial distribution but also on
the controls at each time step. By appropriately choosing the
control inputs, the states of the network can be led to a more
desirable direction. The control problem is then formulated as
follows. Given an initial state y(O), find a control law

7r ={Uo,U1, ... , UM-1}



that minimizes the cost function:
M-1

J(y(O)) = E[E Ck(y(k),Uk(y(k))) + CM(y(M))] (5)
k=O

subject to the constraint

Pr{y(k + 1) = j y(k) = i} = aji(v(k)). (6)

Here Ck(y(k), v(k)) are the costs of applying the control input
v(k) when the state is y(k). The optimal solution of this
problem is given by the last step of the following dynamic
programming algorithm which proceeds backward in time
from time step M - 1 to time step 0:

JM(y(M)) = CM(y(M))
r Jk(y(k)) = miin E{G(y(k), v(k))}v(k)E{1,2,.. 2m}

I k=0,1,2,...,M-1.
G(y(k), v(k)) = Ck (y(k), v(k)) + Jk+l (y(k + 1))

Furthermore, if v*(k) = u*(y(k)) minimizes the right hand-
side of (5) for each y(k), the control law

is optimal. For more details, we refer readers to Datta et al.[5].
The above control problem is to put the controls on the

transition probability matrix in each time step, such that the
system can evolve towards the more desirable states. For the
general control problems, the controls can be transferred by
a control transition matrix to the whole system such that
the probability of the system evolving towards the desired
direction will increase.

III. LINEAR CONTROL MODELS
We consider a discrete linear control system:

w(k + 1) = akAw(k) +,/kBu(k). (7)

All the assumptions are the same as the above. Here w(k) is
the state probabilistic distribution of all the states in the proba-
bilistic Boolean network, from [0O,, ... , O]T to [1, 1, ... , 1]T.
The matrix A is the transition probability matrix for repre-
senting the dynamics from one time step to the next one. The
matrix B is the control transition matrix and u(k) is the control
vector on the states with ui(k), i = 1, 2, ... ,m taking on the
binary values 0 or 1. The matrix B can be set in each column
to represent the transition from one specific state to another
for one particular gene. For example, we can set in the first
column such that the first gene makes a transition from 0 to
1, then the first 2n-1 entries are 0 and the others are nonzero
with the sum being equal to one in this column. Moreover,
ui (k) = 1 means the active control is applied at the time step
k while ui(k) = 0 indicates that the control is ceased. At
this stage, we assume B is given and we need the biologists'
or clinicians' guidance or some other methods to compute it.
Through the matrix B, the controls are effectively transferred
to different states of the PBN. If there are m possible controls
at each time step, then the matrix B will be of size: 2' x m.

Starting from the initial state or initial state probability
distribution w(O), one may apply the controls

u(O),u(l),... , u(k- 1)

to drive the probability distribution of the system to some
desirable state probability distribution at instance k. The
evolution of the system now depends on both the initial state
probability distribution and the controls in each time step. To
make w(k) a probability distribution, it is straightforward to
require that

aYk+/3k = 1.

When there is no control at step k, we see that ak = 1. The
parameter alk refers to the intervention ability of the control
in a genetic regulatory network.
We remark that the traditional discrete linear control prob-

lem does not have such parameters. The main reason is that in
the traditional control problem, w(k) is the state of a system.
However, w(k) is a probability distribution in this paper. We
need to make sure that starting from the initial probabil-
ity distribution, one apply controls to drive the probability
distribution of the system to become some particular target
distribution at the time instance k.

Given the objective state or state probability distribution at
time k, we aim at finding the optimal controls:

u* (O) , u* (1),I .. u* (k -1),
such that the final state or state distribution following formula
(7) is just the objective state or state distribution. For simplic-
ity, we set one control at each time step. This means that the
total of ui at each time step should be 1. To make the terminal
state to be the desirable state, we define some cost functions.
We define Ck(yj (k), u(k)) to be the cost when applying u(k)
control input at the k-th step with the state yj (k). At each step,
we hope the state is the desirable state. With this definition,
the expected control cost at all the states in step k becomes:

E[Ck(y(k),u(k))ly(k - 1)]. (8)
At each step, we simplify the model and assume that all the
states can be reached. We assign a penalty cost of Ck(yj(k))
to the state yj(k). Whether lower costs or higher costs are
assigned depends on whether they are desirable or undesirable.
We note that Ck(yj(k)) is still stochastic, therefore we must
take its expected value.
The control problem can now be formulated as follows.

Given an initial state distribution w(O), find a control law

u*(k) = Uk,

such that

min E[(Ck(y(k), u(k)) + Ck+1 (y(k + 1)))ly(k)],
for k=1,2,...,M-1

subject to
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m
I [u(k)]l < 1,
1=1

aCk + /k = 1,
m

a!k+13kZ[u(k)]l = 1,
i=l

[U(k)]l E {O, 1},

k=O,1,...,M-1.
k=O,1,...,M-1.

k = 0,1,... ,M-1.

(9)
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Fig. 1. Probabilistic Boolean Network of the Eight Genes

Since

E[Ck(y(k),u(k))ly(k - 1)]
2n

= ZP(yj(k)) * Ck(yj(k), u(k))
j=1
2n

= E wj (k) * Ck (yj (k), u(k))
j=1

the objective function can be written as follows:
2n

minZ(wj(k)Ck(yj(k), ui(k))+wj(k+1)Ck+l(yj(k+1))),
j=1

where w(k) is obtained from the relation (7). From (9), we

see that all aYk and 3k can be represented by ui (k). Thus
this formulation can be seen as only involving k x m integer
variables ui(k), which constitutes an Integer Programming
(IP) model.

IV. NUMERICAL RESULTS
In this section, we present an example to demonstrate

the optimal control design by integer linear programming
approach. In this example, we consider a PBN of eight genes,
xl,x2,. .. ,x8. For each gene i, we assume that it can take
two values: 0 or 1. Here 1 means the gene is expressed and 0
means it is not expressed.
We further assume that there are two probabilistic Boolean

functions: fit) and f i) associated with each gene i. All
the probabilistic Boolean functions and their variables are

generated randomly. At the same time, the probability of the
two Boolean functions being applied to the corresponding
particular gene is obtained. Fig.1 shows the network of these
eight genes. Suppose that in this example, we expect gene 1

is not expressed. Then controls will be introduced to drive
gene 1 from state 1 to state 0. Before solving the optimization
problem formulated in the last section, we need to do the
following two steps:

(al) Obtain matrices A and B, where matrices A and B
are the corresponding transition matrix and control transition
matrix respectively. Since there are two Boolean functions
for each gene, there are totally 28 networks. From (1), the
probability of choosing any one of all the 28 can be obtained.
By (2), we can get matrix A. To construct matrix B, in practice
we need the opinions from the biologists to determine which
gene can be easily controlled or have close relation with the
target gene. For the purpose of demonstration, we will control
gene 1 through all the eight genes and let them move from
state 1 to state 0 with equal probability.

(a2) Determine the cost of controls and penalty for the
states. We assign a cost of 1 to each forcible control. For
the states penalty, since we expect gene 1 to be in state 0, we
assign a penalty of 0 to the states for which gene 1 equals 0
and a penalty of 3 to all the states for which gene 1 equals
1. We choose the penalty and cost arbitrarily. In practice, we
still need some criteria to determine them.
Now we can solve our optimization problem which is an

integer programming problem. We choose the control such
that it is only applied in three steps: 0,1, 2. With the popular
software LINGO, we can get the solution in about one minute.
The following are some results for initial state being both
desirable and undesirable. It is clear to see the effect of this
control strategy.

(bi) The initial state is [0, 0, 0, 0, 0,0,0,0, 0], which is the
desirable state. If we do not apply any control, the probability
of this state evolving to the state for which gene 1 equals 0
after three steps is 0.2492.
Under the control strategy, the probability is 0.6517, which

is much more than that without any control. The control
strategy is as follows: in the first step we control gene 1; in the
second step, we control gene 4 and in the third step, we control
gene 1 again. As we have assumed, all the corresponding genes
will be made to change from 1 to 0.

(b2) The initial state is [1, 1, 1, 0, 1, 0, 1,1], which is not
the desirable state. This time if we do not apply any control,
the final state will be the desirable state with the probability
0.1913, which is a very small likelihood.

However, with the optimal control, the state will evolve to
the desirable state with probability 0.6379. In the first step,
we need not apply any control at all; but in the second and
the third step, we need to control gene 4 and and gene 1
correspondingly.

A. Computational Cost
To demonstrate the effectiveness of our model, here we

made a comparison between our model and the DP model.
Assume each gene can take on s states: s can be 0, 1 or
-1,0,1.

1) Computation aspect: If we get the solution of the
Integer Programming model by computing all the possible
values of ui(k) under the constraints and then take the
one which can minimize the objective function, the cost is
O((m + 1)s2n). When we apply one control at each step. We
know that this cost is the most among all the methods to solve
this problem. For the Dynamic Programming (DP) model, the



cost is 0(2ms2n). The cost of IP model is much less than that
of the DP model.

2) Parameter aspect: In the DP model, for each v(k), there
will correspond a A(v(k)), thus there will be 2m matrices
which are assumed to be known. In our model, all the control
information is included in one matrix B. No matter how many
controls we will apply, a matrix B is enough although it is
still assumed to be known.

In our numerical tests, we find that our approach takes less
than 2 minutes to compute the control solution under the PC
with Platinum 4 and 512 kB RAM. However, for the DP
approach, the PC cannot get the optimal solution in one day
time.

V. CONCLUDING REMARKS
In this paper, we introduced a linear control model with the

general control model form based on the PBN model of gene
regulatory networks. At each step, one or more controls can

be put to drive the genes to more desirable states. The control
strategy can be used in the real life for therapeutic intervention.
The optimal control results presented in this paper assume that
the control transition matrix is known. To get a reasonable
contrGl transition matrix is our further research topic.
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